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Using matter waves that are trapped in a deep optical lattice, dissipationless directed transport is demon-
strated to occur if the single-band quantum dynamics is periodically tilted on one half of the lattice by a
monochromatic field. Most importantly, the directed transport can exist for almost all system parameters, even
after averaged over a broad range of single-band initial states. The directed transport is theoretically explained
within ac-scattering theory. Total reflection phenomena associated with the matter waves traveling from a
tilting-free region to a tilted region are emphasized. The results are of relevance to ultracold physics and
solid-state physics, and may lead to powerful means of selective, coherent, and directed transport of cold
particles in optical lattices.
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I. INTRODUCTION

Optical lattices �1� have offered new opportunities for
fundamental research in condensed-matter physics �2–6�.
One important example is Bloch oscillations �BO� �7–9� as-
sociated with a periodic potential. Due to BO, a static bias
becomes useless in generating a net current in the single-
band dynamics of a periodic potential. Hence examining how
dissipation helps generate directed current of cold atoms
and/or molecules across an optical lattice would shed light
on how electron current gradually emerges from the interplay
of a bias and collision events �10�.

Given this circumstance under which no directed trans-
port can be coherently generated by a static bias, an intrigu-
ing question arises: how can we, if possible, achieve robust
directed transport in an ideal periodic potential with an os-
cillating force, in the absence of any collision effects? More
specifically, are there simple designs to realize generic di-
rected transport involving only one energy band �e.g., the
lowest band� of a periodic potential, for a broad range of
initial states? Two motivating approaches attacked this fun-
damental question, but neither of them was able to reach a
very positive and definite answer. In particular, the first ap-
proach directly copes with BO, with a driving force in reso-
nance with the BO frequency �11–13�. Unfortunately, the
direction of the net transport thus obtained depends sensi-
tively on the initial state and on the phase of the driving
force. Hence it is not expected that the directed transport
survives if the dynamics is averaged over many initial con-
ditions. The second approach relies solely on a driving field
that mixes different harmonics of a fundamental frequency
�14,15�. However, in addition to the requirement of initial
state coherence �consistent with similar findings in “coherent
control” �16��, the relative phase between different harmon-
ics should not fluctuate �15�. If the relative phase does fluc-
tuate, then the directed transport was simply transient in the
absence of a bath �15�, thereby confronted again with the
usage of dissipation to generate current in periodic struc-
tures.

Dissipationless directed transport in driven single-band
quantum dynamics, if exists, can be regarded as a type of

“Hamiltonian ratchet effect” �17–21�, a timely topic that at-
tracts great interests recently. Many studies of Hamiltonian
ratchet effects have focused on model systems with kicking
periodic potentials �22–27�. In these model studies the sys-
tem is a free particle between neighboring kicks, hence it is
not trapped inside the periodic potential. As such, if a static
bias is allowed to apply to the system, dissipationless di-
rected transport can easily be generated in these systems.
Conceptually different is the consideration of Hamiltonian
ratchet effect in single-band quantum dynamics, where a
static bias simply does not work. Evidently then, dissipation-
less directed transport in driven single-band quantum dynam-
ics, if established, would constitute a unique class of the
Hamiltonian ratchet effect �17–21�.

Using matter waves in a deep optical lattice as a possible
realization of a tight-binding model Hamiltonian, we propose
in this paper a straightforward and powerful approach to dis-
sipationless, single-band, and robust directed transport in
one-dimensional periodic potentials in the presence of a
monochromatic driving field. The directed transport results
from fully coherent quantum dynamics associated with a
zero-mean driving field, and is hence unrelated to any sort of
system-bath interaction. Furthermore, the current, irrespec-
tive of the details of system parameters, exists even after
averaged over a broad range of initial states. The results
expose a new face of the interplay of a driving force, energy-
band properties, and symmetry breaking in inducing directed
transport. Experimental and theoretical implications of our
finding are vast.

Computational as well as theoretical results also suggest
that an optical lattice with its one half periodically tilted
carries important applications for ultracold physics itself. In
particular, total reflection of matter waves traveling from a
tilting-free region to a tilted region is emphasized in this
paper. Such an intriguing aspect of matter waves in an opti-
cal lattice can be very useful for blocking or filtering out one
particular component in a cold gas mixture, an important
topic that is attracting considerable attention �28,29�. How
particle-particle interactions might affect the total reflection
of the matter waves in a half-tilted optical lattice will be
addressed elsewhere �30�.
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This paper is organized as follows. We first propose in
Sec. II our model system describing matter waves moving in
a deep optical lattice, half of which are subject to a driving
field. This is followed by computational results that demon-
strate the dramatic consequences due to the driving field. In
Sec. III we develop a simple scattering theory to explain and
understand the results. Finally, in Sec. IV we discuss a subtle
symmetry-breaking issue, compare this work with other re-
lated studies of directed transport of cold atoms, and then
draw conclusions.

II. MATTER WAVES IN A HALF-TILTED
DEEP OPTICAL LATTICE

A deep optical lattice can be formed by two interfering
and counter-propagating strong laser beams. The basic ele-
ment here is to periodically tilt one half of an optical lattice.
Although this is experimentally more demanding than peri-
odically tilting the entire lattice via lattice acceleration, we
assume it can be realized and discuss three possible sce-
narios. One possibility is to apply a driving electric field to
one half of the lattice, with the strength of the electric field
linearly changing with the lattice site. If cold atoms are in the
lattice, then they will experience the static Stark shifts as a
linear function of the lattice site. If cold dipolar molecules
are in the lattice, then the interaction between the electric
dipole and the driving electric field can give an even stronger
tilting potential. The second possibility is to take advantage
of the magnetic dipole moment of the trapped particles: ap-
plying a linearly increasing magnetic field to one half of the
lattice will create a half-tilted optical lattice as well. The
third scenario is motivated by the so-called phase imprinting
technique in manipulating Bose Einstein condensates
�31,32�. That is, an additional far off-resonance laser beam
covering only one half of the lattice is applied, with the laser
intensity linearly varying in space and periodically modu-
lated. Such a laser beam interacts with the cold particles
through their induced dipole moment, due to the same
mechanism as the optical lattice itself.

With these considerations, the quantum dynamics of the
cold particle matter wave can be described by a tight-binding
Hamiltonian as follows:

H = − J�
n

��n��n + 1� + �n + 1��n�� + cos��t��
n

nFn�n��n� ,

�1�

with

Fn�0 = F, Fn�0 = 0. �2�

Here, J is the tunneling constant �positive� between neigh-
boring lattice sites, � is the tilting frequency of an external
force, and F is the tilting strength of the force. As clearly
indicated by Eq. �2�, only the right half of this lattice is tilted
periodically. Spatial symmetry is thus broken, but the mean
force is zero. Note also that between the tilted region and the
tilting-free region, there is no sudden change in the field
strength because the tilting field linearly increases its
strength from zero. Below we assume �=1, and that all sys-

tems parameters are scaled dimensionless variables �e.g., the
quasimomentum of the system will be given in units of 1 /d,
where d is the lattice constant�. While focusing on the optical
lattice realization, one should recognize that the above tight-
binding Hamiltonian may be realized in other contexts, e.g.,
electrons moving in a semiconductor superlattice with a driv-
ing electric field applied to the right half of the superlattice.

The significant impact of this tilting-half-lattice scenario
on the quantum transport of cold particles trapped in the
lattice can be first appreciated by directly examining some
wave-packet dynamics calculations. As one illuminating ex-
ample, consider the case of �=10, F=20, and J=2.0. The
reason why we choose a relatively high driving frequency �
is related to a simple scattering theory developed in the next
section �nonetheless, computationally speaking, using a driv-
ing field with relatively low frequencies, e.g., �=1.0, can
generate similar, but less generic results�. The initial wave
packet, denoted C1�n�, is given by

C1�n� = A exp�ik1n�exp	−
�n − n0�2

4�1
2 
 . �3�

Here �1=20, A is just a normalization constant, k1= +� /3
�k1=−� /3�, and n0=−200 �n0=200� for a wave packet
launched from the left �right� side of the lattice.

Figure 1 depicts the fate of such a wave packet initially
traveling from left to right. At about t=50, this wave packet
hits the n=0 boundary of the tilting field. Interestingly
enough, as manifested by its location at a later time, e.g., at
t=150, no wave-packet amplitudes are seen to make their
journey all the way to the right half of the lattice that is being
tilted. Instead, the entire wave packet is seen to bounce back
to the tilting-free region. The reflection probability numeri-
cally calculated is larger than 99.9%, indicating that this
scattering is essentially an event of total reflection.

In clear contrast, Fig. 2 depicts the result if an analogous
wave packet is launched from right to left. The first differ-
ence is that the wave packet travels at a group velocity much
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FIG. 1. Complete reflection of a wave packet traveling from left
�not tilted� to right �tilted�. The system parameters are �=10, F
=20, J=2.0, and the initial Gaussian wave packet �see Eq. �3�� has
a central quasimomentum k1=� /3, and a position variance �1

=20. Panel �a� shows the initial wave packet, panel �b� shows the
wave packet when it is hitting the n=0 boundary of tilting, and
panel �c� indicates that the wave packet is bounced back to the
tilting-free region.
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slower than in Fig. 1. Indeed, only until about t=200, does
the wave packet start to collide with the n=0 boundary. But
at a later time, about half of this wave packet is able to travel
across the n=0 boundary, and then continue its travel in the
tilting-free region. The other amplitudes of this wave packet
are bounced back to the right.

Consider a second sampling case in our wave-packet dy-
namics calculations. Here �=12, F=36, and J=2.0. The ini-
tial Gaussian wave packet, denoted by C2�n�, is now given
by

C2�n� = A exp�ik2n�exp	−
�n − n0�2

4�2
2 
 . �4�

Here n0 is the same as before, but we choose �2=5.0 to
consider much narrower wave packets as initial conditions.
As for the central quasimomentum, we choose k2=0.8 for a
wave packet launched from the left side of the lattice. For a
reason to be explained below, which is related to an expres-
sion for the group velocity of wave packets in the tilted re-
gion, we find that we should still choose k2=0.8 �instead of
k2=−0.8� to launch an analogous wave packet traveling from
the right half to the left.

As we deduce from Fig. 3, total reflection of the matter
wave also occurs when the wave packet travels from left to
right. Because the wave packet in Fig. 3�a� has much larger
quasimomentum variance than that in Fig. 1�a�, its ensuing
spreading is also faster. So when this wave packet hits the
boundary �Fig. 3�b�� it is possible to see a similar position
variance as in Fig. 1�b�. We then place this initial wave
packet much closer to the boundary. Total reflection is ob-
served again, and in this case the position variance at the
time of boundary hitting is much smaller. By contrast, when
an analogous wave packet is launched from right to left �see
Fig. 4�, significant probability ��50% � can eventually be
found in the tilting-free region. These results further confirm
that our previous observations made from Fig. 1 and Fig. 2
are general.

The computational results depicted and elucidated above
provide a clear-cut case of symmetry breaking: i.e., more
particles are transported from right to left than from left to
right. However, because the details of the wave-packet dy-
namics depend on the coherence properties of the initial
wave packets and hence differ from shot to shot �especially
in experiments�, the important question is then if directed
transport of cold particles from right to left can survive when
we average the quantum dynamics over a distribution of ini-
tial conditions, and if yes, can we develop a simple theory to
identify the conditions and hence guide the experiments.
This is exactly what we will elaborate in the next section.

III. SIMPLE SCATTERING THEORY

To rationalize the computational results we first consider a
well-understood approximation in treating a globally tilted
lattice by an oscillating linear force fn cos��t� �4,5�. It can
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FIG. 2. Significant transmission of a wave packet traveling from
the right tilted region to the left tilting-free region. Panels �a�, �b�,
and �c� show the wave-packet shape at three different times. Sys-
tems parameters are the same as in Fig. 1, and the initial Gaussion
wave packet is a mirror image of that shown in Fig. 1�a�. At t
=350, the probability of finding the atom being at the left half of the
lattice is about 50%. This should be compared with the total reflec-
tion case seen in Fig. 1.
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FIG. 3. Complete reflection of a wave packet traveling from left
�not tilted� to right �tilted�. The system parameters are �=12, F
=36, J=2.0, and the initial Gaussian wave packet �see Eq. �4�� has
a central quasimomentum k2=0.8, and a position variance �2=5.
Panel �a� shows the initial wave packet, panel �b� shows the wave
packet when it is hitting the n=0 boundary, and panel �c� indicates
that the wave packet is bounced back to the tilting-free region.
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FIG. 4. Significant transmission of an initially narrow wave
packet traveling from the right tilted region to the left tilting-free
region. Panels �a�, �b�, and �c� show the wave-packet shape at three
different times. System parameters are the same as in Fig. 3, and the
initial Gaussion wave packet has a central quasimomentum k2

=0.8, and a position variance �2=5.0. The transmission probability
is larger than 50%. Results here should be compared with those in
Fig. 3, where no transmission is observed.
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be easily shown, even at a level of classical Hamiltonian
dynamics, that the primary effect of a high-frequency tilting
can be accounted for by rescaling the tunneling constant J
down to JJ0�f /��, where J0 is the ordinary Bessel function
of order zero. Formally speaking, this approximation arises
from a “1/�” expansion of an exact Floquet theory of the
driven quantum dynamics �19�. In the “1/�” expansion of

the Floquet theory, a static Hamiltonian H̃ as the zero-order
approximation to the Floquet spectrum is given by

H̃ =
�

2�
�

0

2�/�

dt exp�i�f/��n sin��t��H0

	exp�− i�f/��n sin��t�� , �5�

where H0 denotes the undriven Hamiltonian. In representa-
tion of quasimomentum k, the tight-binding Hamiltonian of a
deep optical lattice can be written as H0=−2J cos�k�. Then,
using

exp�i�f/��n sin��t��cos�k�exp�− i�f/��n sin��t��

= cos�k + �f/��sin��t�� , �6�

and

exp�iz sin��t�� = �
l=−


+


Jl�z�exp�il�t� , �7�

one immediately obtains that Eq. �5� does yield a scaling of
J by the factor J0�f /��. Clearly, this approximation is valid
if the tilting frequency is high enough. That is, for a large
tilting frequency �, the probability of finding the system ab-
sorbing �releasing� a net photon �energy of ��� from �to� the
driving field in the end is negligible due to a too large energy

exchange. Then an effective static Hamiltonian H̃ suffices to
describe the driven quantum dynamics. Certainly, within this
approach the system is still allowed to absorb and release an
equal number of virtual photons.

We now adapt this effective Hamiltonian approach to the
case of a half-tilted deep optical lattice. That is, for the right
half of the lattice, the primary effect of the tilting can be
accounted for by rescaling the tunneling constant J down to
JR, i.e.,

JR = JJ0�F/�� . �8�

Note that JR can be negative. Because the left half of the
lattice is not tilted, the associated tunneling constant, now
denoted JL, is still given by

JL = J . �9�

Given these considerations, we can describe our system by

effective Hamiltonians H̃L and H̃R, for the left and right
halves of the lattice. That is,

H̃L = − JL �
n�0

��n − 1��n� + �n��n − 1��; �10�

H̃R = − JR �
n�0

��n��n + 1� + �n + 1��n�� . �11�

In representation of the associated quasimomentum kL or kR
for particles moving on the left or on the right, we have

H̃L = − 2JL cos�kL� , �12�

H̃R = − 2JR cos�kR� . �13�

Such dispersion relations yield the following group velocities

vL = 2JL sin�kL� , �14�

vR = 2JR sin�kR� . �15�

In particular, the above expression of vR indicates that when
JR is negative, then one needs to have a positive sin�kR� to
have a group velocity in the negative direction. This explains
why in the case of Fig. 4 we use k2=0.8, instead of k2=
−0.8, to launch a wave packet from right to left.

The essence of the quantum dynamics for our system is
now reduced to a quantum scattering problem as a particle
travels across two regions with different dispersion relations.
Great caution, however, is required because these dispersion
relations are distinctively different from those for free par-
ticles. A trial wave function for a left-to-right scattering
event can be written as

�L�n � 0� = exp�ikLn� + rLR exp�− ikLn� , �16�

�R�n � 0� = tLR exp�ikRn� , �17�

where

1 + rLR = tLR, �18�

JL cos�kL� = JR cos�kR� . �19�

Considering the sign of the group velocity vL, we require
kL� �0,��. Otherwise the group velocity vL of the incoming
wave would be negative, contradicting our assumption.
Analogously, kR� �0,�� if JR�0 and kR� �−� ,0� if JR�0.
Substituting �R�n� and �L�n� into the discrete Schrödinger

equation associated with H̃L and H̃R, and then evaluating the
coefficient at site n=0, we obtain

JL�rLR − rLR
* � = JR�tLR − tLR

* �exp�− i�kL + kR�� . �20�

Equation �20�, together with the condition �19�, suffice to
guarantee that r and s are real variables. Moreover, requiring
that the probability at site n=0 is constant, we obtain

2JL sin�kL� = 2JL sin�kL�rLR
2 + 2JR sin�kR�tLR

2 . �21�

Indeed, recalling the group velocities vL and vR, the left-hand
side of Eq. �21� is seen to represent the total incoming flux,
which equals the reflected flux 2JL sin�kL�rLR

2 plus the trans-
mitted flux 2JR sin�kR�tLR

2 .
With Eqs. �18�, �19�, and �21�, one finds
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tLR =
2JL sin�kL�

JR sin�kR� + JL sin�kL�
, �22�

with

kR = arccos	 cos�kL�
J0�F/��
 �23�

for J0�F /���0, and

kR = − � + arccos	 cos�kL�
J0�F/��
 �24�

for J0�F /���0. The same procedure can be applied to
right-to-left scattering. In particular, the analogous transmis-
sion amplitude tRL for right-to-left scattering is found to be

tRL =
2JR sin�kR�

JL sin�kL� + JR sin�kR�
, �25�

with kL given by

kL = arccos�J0�F/��cos�kR�� . �26�

With regard to the derivations of the reflection and trans-
mission amplitudes, additional remarks are necessary. It is
very tempting to apply familiar free-space scattering treat-
ments to the situation here. For example, one may naively
require the derivative ��L�n� /�n to be continuously con-
nected with the derivative ��R�n� /�n at n=0. This would be
an incorrect procedure because the connection between the
flux operator and the momentum operator is much different
from that in free space. However, a less rigorous, but enlight-
ening approach in deriving Eq. �22� does exist by making a
more sensible analog to the familiar scattering theory in free
space. Specifically, in virtue of the fact that the quantum flux
operator here is directly related to JL sin�i� /�n� and
JR sin�i� /�n�, we have

JL sin�i
�

�n
�L�0� = JR sin�i

�

�n
�R�0� . �27�

With this requirement and Eq. �18� one can obtain the same
scattering results as above.

Intriguing physics can be deduced upon inspecting Eqs.
�23� and �24�. That is, if the right half of the lattice is tilted
such that

� cos�kL�
J0�F/��� � 1, �28�

then for such kL there is no solution for kR, implicitly as-
sumed to be real in the trial wave function. One might argue
that when a real solution of kR does not exist, then an imagi-
nary kR could offer a solution describing a state exponen-
tially decaying in the right half of the lattice. Interestingly,
this is not the case, because the trial wave function �R�n
�0� �see Eq. �17�� with an imaginary kR can never satisfy
the effective, stationary Schrödinger equation of the discrete
system here. Clearly, when the inequality �28� holds, then
kR does not exist and hence tLR must be zero. That is, no
transmission is allowed for the left-to-right scattering,
thereby theoretically confirming our previous observations

made from Fig. 1 and Fig. 3. By contrast, in the case of
right-to-left scattering, for arbitrary kR a solution for kL is
guaranteed �see Eq. �26��. This is evident because
arccos�J0�F /��cos�kR�� is always well defined �note that
�J0�F /����1�. This identifies a strongly broken symmetry,
suggesting the possibility of more particles transported from
right to left than transported from left to right.

To emphasize that the above observation is a rather gen-
eral feature for a broad range of initial states, we now con-

sider the average transmitted flux ̄LR for left-to-right scat-
tering. The averaging is over a range �0,�k�, with the
convenient assumption that each quasimomentum state
within this range has equal probability. Then

̄LR��k� =
1

�k
�

0

�k

tLR
2 JR sin�kR�dkL. �29�

In the same fashion, the average transmitted flux ̄RL for
right-to-left scattering can be defined, i.e.,

̄RL��k� =
1

�k
�

0

�k

tRL
2 JL sin�kL�dkR �30�

for JR�0, and

̄RL��k� =
1

�k
�

−�

−�+�k

tRL
2 JL sin�kL�dkR �31�

for JR�0.

Figure 5 compares ̄LR��k� with ̄RL��k� as a function of
F /�, for �k=� /3, a case representing severe averaging over
a broad range �but still less than half of the entire range� of
initial quasimomentum states. It is seen that except for zero-

measure cases �also discussed below�, ̄LR��k� is always less

than ̄RL��k�. Their difference indicates that, for arbitrary
tilting frequency � and arbitrary tilting strength F, there ge-
nerically exists a net transport of particles from right to left.
Even more significant, when F /� exceeds a threshold value
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FIG. 5. The transmitted flux as a function of F /�, averaged over
a broad range of single-band initial states �see the text for details�.
Solid line is for left-to-right scattering �̄LR��k�� and dashed line is

for right-to-left scattering �̄RL��k��, with �k=� /3. ̄LR��k� is

seen to be generically smaller than ̄RL��k�. Note that when F /�
exceeds a threshold value, even the averaged left-to-right flux is

always zero. The difference between ̄LR��k� and ̄RL��k� gives
rise to a net right-to-left flux of cold particles.
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�i.e., when J0�F /���0.5 in the case of �k=� /3�, then total

reflection occurs for any kL within �0,�k�, hence ̄LR��k�
=0 whereas ̄RL��k� can be significant. As seen from Fig. 5,
this leads to a truly dramatic effect with a broad range of
initial states averaged over: only particles launched from the
right can travel to the left, and no particle is allowed to travel
from the left half to the right half. For these cases, the results
in Fig. 5 are also indicative of how F /� must be tuned in
order to generate an optimal transmission flux from right to
left.

It should be noted, however, that the zero flux from left to
right, as shown in Fig. 5, is a theoretical result based on a

treatment with the static Hamiltonians H̃L and H̃R. The actual
flux from left to right might not be mathematically zero, but
should be extremely small. Indeed, in the complete reflection
cases considered in Fig. 1 and Fig. 3 where initial Gaussian
wave packets are used, the reflection probability never as-
sumes exactly 100%, but is extremely close to 100%.

Notably, as also elucidated with Fig. 5, when J0�F /��
=0 for F /�=2.4. . ., 5.5…, …, then both ̄LR��k� and

̄RL��k� are zero and no directed transport can be generated.
Indeed, in these cases the “communication” between the left
and right is cutoff, as a direct consequence of tilting-induced
localization �4,5,19,33–36�: particles on the right half cannot
even tunnel between neighboring sites. A similar situation
happens if we apply a static force only to the right half of the
lattice. Then, particles on the right cannot travel due to Bloch
oscillations, and particles in the left half can travel and will
be bounced back from the n=0 boundary. Because a nonzero
right-to-left transmission is necessary to achieve directed
transport from the right end to the left end of the lattice, it
becomes clear that the directed transported induced by a
half-tilted lattice with J0�F /���0 lies not only in the total
reflection in left-to-right scattering, but also in the significant
transmission in right-to-left scattering.

Can we still have directed transport if we average the
dynamics over all possible single-band initial states? Inter-
estingly, it can be easily proved that if �k=� /2 �averaging
over a half-filled band� or �k=� �averaging over a com-
pletely filled band�, then under the strong assumption that
each quasimomentum state still has equal probability one
obtains

̄LR��/2� = ̄RL��/2� �32�

and

̄LR��� = ̄RL��� , �33�

both of which result in a vanishing net flux. Together with
the results shown in Fig. 5, this theoretical result has impli-
cations for experiments. That is, to observe a net transport of
particles from right to left, one must have a certain degree of
control over how particles are injected into the lattice. For
example, if particles are injected such that more particles
occupy the states at the bottom of the single band than other

states, then the result ̄LR�� /2�=̄RL�� /2� or ̄LR���
=̄RL��� becomes irrelevant. Indeed, for these cases the av-

eraging should be over a range �k�� /2. The associated
results are then expected to be analogous to that seen in Fig.
5 and directed transport of cold particles can be safely pre-
dicted.

The required control of how cold particles should be in-
jected into the optical lattice suggests that certain degree of
spatial coherence of the initial states is needed in order to
observe the directed transport. As already implied by the
results in Fig. 3 and Fig. 4 where narrow Gaussian wave
packets are considered as initial conditions, this requirement
of initial state coherence properties can be easily met. In-
deed, using an uncertainty relation, one obtains that as long
as the initial wave packet spans over several lattice sites,
then the variance in the quasimomentum will be sufficiently
small �e.g., �� /3� to ensure the directed transport. Fortu-
nately this requirement does not present any difficulty in
today’s experiments with cold particles. Indeed, loading cold
atoms into an optical lattice with a particular quasimomen-
tum in a particular energy band was achieved experimentally
in Refs. �37,38�.

IV. DISCUSSION AND CONCLUSION

The simple scattering theory in Sec. III explains well our
computational findings. The theory is based upon an effec-
tive, static Hamiltonian arising from the zero-order approxi-
mation of a high frequency “1/�” expansion of the exact
Floquet theory. Because the static effective Hamiltonian is
always time-reversal symmetric, one might wonder how it is
possible to have directed transport of cold particles that
seemingly contradicts with the time-reversal symmetry. To
clarify this issue, we point out that our results do not contra-
dict with well-established symmetry requirements for di-
rected transport. In particular, for a static Hamiltonian sys-
tem, one always has �19�

�nL�U�t��nR� = �nR�U�t��nL� , �34�

where �nR� and �nL� are quantum states describing an atom
being localized exclusively at lattice sites nR and nL, and U�t�
is the propagator associated with the static effective Hamil-
tonian. Equation �34� hence indicates that, due to the time-
reversal symmetry, the probability of transporting a particle
exclusively localized at site nL to site nR is identical with the
probability of transporting a particle exclusively localized at
site nR to site nL. This is exactly one consequence of Eq.
�33�. Specifically, for these initial states without any spatial
coherence, the initial quasimomenta fill the entire single
band with equal probability, therefore a zero net flux is also
predicted from our scattering theory. This makes it clear that
Eqs. �32� and �33� originate ultimately from the time-reversal
symmetry of the system. This leads to the rather formal con-
clusion that one prerequisite for directed transport to occur in
our time-reversal symmetric system is a certain degree of
spatial coherence in the initial states.

We now stress again the important advantages afforded by
this work as compared with those in Refs. �11–15�. First,
only a single-frequency driving field is used here, with no
special condition imposed on the driving frequency. Indeed,
given the robustness of our approach, one might conjecture
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that directed transport may survive fluctuations in the driving
frequency. Second, because the results depicted in Fig. 5
have been averaged over a broad range of single-band initial
conditions, it becomes clear that even highly mixed quantum
states can generate dissipationless directed transport. In other
words, only very limited “quantum purity” in the initial
states is needed to ensure dissipationless directed transport.
These advantages make the tilting-half-lattice scenario a ge-
neric and robust approach for directed transport in rocked
single-band quantum dynamics.

It is also interesting to compare this work with other re-
lated studies of directed transport of cold atoms in optical
lattices �39–41�. Experiments in Ref. �39,40� used dissipative
optical lattices arising from near-resonant laser beams. To
verify dissipationless current here a far detuned, and hence
conservative, optical lattice is required. The interesting re-
cent work of Ref. �41� exploits a harmonic-mixing field, a
chaotic layer, and peculiar features in the Floquet states as
system parameters are suitably tuned, possessing a complex
dynamics. By contrast, in our system the directed transport,
which occurs in wide parameter regimes, is generated by a
regular single-band dynamics.

The ability to induce fully coherent and directed transport
of cold particles in its lowest energy band might lead to
building blocks in constructing atom circuits with unusual
characteristics. For example, the net transport rate here

���̄RL−̄LR�� is an oscillating function of F /�, instead of
being proportional to a “voltage” �F. The revealed simple
mechanism of a quantum “Maxwell demon” without dissipa-
tion also suggests that cold particles in a mixture may be

selectively transported in a fully coherent fashion. Likewise,
applying the results to single-band quantum transport of
electrons, new electronic devices with abnormal current-
voltage characteristics, and even new designs of coherent
electron pumps become possible.

In conclusion, we show that dissipationless and generic
directed transport can emerge from single-band quantum dy-
namics driven by a monochromatic field, even after averaged
over a broad range of initial states. The underlying mecha-
nism of the directed transport is related to total reflection vs
significant transmission as the matter wave in a half-tilted
optical lattice moves in opposite directions. The results are of
fundamental interest to solid-state physics and ultracold
physics. Experiments using cold atoms and/or molecules in a
deep and half-tilted optical lattice should be able to verify
the results of this study.
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