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Abstract
By use of the recurrent relation approach (RRA) we study the microscopic
dynamics of liquid aluminium at T = 973 K and develop a theoretical model
which satisfies all the corresponding sum rules. The investigation covers the
inelastic features as well as the crossover of our theory into the hydrodynamical
and the free-particle regimes. A comparison between our theoretical results with
those following from a generalized hydrodynamical approach is also presented.
In addition to this we report the results of our molecular dynamics simulations
for liquid aluminium, which are also discussed and compared to experimental
data. The results obtained reveal (i) that the microscopical dynamics of density
fluctuations is defined mainly by the first four even frequency moments of the
dynamic structure factor, and (ii) the inherent relation of the high-frequency
collective excitations observed in experimental spectra of dynamic structure
factor S(k, ω) with the two-, three- and four-particle correlations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of dynamical processes related to atomic motions in liquid systems presents an
attractive research topic, both of theoretical and experimental origin. This being so, the
extent of corresponding experimental knowledge about microscopic processes in liquids has
continuously increased and revealed new features for various classes of liquids, which in turn
call for an appropriate theoretical explanation [1]. As an intriguing example we mention the
well-defined oscillatory modes observed in liquid metals occurring outside the hydrodynamic
region and clearly detectable as corresponding high-frequency peaks in the experimentally
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relevant observable—the dynamic structure factor S(k, ω) [2–6]. Thus, spectra of the dynamic
structure factor can display, even on microscopical spatial scales, the triple-peak form known
in the hydrodynamics as the ‘Brillouin triplet’.

At present, various theories do exist (see, for instance, [7–14]), which suggest an
explanation of the ‘Brillouin triplet’ evolving at the finite values of wavenumber k. Their
description may be found in excellent reviews [1, 15, 16], and we can assess that a
great number of these theories are based on the generalization of equations of linearized
hydrodynamics. However, it is necessary to point out that hydrodynamical equations are a
physically correct description for large wavelengths and timescales, where slow processes
are strongly pronounced and consequently provide the significant contribution. Therefore,
any wavenumber and especially time (frequency) extension of various thermodynamic and
transport quantities or the inclusion of the additional non-hydrodynamical contributions should
be invoked with some care. A need to do so is particularly necessary for the description of
fast processes, which are a major component of microscopic dynamics of liquids and in fact
may contribute appreciably to the short-time behaviour of corresponding relaxation functions
(and/or into the high-frequency scenario of their power spectra). The existence of finite
frequency moments of S(k, ω) can serve as a peculiar criterion to test and estimate the validity
of a corresponding theoretical extension [17].

In the present work we study the microscopic dynamics of liquid aluminium on the basis
of the theory developed within the framework of the so-called recurrent relation approach
(RRA) [17]. According to the RRA, the time evolution of a dynamical variable depends only
on basis vectors, which span the underlying Hilbert space of the studied dynamical variable, and
the dimensionality of the embedding space S [18]. Relaxation functions and terms defining the
interactions appear here as projections of dynamical variables on the corresponding orthogonal
basis vectors. If the dynamical variable is a density fluctuation then the RRA allows one to
obtain the corresponding relaxation function in terms of frequency moments of the dynamic
structure factor.

As the specific physical system under consideration we choose the dynamics of liquid
aluminium. This choice is related, foremost, to the availability of high-precision data for
the inelastic x-ray scattering (IXS) for liquid aluminium near its melting point [19]. These
data are generally consistent with the results of molecular dynamics simulations with various
models for the interparticle potentials [20–22]. Nevertheless, it is necessary to note that the
full agreement between experimental and simulation methods in characterization of dynamical
features of liquid aluminium is not achieved (see p 916 of [1]).

The organization of the paper is as follows. In section 2, we present the theoretical
fundamentals; in particular, we review within our context the basic notions of the
RRA [17, 18, 23], as these apply to the density fluctuation case considered in the given work.
In section 3, the study of various dynamical regimes and their features for the case of liquid
aluminium is presented. We also report in this section details and results of our molecular
dynamics simulations, which are compared with IXS data. A resume with some concluding
remarks is given in section 4.

2. Theoretical framework

Let us consider a system of N identical classical particles of mass m evolving in the volume V .
We take the density fluctuations

A(0)(k) = 1√
N

N∑

j=1

eik·r j (1)
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as an ‘initial’ dynamical variable; k is the wavevector. The time evolution of A(0)(k) is defined
by the Heisenberg equation

dA(0)(k, t)

dt
= i[Ĥ, A(0)(k, t)] = iL̂A(0)(k, t), (2)

where L̂ is the Liouville operator, which is Hermitian, Ĥ is the Hamiltonian of the system, and
[Ĥ, . . .] is the Poisson bracket. According to the RRA scheme [17, 18], the quantity A(0)(k, t)
can be considered as a vector in an a priori chosen d-dimensional space S, i.e.,

A(0)(k, t) =
d−1∑

ν=0

a(0)
ν (k, t) fν (k), k = |k| is fixed. (3)

Here the ‘basis vectors’ f0(k), f1(k), . . . , fd−1(k) spanning S are orthogonal, i.e.,

( fν(k), fμ(k)) = ( fν(k), fν(k))δνμ, (4)

and are interrelated by the following recurrent relation (RR-I):

fν+1(k) = iL̂ fν(k) + �ν(k) fν−1(k), ν � 0,

�ν(k) = ( fν(k), fν(k))

( fν−1(k), fν−1(k))
,

f−1(k) = 0, �0(k) ≡ 1.

(5)

Here a(0)
ν (k, t) is the time-dependent projection of A(0)(k, t) on the νth basis vector fν(k); the

brackets (. . . , . . .) denote the scalar product of Kubo in the embedding space S [17]. Then, the
relaxation function between two variables X and Y is defined by

(X, Y ) = 1

β

∫ β

0
〈exp(λĤ)Y † exp(−λĤ)X〉 dλ, (6)

where X, Y ⊂ S, β = (kBT )−1, kB and T are the Boltzmann constant and temperature,
respectively [24]. The angular brackets denote the average over the canonical ensemble with
temperature T = (kBβ)−1. Note that, in the classical case (β → 0, h̄ → 0), the relaxation
function is proportional to the usual correlation function [17]

(X, Y ) ≡ 〈XY ∗〉. (7)

On the basis of the set of vectors { fn(k)}, one can construct a set of dynamical variables
{A(n)(k)} which we need for the description of the evolution of the system, obeying

A(n)(k, t = 0) = fn(k), n = 0, 1, . . . , d − 1. (8)

The corresponding time evolution by analogy with equation (3) can be defined as

A(n)(k, t) =
d−1∑

ν=n

a(n)
ν (k, t) fν (k). (9)

Note that the set of functions a(n)
n (k, t) (i.e., for n = ν) in equations (3) and (9) is defined by

projecting the dynamical variable A(n)(k, t) onto the corresponding basis fn(k), i.e.,

a(n)
n (k, t) = (A(n)(k, t), fn(k))

( fn(k), fn(k))

= (A(n)(k, t), A(n)(k, 0))

(A(n)(k, 0), A(n)(k, 0))
, (10)

where the last equality is obtained by taking into account equation (8). So, one can easily see
that these functions are normalized, i.e.,

a(n)
n (k, t = 0) = 1. (11)
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Here and afterwards we simplify notation whenever the quantity involves the same upper and
lower index by setting a(n)(k, t) = a(n)

n (k, t).
The functions a(n)

ν (k, t) for ν > n, being defined by the projection of the vector A(n)(k, t)
on the basis fν(k) with n 	= ν, are related to interactions between A(n)(k) and A(ν)(k). Further,
the set a(n)

ν (k, t) obeys the following properties:

if ν > n then a(n)
ν (k, t = 0) = 0,

if ν < n then a(n)
ν (k, t) ≡ 0.

(12)

It is useful to note that the functions a(n)
ν (k, t) are interrelated by the second recurrent

relation (RR-II) [17], reading

�ν+1(k)a(n)
ν+1(k, t) = −da(n)

ν (k, t)

dt
+ a(n)

ν−1(k, t),

n = 0, 1, 2, . . . , d − 1,

ν = n, n + 1, . . . , d − 1,

ν � n.

(13)

Thus, the set of recurrent relations (3) and (13) yields the time evolution of the dynamical
variable A(n)(k), which occurs in the space spanned by the orthogonal basis vectors
fn(k), fn+1(k), . . ..

Similar to the well-known Zwanzig–Mori formalism, these recurrent relations obey the
equation [23]

d

dt
A(n)(k, t) = A(n+1)(k, t) − �n+1(k)

∫ t

0
a(n+1)(k, t ′)A(n)(k, t − t ′) dt ′, (14)

which constitutes the exact reformulation of equation (2). The last equation can be rewritten in
terms of the Laplace transform f̃ (z) = ∫ ∞

0 e−zt f (t) dt of the functions a(n)(t) as

ã(n)(k, z) = [z + �n+1(k)ã(n+1)(k, z)]−1. (15)

Then, the Laplace transform of relaxation function of the density fluctuation ã(0)(k, z) can be
represented in the form of a continued fraction [25–27], i.e.,

ã(0)(k, z) = 1

z + �1(k)

z + �2(k)

z + �3(k)

z + . . .

. (16)

Thus, the time behaviour of density relaxation function a(0)(k, t) is fully defined by the
dimensionality d of the space S and by the corresponding set of parameters �n+1(k) (n =
0, 1, . . .). To determine A(0)(k, t) (and a(0)(k, t)) it is necessary to know the whole set of the
parameters �n+1(k).

The parameters �n+1(k) can be expressed in terms of normalized frequency moments of
the dynamical structure factor S(k, ω) [6]4, i.e.,

ω(p)(k) = (−i)p dpa(0)(k, t)

dt p

∣∣∣∣
t=0

=
∫ ∞
−∞ ωp S(k, ω) dω
∫ ∞
−∞ S(k, ω) dω

, (17)

4 It is convenient sometimes to use the unnormalized frequency moments ω
(p)
un (k) = ∫ ∞

−∞ ω p S(k, ω) dω. In this

definition, the zeroth frequency moment characterizes the static structure factor, i.e., ω
(0)
un (k) ≡ S(k).
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which is related, in turn, with a(0)(k, t) through the Fourier transform as

S(k, ω) = S(k)

2π

∫ ∞

−∞
eiωt a(0)(k, t)dt . (18)

Because S(k, ω) is even function of ω for a classical system, all odd frequency moments are
equal to zero. Moreover, from equations (13) and (17), and taking into account equations (11)
and (12), one finds the relations

ω(2)(k) = �1(k),

ω(4)(k) = �2
1(k) + �1(k)�2(k),

ω(6)(k) = �1(k)[�1(k) + �2(k)]2 + �1(k)�2(k)�3(k),

ω(8)(k) = �1(k){[�1(k) + �2(k)]3 + 2�2(k)�3(k)

× [�1(k) + �2(k)] + �2(k)�2
3(k)} + �1(k)�2(k)�3(k)�4(k),

ω(10)(k) = �1(k){�1(k)[�1(k) + �2(k)]3 + �1(k)�2(k)[�1(k) + �2(k)]
× [�1(k) + �2(k) + �3(k)] + �2(k)�3(k)[�1(k) + �2(k) + �3(k)]
× [�1(k) + �2(k) + �3(k) + �4(k)] + �2

2(k)[�1(k) + �2(k) + �3(k)]2

+ �1(k)�2(k)�3(k)[�1(k) + �2(k)] + �2(k)�3(k)�4(k)[�1(k) + �2(k)

+ �3(k) + �4(k) + �5(k)]},
. . . .

(19)

On the other hand, in the classical case, the frequency parameters �n(k) can be obtained in
accordance with the help of equations (5) and (7) to read

�1(k) = 〈| f1|2〉
〈| f0|2〉 = kBT

m

k2

S(k)
,

〈| f1|2〉 = kBT

m
k2, 〈| f0|2〉 = S(k).

(20a)

By analogy with equation (20a), it follows that

�2(k) = kBT

m
k2

(
3 − 1

S(k)

)
+ ρ

m

∫
∇2

l u(r)[1 − exp(ik · r)]g(r) d3r, (20b)

�3(k) = 1

�2(k)

{
15

(
kBT

m
k2

)2

+ F(k)

}
− 1

�2(k)
[�1(k) + �2(k)]2 . (20c)

Here, ρ denotes the number density, S(k) is the static structure factor, g(r) is the pair
distribution function, u(r) is the interparticle potential, and the suffix l denotes the component
parallel to k, whereas the term F(k) denotes the combination of integral expressions containing
the interparticle potential with two- and three-particle distribution functions. In the general
case, the parameters �n(k) at large nth order also contain the distribution functions of n, (n−1),
. . . and n = 2. As a result, we can see that if the studied system is characterized by strongly
pronounced potential interactions then the problem of finding the time (frequency) dependence
of the dynamical variables A(n)(k) and/or the functions a(n)(k, t) (ã(n)(k, z), see equations (15)
and (16)) is reduced to the problem of truncating the chain of coupled nth particle distribution
functions [28].

3. Dynamical regimes and their features

3.1. Short-wavelength dynamics

Let us consider the spatio-temporal regime of a mono-atomic liquid, for which one can neglect
the interaction between particles. Obviously, this case corresponds to the short-time dynamics

5
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which is restricted to length scales smaller than the mean free path (i.e., the regime of high
k-values). Then, the terms characterizing the strength of interaction between particles are
negligible, and the static structure factor S(k) → 1. Upon observing that the second (integral)
term in equation (20b) and F(k) in equation (20c) are negligible, one finds

�1(k) = kBT

m
k2,

�2(k) = 2�1(k), �3(k) = 3�1(k).

(21)

From the first equality of equations (17) and (19) one derives that equations (21) represent the
short-time behaviour of a(0)(k, t) described by the Gaussian function,

a(0)(k, t) = e−�1(k)t2/2. (22)

Then, from equation (13) one finds that other functions a(0)
n (k, t) defining interactions of

density fluctuations with other dynamical variables assume the following form:

a(0)
n (k, t) = tn

n!e−�1(k)t2/2, n = 0, 1, . . . . (23)

Note in this case that the values of timescales determined by ∼1/�n+1(k) with the increase
of n become smaller, and the ratio between neighbouring terms converges from 2 towards 1
upon increasing n; explicitly we have

�n+2(k)

�n+1(k)
= n + 2

n + 1
. (24)

As a result, for this regime of large k-values (as opposed to the hydrodynamic limit) one can
conclude that although the timescales of relaxation functions upon the increasing of n also
increase, they eventually become equal, i.e., limn→∞ �n+2(k)/�n+1(k) = 1.

3.2. The fluid dynamics at intermediate wavelengths

Obviously, the simplifications used in the previous case are incorrect for microscopic spatial
ranges on the scale of order of some interparticle distances, where interaction between particles
is considerable. This implies a more complex numerical (theoretical) evaluation of the
parameters �n+1(k), starting with the second parameter, i.e., at n = 1 and higher.

On the other hand, the parameters �n(k) can be found from molecular dynamics
simulations. This is a very convenient and useful tool, but it requires a priori the detailed
information about the interaction of particles in the study system. According to this method,
one can find the ‘initial’ dynamical variable A(0)(k) from simulation data (see equation (1)),
and then obtain numerically the structural parameters �n(k) from RR-I (see equation (5)).
Obviously, for higher precision the obtained results should be averaged over time iterations.

We have performed such a numerical analysis based on our molecular dynamics
simulations for liquid aluminium with the particle density n = 0.0528 Å

−3
at the temperature

T = 1000 K. The interaction of N = 4000 particles embedded in the cubic cell (L = 42.32 Å)
with the periodic boundary conditions was realized using the so-called ‘glue’ potential [29].
The time step �t applied in the integration of the equation of motion was 10−14 s. After the
bringing of the system to equilibrium state, 100 000 time steps were made [30]5.

Results for the static structure factor S(k) = 〈| f0(k)|〉 and the first unnormalized
frequency moment ω(1)

un (k) = 〈| f1(k)|〉 deduced from molecular dynamics simulations are
presented in table 1, where these quantities are compared with the corresponding values

5 To estimate the frequency range allowable in the molecular dynamics simulation for a cell with this size [30], one
can find the inverse time required for a sound wave to cross the entire periodic cell. With the length L = 42.32 Å and
the sound velocity cs � 4750 m s−1, it is possible to consider the frequency range ω � cs/L , i.e., ω � 1 ps−1.

6
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Table 1. Values of the static structure factor S(k), the first unnormalized frequency moment ω(2)
un (k),

and the scattering intensity at the zeroth frequency I (k, ω = 0) for liquid aluminium. IXS denotes
results of [19] obtained from inelastic x-ray scattering data, whereas MD indicates outcomes of our
molecular dynamics simulations.

S(k) ω
(2)
un (k) (ps−2) I (k, ω = 0) (10−3 ps)

k (nm−1) IXS MD kB T
m k2 IXS MD IXS MD

4.2 0.010 0.029 5.288 5.294 5.443 0.250 0.805
5.4 0.013 0.032 8.741 8.732 11.010 0.320 0.826
7.8 0.016 0.034 18.239 18.241 23.170 0.350 0.837
9.0 0.020 0.037 24.283 24.192 32.758 0.390 0.844

10.2 0.025 0.037 31.190 30.925 40.351 0.425 0.896
11.4 0.027 0.045 38.961 39.021 47.598 0.434 0.910
12.6 0.030 0.050 47.595 47.631 59.238 0.520 1.174
13.8 0.036 0.059 57.092 57.137 72.048 0.601 1.253

S(k) = ∫
S(k, ω) dω and ω(1)

un (k) = ∫
ω2S(k, ω) dω obtained on the basis of experimental

IXS data for the dynamical structure factor S(k, ω) of liquid aluminium [19]. In this table
we also give the exact theoretical prescription for the first unnormalized frequency moment
ω(2)

un (k) = kBT/m. As can be seen, the theoretical values of ω(2)
un (k) are in agreement with

the IXS data of [19]; this is quite expected, because the normalization of experimental data
is performed according to the first sum rules (for details, see also [1]), whereas the values
of ω(2)

un (k) obtained from simulations are overestimated in comparison to IXS data for all
wavenumbers. The values of the static structure factor S(k) from molecular dynamics are also
higher than the IXS data (SMD(k)/SIXS(k) ∼ 1.5–2.9). As a result, the ratio between the values
of the first structural parameter �1(k) = 〈| f1(k)|〉/S(k) from IXS data6 and the corresponding
values from molecular dynamics simulations is ∼1.2–2.8. The analysis performed by us reveals
that a difference between the high-order structural parameters obtained from IXS data and from
molecular dynamics simulations is also observed, namely, �MD

2 (k)/�IXS
2 (k) ∼ 2.2–6.7 and

�MD
3 (k)/�IXS

3 (k) ∼ 1.8–6.1. Figure 1 compares the experimental scattering intensity I (k, ω)

of liquid aluminium near the melting temperature [19] and the results of molecular dynamics
simulations. Although the results of simulations are in a good agreement with the IXS data for
the high-frequency region, simulation data give higher values of the central peak in comparison
to the experimental ones. The exact values of I (k, ω = 0) from numerical simulations and
from IXS are presented in table 1. On this basis, one can conclude that although the ‘glue’
potential of [29] correctly describes some equilibrium characteristics of liquid aluminium, it is
unsuitable for reproducing the microscopical dynamics features of liquid aluminium, and it is
unfit for finding the structural parameters �n(k).

There also exists another scheme which is based on a phenomenological estimation of
the structural parameters �n(k). The recent experimental IXS data of the intensity I (k, ω)

for liquid aluminium at T = 973 K [19] allow one to estimate the experimental frequency
moments and, as a result, to identify �n+1(k). For this procedure we employed as a fitting
function the model for the classical dynamic structure factor S(k, ω) as detailed in [31], i.e.,

S(k, ω) = S(k)
aτ1

2
sech

(πωτ1

2

)
+ S(k)

(1 − a)τ2

4

×
[

sech

(
π(ω + ω0)τ2

2

)
+ sech

(
π(ω − ω0)τ2

2

)]
, (25)

6 The procedure of the phenomenological estimation (from IXS data) of structural parameters will be discussed in
detail below.
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Figure 1. Main plots: the scattering intensity I (k, ω) of liquid aluminium at temperature T =
973 K for different wavenumbers. The solid lines present the molecular dynamics results convoluted
with the experimental resolution and involving the detailed balance condition; open circles with
error bars are the IXS data of [19]. Insets: the difference between molecular dynamics results and
interpolated experimental data at the fixed k, i.e., IMD(k, ω) − IIXS(k, ω), in the units 10−3 ps.

with the model parameters a, τ1, τ2 and ω0. It is worthwhile noting that a similar approach has
also been used in [32], where the experimental S(k, ω) of liquid metals was fitted by a sum
of three Gaussian functions in order to derive the first- and second-order memory functions
numerically. However, as was established during the fitting procedure for liquid aluminium,
the model function of [31] allows one to realize a better adjustment to the experimental data
(see figure 1) than the combination of Gaussian functions. As a result, after taking into account
the detailed balance condition [1, 18], i.e.,

Sq(k, ω) = h̄ω/kBT

1 − e−h̄ω/kB T
S(k, ω), (26)

the convolution of Sq(k, ω) with the resolution function R(k, ω) was deduced to read

I (k, ω) = E(k)

∫
R(k, ω − ω′)Sq(k, ω′) dω, (27)

wherein E(k) denotes the form factor. The resulting function I f (k, ω) has been adjusted to the
experimental scattering function so that the first two sum rules are obeyed identically (for S(k)

and �1(k)). The subscript f used here for the intensity I (k, ω) denotes the fact that it is the
result of a fitting procedure. The comparison of the theoretical normalized second frequency

8
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Table 2. Ratio of neighbouring parameters δn(k) = �n+1(k)/�n(k) (n = 1, 2, 3 and 4) deduced
according to equation (19) on the basis of experimental frequency moments for liquid aluminium at
T = 973 K.

k (nm−1) δ1(k) δ2(k) δ3(k) δ4(k)

4.2 2.008 1.357 3.787 0.935
5.4 2.043 1.484 2.839 0.926
7.8 2.105 1.344 2.455 0.915
9.0 2.466 1.301 2.310 0.934

10.2 2.890 1.376 1.926 0.964
11.4 2.866 1.504 1.680 0.920
12.6 2.581 1.465 1.723 0.920
13.8 2.519 1.239 1.929 0.957

parameter from equation (20a) with the obtained one from integration of the fitting dynamic
structure factor S(k, ω) according to equation (17) is depicted in the main part of figure 3.
Finally, the remaining parameters �n+1(k) (n = 1, 2, . . .) were deduced from S(k, ω), which
yields the best fitting of I f (k, ω) to the experimental data. The values found of the first five
parameters versus k are given in the inset of figure 3.

During this procedure the following features for the wavenumber region studied were
identified:

(i) although the frequency moments and parameters �n+1(k) are sensitive to the form of
S(k, ω), the ratio of the neighbouring parameters, δn(k) = �n+1(k)/�n(k) (n = 1, 2,
. . .), is invariable for the various fitted functions, which reproduce the experimental data
within the acceptable bounds;

(ii) with increasing n for the wavenumber region studied the following feature of these
parameters is observed: �n+1(k) > �n(k) (δn(k) > 1). This feature is not valid for
n = 4;

(iii) �4(k) is slightly larger than �5(k), 0.915 � δ4(k) � 0.964 (see table 2).

On this basis, we further suppose that all ratios of higher order beginning with n = 4 are
approximately equal to 1, i.e., δn(k) � 1 for n � 4. This suffices for obtaining the exact
equation for the dynamic structure factor. From the physical point of view, taking into
account that the frequency parameters can be considered as characteristics of timescales for
corresponding quantities [18, 33], such an approximation means that the average timescales
of the relaxation processes related to the dynamical variables A(n) (n � 4) are approximately
equal, i.e., �

−1/2
n (k) = �

−1/2
n+1 (k) for n � 4. Therefore, the timescales of ‘neighbouring’

relaxation processes in this spatial range become equal at low levels and become strongly
pronounced in comparison with the short-wavelength dynamics. As a result, in the framework
of the RRA one can exactly obtain the relaxation function a(3)

3 (k, t) in the following form:

a(3)(k, t) = 1√
�4(k)t

J1(2
√

�4(k)t), (28)

where J1 is the Bessel function of the first order. Further, relaxation functions of other
dynamical variables and functions characterizing their interactions can be expressed by means
of integral equations. However, the term of the greatest interest a priori is a(0)(k, t), the Fourier
transform of which, S(k, ω), presents a experimentally measurable quantity. Therefore, from
equation (28) we obtain

ã(3)(k, z) = −z + [z2 + 4�4(k)]1/2

2�4(k)
. (29)

9
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Then, from equations (16) and (13) we can deduce the dynamic structure factor to read

S(k, ω) = S(k)

2π

�1(k)�2(k)�3(k)

�4(k) − �3(k)

[4�4(k) − ω2]1/2

ω6 + A1(k)ω4 + A2(k)ω2 + A3(k)
,

A1(k) = �2
3(k) − �2(k)[2�4(k) − �3(k)]

�4(k) − �3(k)
− 2�1(k),

A2(k) = �2
2(k)�4(k) − 2�1(k)�2

3(k) + �1(k)�2(k)[2�4(k) − �3(k)]
�4(k) − �3(k)

+ �2
1(k),

A3(k) = �2
1(k)�2

3(k)

�4(k) − �3(k)
.

(30)

Note that the denominator of the well-known hydrodynamic dynamic structure factor S(k, ω)

is also represented as the bicubic polynomial (in the variable ω) of equation (30),7 whereas
the numerator of the hydrodynamic model contains the biquadratic polynomial. The point
is that at the crossover into the hydrodynamical region (as well as into the region of free-
particle motion) the equation for the dynamic structure factor (30) becomes modified. This is so
because the rules of ratio for the frequency parameters are also changed. As will be presented
in the next section, the theory thus developed yields the correct hydrodynamical asymptotic
behaviour.

The comparison of the theoretical results of the dynamic structure factor S(k, ω) of liquid
aluminium at T = 973 K according to equation (30) with IXS data is presented in figure 2. As
can be deduced from this figure, the theoretical results reproduce the experimental data well.

3.3. High-frequency modes

From the analysis of the experiments it is known that inelastic features of scattering spectra are
pronounced in the normalized longitudinal current relaxation function

G J (k, t) = (J L(k, 0), J L(k, t))

(J L(k, 0), J L(k, 0))
, (31)

which is related to the dynamic structure factor by

S(k)�1(k)G̃ J (k, ω) = ω2S(k, ω). (32)

The last equation can be readily obtained from

�1(k)G J (k, t) = −∂2a(0)(k, t)

∂ t2
. (33)

The quantity G̃ J (k, ω) possesses one minimum at ω = 0 and two high-frequency maxima,
being contrary to the dynamic structure factor. Moreover, the side peaks in G̃ J (k, ω)

correspond to those of S(k, ω).
The inelastic features of the spectrum G̃ J (k, ω) are defined by the solution in regard to

z = z(k) of the following equation (see equation (2.54) in [15]):

z + �1(k)

z
+ �2(k)ã(2)(k, z) = 0, (34)

7 The comparison with the results of the hydrodynamical model allows one to extract the following relations:

A1(k) = 2[(�k2)2 − (csk)2] + (DTk2)2,

A2(k) = [(�k2)2 + (csk)2]2 + 2(DTk2)2[(�k2)2 − (csk)2],
A3(k) = (DTk2)2[(�k2)2 + (csk)2]2.

10
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Figure 2. The scattering intensity I (k, ω) of liquid aluminium at temperature T = 973 K. The
solid lines depict the results of the theoretical model (30), whereas the open circles present the IXS
data of [19]. The theoretical lineshapes have been modified to account for the quantum-mechanical
detailed balance condition and have been broadened for the finite experimental resolution effects as
described in the text.

where ã(2)(k, z), according to the results obtained above, has the form

ã(2)(k, z) = 2�4(k)

z(2�4(k) − �3(k)) + �3(k)
√

z2 + 4�4(k)
. (35)

Generally, equation (34) possesses complex solutions z = Re[z(k)] + i Im[z(k)], where
Im[z(k)] defines the positions of the inelastic peaks in G̃ J (k, ω), whereas Re[z(k)]
characterizes the widths of these peaks.

Introducing for convenience the notation Q(k) for the ratio between the parameters �4(k)

and �3(k), and the dimensionless quantity ξ(k), with the latter characterizing the frequency
region:

Q(k) = 2
�4(k)

�3(k)
− 1, (36a)

ξ(k) = z2

�4(k)
, (36b)

the condition for the existence of side peaks in equation (34) can be rewritten in the following
form (see also8 [35, 36]):

8 It is interesting to note that the fraction in the second term of equation (37) has the same form as the Laplace
transform of the velocity relaxation function of the model by Rubin [35, 36] for impurity in the harmonic lattice, where
the ratio �4(k)/�3(k) corresponds to the mass ratio in the Rubin model.

11
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Figure 3. Main: the solid line corresponds to the theoretical results of the second frequency moment
from equation (20a), whereas the full circles present the values extracted by means of an integration
of the resolution deconvoluted, classical S(k,ω) used to reproduce the experimental IXS data (see
in the text). The dashed and the dotted lines present the hydrodynamical limit (see equation (40a)
with the isothermal sound velocity c0(k) = 4700 m s−1, from [19]) and the free-particle situations
(�1/2

1 (k) = 1/
√

βm k), respectively. Inset: the values of the first five parameters obtained from the
frequency moments of the dynamic structure factor S(k, ω) corresponding to the best fit of I f (k, ω)

to the experimental data, as detailed in the text.

z2 + z�2(k)
1 + Q(k)

zQ(k) + √
z2 + 4�4(k)

+ �1(k) = 0. (37)

To investigate this equation further it is convenient to consider the following limiting
situations. First, the region of crossover into the hydrodynamical limit can be characterized
by |ξ(k)| � 1. This condition allows one to span the region of small frequencies (i.e., large
timescales). Then, the dispersion equation takes the following form:

z3 + 2�
1/2
4 (k)

Q(k)
z2 +

[
�1(k) + �2(k)(1 + Q(k))

Q(k)

]
z + 2�

1/2
4 (k)�1(k)

Q(k)
= 0. (38)

Although the exact algebraic solution of a cubic equation is feasible, it is not of much practical
use here because of its inherent algebraic complexity. Let us note that equation (38) is similar to
the dispersion equation obtained by Mountain (see equation (15) in [37]). Therefore, following
the convergent scheme for approximating solutions [37], one finds

z1,2(k) = ±icsk − �k2,

z3(k) = −2
�

1/2
4 (k)

γQ(k)
,

(39)

where the adiabatic sound velocity cs, the sound damping parameter �, and the ratio of the
specific heat at constant pressure to the specific heat at constant volume γ = cp/cv read, for
k → 0,

cs = √
γ c0, lim

k→0
�1(k) = c2

0k2, (40a)

� = γ − 1

γ

�
1/2
4 (k)

Q(k)
, (40b)

12
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Figure 4. The short-dashed line corresponds to �1(k) from equation (20a); the open triangles
present the values of γ�1(k), which possesses the limiting behaviour limk→0 γ�1(k) = (csk)2 and
thus corresponds to the squared frequency of the Brillouin peak from hydrodynamical prescription
(γ = cp/cv = 1.4 from [34, 1]); the filled circles denote the squared frequency of the side peak
ω2

c (k) in the experimental IXS spectra [19]; the solid line presents the theoretical predictions; the
open squares are the values of �2(k), which are obtained through the second and fourth normalized
frequency moments of the resolution deconvoluted, classical dynamic structure function S(k, ω)

extracted from the IXS spectra (see equation (19)). The squared frequency of the ‘solid-like’
excitations �1(k) + �2(k) ≡ ω2

L(k) is presented by the stars.

γ = 1 + �2(k)[1 + Q(k)]
�1(k)Q(k)

, (40c)

respectively, and c0(k) is the isothermal sound velocity. The equations (39) are the results
of the hydrodynamical Landau–Placzek theory [38], and the real and imaginary parts of the
first two solutions define the positions and widths of the Mandelshtam–Brillouin doublet.
The approximate solutions (39) are valid when the difference between �4(k) and �3(k) is
sufficiently large in comparison with differences between �3(k), �2(k) and �1(k) [39]9.
This condition corresponds to the requirement of the Mountain approximation procedure
(p. 208, [37]) and is related to the divergence of the frequency parameters in the hydrodynamical
limit.

If one considers the large-frequency region (regardless of k), i.e., the opposite extreme
with z2/�4(k) � 1, then here equation (37) yields

z1,2(k) ≈ ±i
√

�1(k) + �2(k) ≡ ±iωL(k), (41)

which corresponds to a typical ‘instantaneous’ solid-like response [6]10.
As can be seen from the dispersion equation (37), both the widths and positions of the side

peaks depend on the first four parameters �n(k) (n = 1, 2, 3 and 4). In figure 4, the squares
of various frequencies are compared to the square of the frequency of collective excitations,
ω2

c(k), extracted from the experimental data [19]. The results of figure 4 justify that the values
of the squared frequencies of the side peaks are arranged into the intermediate region between

9 In [39] it was found that for the case of liquid sodium the ratio �4(k)/�3(k) is 100 and it is even higher at smaller,
microscopic spatial scales.
10 The same asymptotic behaviour is recovered from the viscoelastic model (see for example [6]).
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‘hydrodynamical prescriptions’ with γ�1(k) and values ω2
L(k) corresponding to the ‘solid-like’

behaviour (equation (41)), while the results of our model yield the true squared frequencies of
side peak, ω2

c(k). The fact that inelastic peaks are fully defined by the first four frequency
parameters indicates directly that the existence of side-peak features in the region studied
depend on both two- and three-particle as well as four-particle interactions, which are taken
into account by these parameters. Although the high-frequency motions can be considered
as a remnant of solid dynamics, the large values of lifetimes of the underlying excitations (in
comparison with the solid-state ones) are distinctive for the dynamics of a liquid, where two-,
three- and four-particle correlations are strongly pronounced at the length scales of the order of
some angstroms.

4. Resume and concluding remarks

As mentioned in the introduction, the treatment of the experimental data of inelastic neutron
scattering (INS) and IXS experiments can be conveniently performed in the framework of
generalized hydrodynamics methods. Recall that for the hydrodynamical regime the following
equation holds [16]:

�2(k)a(2)(k, t) = 2ηLk2

ρm
δ(t) + (γ − 1)�1(k)e−DTk2 t , (42)

where ηL is the longitudinal viscosity and DT is the thermal diffusion. The last equation is
obtained from a reasoning that is related to the hydrodynamical approach and is correct only
for the dynamical description for large temporal and spatial scales, i.e., t → ∞ and k → 0.
However, this form of relaxation function breaks down when addressing the short-time features.
From the point of view of the RRA the relaxation function corresponding to the Hermitian
system cannot exactly assume the time dependence of the form (42), because the normalized
condition (11) is violated. One of the simplest generalizations of the hydrodynamical approach
consists in the assumption about the extended (not instantaneous) character of the decaying
viscosity term involving various elementary contributions. So, in [1, 19] it was shown
that for the correct reproduction of the experimental S(k, ω) (including the case of fluid
aluminium [19]) the three exponential decay terms must be included at least in a(2)(k, t),

a(2)(k, t) =
∑

j=α,μ,th

G j (k)e−t/τ j (k), (43)

where τα(k) and τμ(k) are the relaxation times associated with viscosity processes, whereas
τth(k) = 1/DTk2 is the relaxation timescale of thermal contribution (the second term in
equation (42)); Gα,μ,th are the weights of the corresponding contributions. Although this ansatz
also has the violation of the normalized condition (11), it can be used as a sufficiently good
approximation to study THz frequency ranges (see in [40]).

Indeed, as can be seen from figure 3, the frequency parameter �4(k) assumes the most
significant values (in comparison to others) and thereby it defines the shortest timescales
2π/

√
�4(k) ∼ 10−14 s. Then the condition |ξ(k)| � 1 (see equation (36b)) allows one to span

the frequency (time) range ω < 1014 s−1 (t > 10−14 s), which corresponds to the microscopic
dynamics and is mainly available for IXS and INS. As a result, we find from equation (35)
that11

ã(2)(k, z) =
∑

j

G j (k)

z + τ−1
j (k)

,
∑

j

G j (k) = 1, j = 1, 2, 3, 5, . . . , (44)

11 Note that the expansion (44) does not contradict the claims of RRA. It should be taken into account that this
expansion is suitable only for a finite frequency range.
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where G j (k) and τ j(k) are expressed in terms of �3(k) and �4(k) (see for details [40]).
The given equation at j = 3 yields the same result as equation (43), whereas the coarse
approximation at j = 1 corresponds to the viscoelastic model. Thus, we thereby justify that
the expansion of the function a(2)(k, t) into elementary exponential contributions can be used
as a good approximation in the description of the dynamics (but only) at long and intermediate
timescales [9] bounded by the picosecond regime.

With this present study we have explored the dynamics of liquid aluminium at T = 973 K
on the basis of the RRA, when the relaxation functions of the density fluctuations can
be exactly extracted from the known relations between the frequency parameters δn(k) =
�n+1(k)/�n(k), (n = 1, 2, . . .). In the formulation of the RRA the parameters �n(k) constitute
the structural characteristics of the embedding Hilbert space S of the investigated dynamical
variables. As a result, the peculiarities of the dynamics depend directly on the dimension d of
the space S and the related parameters, �n(k). If, in particular, δn(k) → 0, then the realized
embedding space S can be considered as the (n + 1)-dimensional one, and the exact solution
for the relaxation function can be found [17, 18, 23]. In the opposite situation δn(k) → ∞,
which can be observed in the hydrodynamical limit, the corresponding exact solution causes
problems due to the divergence of the frequency parameters �n(k) and �n+1(k).

In this work we extracted these frequency parameters phenomenologically on the basis
of the first five frequency moments of the experimental dynamic structure factor. The values
of these five parameters increase with growing index n. A similar behaviour occurs for large
values of k (the free-particle case) where these parameters approach each other at large n.
In the wavenumber region studied this approximate identity is already observed at n = 4.
The assumption that this holds as well at higher order n allows one to develop a theoretical
model, which turns out to be in quantitative agreement with the experimentally observed IXS
data for liquid aluminium and which satisfies all the corresponding sum rules. We found that
the first four even frequency moments that appeared in the continued fraction of RRA (see
equation (16)) as well as in the Zwanzig–Mori’s formalism are necessary to restore the genuine
microscopic dynamics of liquid aluminium. Moreover, our analysis reveals that the high-
frequency features of microscopic collective dynamics in liquid aluminium depend on two-,
three- and four-particle correlations. The given finding can be useful in detailed investigations
of equilibrium features of fluid aluminium, in the estimation of the many-particle distribution
functions, and in the studying of cluster phenomena of liquid aluminium [41] near melting.
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