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1. INTRODUCTION

Increasing attention has been paid recently to non-
equilibrium statistical physics in the study of statistical
memory effects in random processes that originate nat-
urally. The role of memory has its roots in natural sci-
ences since 1906, when the famous Russian mathema-
tician Markov wrote his first paper on the theory of
Markov random processes [1]. His theory is based on
the notion of an instant loss of memory of the prehis-
tory (memoryless property) of random processes. On
the other hand, there is an abundance of physical phe-
nomena and processes that can be characterized by sta-
tistical memory effects: kinetic and relaxation pro-
cesses in gases [2] and plasma [3], condensed matter
physics (liquids [4], solids [5], and superconductivity
[6]), astrophysics [7], nuclear physics [8], and quantum
[9] and classical [10] physics, to name but a few. At
present, we can use a variety of statistical methods for
the analysis of memory effects in diverse physical sys-
tems. Typical of such schemes are Zwanzig–Mori’s
kinetic equations [11], generalized master equations
and corresponding statistical quantifiers [12], Lee’s
recurrence relation method [13], the generalized Lan-
gevin equation [14], etc.

In this paper, we demonstrate that the presence of
statistical memory effects is of salient importance for
the functioning of healthy physiological systems. This
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can imply, in particular, that the presence of large mem-
ory time scales in the stochastic dynamics of discrete
time series can characterize pathological (or cata-
strophical) violation of salutary dynamic states of the
human brain. As an example, we demonstrate here that
the emergence of strong memory time scales in the cha-
otic behavior of neuromagnetic responses of human
brain as recorded by magnetoencephalographic (MEG)
is accompanied by the likely initiation and the exist-
ence of photosensitive epilepsy (PSE).

We first consider a simplified version of the Markov
processes. We introduce the conditional probability
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The equation states that, given the state of a Markov
process at some time 
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, the forthcoming (future)
state of the process at 
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n

 

 is independent of all previous
states at prior times. The equation is the standard defi-
nition of the Markov random process. Therefore, from
the physical standpoint, the Markov process is a pro-
cess without an aftereffect. This means that the “future”
and the “past” of a process are independent of each
other at the known “present.”

Kn 1– x1 t1; x2 t2; … xn 1– tn 1– xn tn, , ,, ,( )

=  K1 xn 1– tn 1– xn tn, ,( ).
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Abstract

 

—To discuss the salient role of statistical memory effects in human brain functioning, we have ana-
lyzed a set of stochastic memory quantifiers that reflects the dynamical characteristics of neuromagnetic
responses of magnetoencephalographic signals to a flickering stimulus of different color combinations from a
group of control subjects, and compared them with those for a patient with photosensitive epilepsy. We have
discovered that the emergence of strong memory and the accompanying transition to a regular and robust
regime of chaotic behavior of signals in separate areas for a patient most likely identifies the regions where the
protective mechanism against the occurrence of photosensitive epilepsy is located. 
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2. MEASURES FOR MEMORY

One of the first measures of “memory” in physiolog-
ical time series studied in electroencephalographic
(EEG) and magnetoencephalographic signals, both of
healthy subjects and of patients (including epilepsy
patients) [15], was the detrended-fluctuation analysis
[16].

The use of Zwanzig–Mori kinetic equations pro-
vides an appropriate, and the most convenient, method-
ology for quantitative description of statistical memory
effects of random processes in physiological data. In
particular, using the reasoning put forward in [17], one
can obtain a chain of coupled kinetic equations for the
discrete time correlation function

of the fluctuation

where

is a random discrete-time process, i.e.,
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th order together with the cor-
responding relaxation parameters quantify the memory
effects. The full set of memory functions includes all
peculiarities of the memory effects for real complex
systems. For discrete time series, the whole set of the
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) functions and relaxation parameters can be calcu-
lated directly from the experimental data [17].

Following the argument in [17] provides adequate
tools for studying the role of memory effects in dis-
crete-time dynamics of complex systems. The charac-
terization of memory is based on a set of dimensionless
statistical quantifiers capable of measuring the strength
of memory inherent in the complex dynamics. The first
such measure is
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and the second follows as
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the memory on a relative scale, whereas the δi(ω) are
useful for quantifying the amplification of relative
memory effects occurring on different complexity lev-
els. Both measures provide statistical criteria for the
comparison of the relaxation time scales and memory
time scales of the process under study. For values obey-
ing {ε, δ} � 1, one can observe a complex dynamics
characterized by short-range temporal memory scales.
In the limit, these processes assume a δ-like memory
with ε, δ  ∞. When {ε, δ} > 1, one deals with a sit-
uation with moderate memory strength, and the case
with both ε, δ ~ 1 typically constitutes a more regular
and robust process with strong memory features.

3. EXPERIMENTAL DATA FOR PSE

Next, we proceed directly to the analysis of the
experimental data: MEG signals recorded from a group
of nine healthy human subjects and for a patient with
PSE [18]. PSE is a common type of stimulus-induced
epilepsy, denned as recurrent convulsions precipitated
by visual stimuli, particularly by flickering light. The
diagnosis of PSE involves finding paroxysmal spikes
on an EEG in response to the intermittent light stimula-
tion. To elucidate the color dependence of photosensi-
tive in normal subjects, brain activities subjected to uni-
form chromatic flickers with whole-scalp MEG were
measured in [18] (further details of the MEG experi-
ment can be found in [18].

Nine right-handled healthy adults (two females,
seven males; age range 22–27) participated voluntarily.
The subjects were screened for photosensitivity and
personal or family history of epilepsy. The experimen-
tal procedures followed the Helsinki Declaration and
were approved by the National Children’s Hospital in
Japan. All subjects gave their informed consent after
the aims and potential risks of the experiment were
explained. During the recording, the subjects sat in a
magnetically shielded room and were instructed to pas-
sively observe visual stimuli without moving their eyes.

Stimuli were generated by two video projectors and
were delivered to the viewing window in the shielded
room through an fiber-optic bundle. Each projector
continuously produced a single color stimulus. Liquid-
crystal shutters were located between the optical device
and the projectors. By alternatively opening one of the
shutters for 50 ms, a 10-Hz (square-wave) chromatic
flicker was produced at a viewing distance of 30 cm.
Three color combinations were used: red–green, blue–
green, and red-blue. The generalized Langevin equa-
tion coordinates were x = 0.496, y = 396 for red; x =
0.308, y = 0.522 for green; and x = 0.153, y = 0.122 for
blue. All color stimuli had a luminance of 1.6 cd/m2 in
otherwise total darkness. In a single trial, the stimulus
was presented for 2 s and followed by an intertrial inter-
val of 3 s, during which no visual stimulus was dis-
played. In a single session, a color combination was
fixed.

2

3
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Neuromagnetic responses were measured with a
122-channel whole-scale neoromagnetometer (Neuro-
mag-122; Neuromag Ltd., Finland). The neoromag-122
has 61 sensor locations, each containing two originally
oriented planner gradiometers coupled to DC-SCUID
(superconducting quantum interference device) sen-
sors. The two sensors of each location measure two
orthogonal tangential derivatives of the brain magnetic
field component perpendicular to the surface of the sen-
sor array. The planar gradiometers measure the stron-
gest magnetic signals directly above local cortical cur-
rents. Starting at 200 ms, prior responses were analog-
filtered (with a bandpass frequency of 0.03–100 Hz)
and digitized at 0.5 kHz. Eye movements and blinks
were monitored by measuring an electro-oculogram.
Trials with MEG amplitudes >3000 fT/cm and/or elec-
trooculogram amplitudes >150 µV were automatically
excluded from averaging. Trials were repeated until
>80 responses were averaged for each color combina-
tion. The averaged MEG signals were digitally low-
pass filtered at 40 Hz, and then the DC offset during the
baseline (–100 to 0 ms) was removed. At each sensor

location, the magnetic waveform amplitude was calcu-
lated as the vector sum of the orthogonal components.
Peak amplitudes were normalized for each subject with
respect to the subject’s maximum amplitude. The
latency range of - 100 to –1100 ms was divided into
100-ms bins. The peak amplitudes were then calculated
by averaging all peak amplitudes within each bin.

4. MEMORY ANALYSIS
FOR THE PRESENCE OF PSE

With our set in Figs. 1–5, we present the results of
numerical calculations and the analysis of the experi-
mental data in the framework of the nonequilibrium sta-
tistical approach to stochastic processes in discrete
complex systems [17]. In Figs. 1–3, we depict the typi-
cal data for one healthy subject (no. 6) in comparison
with a PSE patient in the case of a red–blue combina-
tion of the color stimuli. To make the conclusion about
the role of the statistical memory effects, we also show
the averaged data for the whole group of nine healthy
subjects compared with the patient with PSE in Figs. 4
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Fig. 1. Time dependences of time correlation function M0(t)(i = 0) and first two subordinate memory functions Mi(t), i = 1, 2 for a
healthy subject (no. 6) (a) and for a patient (b) with PSE for the SQUID number n = 10, τ = 0.2 ms. The drastic distinctions of Mi(t)
in a healthy person compared to a patient with PSE is clearly detectable. They consist in the appearance of significant long-range
oscillations in the healthy subject and the suppression of high frequency noise in the patient with PSE.
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and 5. Figure 1 shows the time dependence of the time
correlation function M0(t) and the first two memory
functions Mi(t), i = 1, 2 for a healthy subject (no. 6)
(Fig. 1a) compared with those for a patient with PSE
(Fig. 1b). The time correlation function M0(t) displays
long-range oscillations in the healthy subject and a
sharp decay for the patient with PSE. It can be seen
from Fig. 2, where the power spectra of time correlation
function and memory functions are represented, that
the fractal dependence at order 0; i.e., µ0(ω) ∝ ω–α with
α = 1.74 in the time correlation function of the healthy
person (Fig. 2a) transforms into a group of peaks corre-
sponding to the α, β, γ, δ, and θ rhythms in the fre-
quency behavior of the subordinate quantifiers µi(ω),
with i = 1, 2, 3. The typical picture in the patient with
PSE (Fig. 2b) consists in (i) the characteristic absence
of the fractal dependence for µ0(ω), (ii) the disappear-
ance of the well-defined manifestation of physiological
electromagnetic rhythms, and (iii) the appearance of a
single spike peak at 10.15 Hz in all spectra and for all
sensors n.

The most instructive singularities in the frequency
dependence of the first three points of the measure of
memory εi(ω), i = 1, 2, 3 (Fig. 3) are as follows. In a
healthy person, we observe the fractal dependence in
the low-frequency domain (ω < 50 Hz) ε1(ω) ∝ ω–β

with β = 1.67, the specific behavior ε2(ω) with
ε2(ω = 0)  0, and two single peaks in the domain of
the brain-rhythm frequencies for the third point ε3(ω).
This behavior is characteristic only of healthy subjects.
The role of increasing memory and the persistent tran-
sition from a more random (healthy) into a robust, more
regular regime of the underlying chaotic process at all
three subordinate measures ε3(ω), i = 1, 2, 3, is clearly
detectable in the patient with PSE. The crucial role of
the strong memory at the first level; i.e., for ε1, is
reflected by a decrease in the memory measure ε1(ω0 =
0) by a factor of approximately 56. Moreover, a drastic
change in the frequency spectra for ε2(ω) and ε3(ω)
occurs.
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Fig. 2. Power spectra µi(ω), i = 0, 1, 2, for the memory functions in a healthy person (a) and in the patient with PSE (b) for the
SQUID number n = 10 in double-log scale. The spectra in the healthy person (no. 6) demonstrate the presence of electromagnetic
waves at characteristic frequency scales α, β, γ, δ, and θ rhythms (in µ2(ω)). Noticeable peaks of electromagnetic excitations in a
patient with PSE near 50 Hz and 100 Hz can be observed. Similar peaks are present in many other sensors of the human brain core
with PSE. The fractal dependence µ0(ω) ∝ ω–α that typifies a healthy person is absent in a patient with PSE. This transition plays
a crucial role for the emergence of strong memory in a patient with PSE.
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The topographic dependence of ε1(ω = 0; n)
depicted in Fig. 4 demonstrates the existence of a long-
range time correlation accompanied by a pronounced
increase in the role of the statistical memory effects in
all MEG sensors with SQUID numbers n = 1, 2, …, 61,
in the patient with PSE compared to healthy persons.
The difference between a healthy subject and the sub-
ject with PSE is about an order of magnitude.

To further specify the role of the strong memory.
We study the topographic dependence in terms of a
novel information measure, the index of memory. It is
defined by

(see Fig. 5). This statistical quantifier measures the
amplification of the memory effects for the magnetic
signals of MEG in the patient with PSE compared with
the healthy group. The sharp increase in the role of
memory effects in the stochastic behavior of the mag-
netic signals is clearly visible for the SQUID numbers

ν n( )
δ1

healthy 0; n( )
δ1

patient 0; n( )
-----------------------------=

n = 10, 46, 51, 53, and 59. The observed points of MEG
sensors locate the regions of the protective mechanism
against PSE in a human organism: frontal (sensor 10),
occipital (sensors 46, 51, and 53) and right parietal
(sensor 59) regions. The early activity in these sensors
may reflect the protective mechanism that suppresses
cortical hyperactivity due to chromatic flickering.

One might remark that some earlier steps towards
the understanding of the normal and diseased human
brain have already been set in other fields of science
such as neurology, clinical neurophysiology, neuro-
science and so on. The numerous studies applying the
linear and nonlinear time series analysis to EEC and
MEG in epileptic patients are discussed in detail in [18,
19] with the neurophysiological basis of epilepsy, in
particular photosensitive epilepsy, taken into account.
Specifically, the results in [18] suggested that a signifi-
cant nonlinear structure was evident in the MEG signals
for control subjects, whereas nonlinearity was not
detected for the patient. In addition, the couplings
between distant cortical regions were found to be
greater for control subjects. The important role of com-
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Fig. 3. The frequency dependences of the first three subordinate statistical quantifiers measuring the strength of memory εi(ω), i =
1, 2, 3, in a healthy person (no. 6) (a) and for the patient with PSE (b) for the SQUID number n = 10. A distinct reduction by the
factor 1/56.5 in the zero-frequency value ε1(ω = 0) occurs from the healthy person to the patient with PSE. This feature quantifies
the emergence of strong memory in the subject with PSE. It is further accompanied by a noticeable disappearance of sharp electro-
magnetic excitations at low frequencies and by the appearance of high-frequency noise.
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binational chromatic sensitivity in sustained cortical
excitation was also confirmed. These previous findings
lead to the hypothesis that a healthy human brain is
most likely equipped with an essentially nonlinear neu-

ronal process reflecting an inherent mechanism that
protects against hyperexcitation to chromatic flickering
stimulus, and such a nonlinear mechanism is likely to
be impaired for a patient with PSE.

5. CONCLUSIONS

This study of the chaotic behavior of the neuromag-
netic signals of human MEGs with PSE and in a group
of healthy subjects elucidates the role of statistical
memory as an important criterion that measures the
functioning of the human brain. Even an insignificant
amplification of the memory effects tests the patholog-
ical changes in the brain of a patient with PSE. The pro-
nounced sharp increases in memory effects in our set of
statistical quantifiers in the neuromagnetic signals indi-
cates a pathological state of a patient with PSE within
separate areas of the brain. Our statistical approach,
being conveniently constructed from the set of subordi-
nate memory functions that yield the rate of change of
the autocorrelation function of the measured complex-
ity dynamics, allows one to characterize the neuromag-
netic signals in the human brain in terms of statistical
indicators. These statistical quantifiers in turn measure
both the role and the strength of statistical memory that
the underlying time series accommodates. Many natu-
ral phenomena are described by distributions with time-
scale-invariant behavior [20]. The suggested approach
makes it possible to treat the stochastic dynamics of
neuromagnetic signals in the human brain in a probabi-
listic manner and search for its statistical singularities.

From the physical standpoint, the results can be
used as a test to identify the presence or absence of
brain anomalies as they occur in a patient with PSE.
The set of our quantifiers is uniquely associated with
the emergence of memory effects in the chaotic behav-
ior of the human brain core. The detection of the behav-
ior of those indicators as discussed here is then of ben-
eficial use for detecting the pathological state of sepa-
rate areas (sensors 10, 46, 51, 53, and 59) in the brain
of a patient with PSE. There also exist other quantifiers
of different nature, such as the Lyapunov exponent,
Kolmogorov–Sinai entropy, and correlation dimension,
which are widely used in nonlinear dynamics and
related applications (see [21]). In the present context,
we find that the employed memory measures are not
only convenient for analysis but also ideally suited to
identify anomalous brain behavior. The search for yet
other quantifiers, and foremost, the optimization of
such measures when applied to complex, discrete-time
dynamics presents a true challenge. This objective
holds particularly true when attempts are made to iden-
tify and quantify anomalous functioning in living sys-
tems. The present work presents an initial step towards
understanding the fundamentals of physiological pro-
cesses in the human brain.

PSE is a type of reflexive epilepsy that originates
mostly in visual cortex (both striate and extrastriate) but
with a high possibility of propagating to other cortical
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Fig. 4. The topographic dependence of the information
measure for memory ε1(ω = 0; n) in a healthy person—1
(at a fixed n, the mean value for the whole group of the 9
control subjects) is compared with the patient with PSE—2,
n = 1, 2, 3, …, 61 is the SQUID number on the human brain
core. The crucial role of the strong memory for n = 10, 46,
51, 53, and 59 is clearly detectable. All sensors depicting
ε1(0ω = 0; n) clearly demonstrate the emergence of statisti-
cal memory effects in the chaotic behavior of magnetic sig-
nals. Nevertheless, the role of strong memory effects, i.e.,
the minimum values for ε1(0ω = 0; n), appreciable increases
in the patient in SQUID sensors with the numbers n = 10,
46, 51, 53, and 59.
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Fig. 5. Topographic dependence of the index ν(n) versus
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51, 53, and 59 characterizes a noticeable increase of mem-
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patient with PSE and thus emphasizes the crucial role of the
location and the pathological mechanism of PSE. 
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regions [22]. Healthy brain may possess an inherent
control (or defense) mechanism against this propaga-
tion of cortical excitations, the breakdown of which
makes the brain vulnerable to trigger epileptic seizures
in patients [23]. However, the exact origin and dynam-
ical nature of this putative defense mechanism is not yet
fully known. Earlier, we showed in [18] that brain
responses to chromatic flickering in healthy subjects
represent strong nonlinear structures, whereas nonlin-
earity is dramatically reduced to a minimum in patients.
Here, we report that a patient’s brain show significantly
stronger statistical memory effects than healthy brains.
A complex network composed of an interacting nonlin-
ear system with a memory component is inherently sta-
ble and critically robust to external perturbations. A
rapid inhibitory effect, which is essential for the pre-
vention of PSE, is made possible by the faster signal
processing between distant regions. Further, such a net-
work is capable of facilitating flexible and spontaneous
transitions between many possible configurations as
opposed to being entrained or locked with the external
perturbations [24], In short, our findings are in line with
the growing body of evidence that physiological sys-
tems generate activity fluctuations on many temporal
and spatial scales and that pathological states are asso-
ciated with an impairment of this spatiotemporally
complex structure.
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