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Preface

This booklet was produced as a result of the CCP6 Workshop on the “Dy-
namics of Open Quantum Systems” held at the University of Wales Bangor, UK,
between August 22-25, 2006. The workshop was sponsored by the UK Collabo-
rative Computation Project 6 (CCP6) on molceular quantum dynamics. Details
of CCP6 and its activities can be found at http://www.ccp6.ac.uk. Although
CCP6 was the main sponsor of this event the workshop also received support
from Gaia Technologies.

The workshop was designed to bring together researchers from a range of
disciplines that span the broad subject of dissipative quantum systems. New
approaches and formulations of quantum dissipation theory were discussed along
with a discussion of how dissipation affects key dynamical processes such as
electron transfer and transport, surface dynamics, quantum control and non-
adiabatic effects. Most of the speakers presentations are available for download
from the workshop website
http://www.chemistry.bangor.ac.uk/khh/ccp6/index.htm

Each speaker was asked to provide a brief article which could be collected
into a workshop booklet that reviews their work and the topics covered in their
talk. This booklet should be of interest to both the specialist and non-specialist
in this field. The booklet contains primers to the topic of dissipative quantum
systems and should serve as a guide to many of the recent developments in this
field. The editor would like to thank all those who participated and contributed
to the workshop.

K. H. Hughes, Bangor
August 2006
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Quantum Dissipation: A Primer

Peter Hänggi(a), (b)

(a) Universität Augsburg, Department of Physics,
Universitätsstr. 1, 86135 Augsburg, Germany

(b) National University of Singapore,
Faculty of Science, Physics Department, Blk S12,
2 Science Drive 3, 117542 Singapore, Singapore

I. INTRODUCTION

Albert Einstein explained the phenomenon of dissipation and Brownian mo-
tion in his annus mirabilis of 1905 by use of statistical methods which he in-
geniously combined with the laws of thermodynamics. In this pioneering work
he as well provided a first link between the dissipative forces and the impeding
thermal fluctuations, known as the Einstein relation which relates the strength
of diffusion to the friction. This intimate connection between dissipation and re-
lated fluctuations was put on a firm basis much later when Nyquist and Johnson
considered the spectral density of voltage- and current-fluctuations.

What role do quantum mechanics and the associated quantum fluctuations
play in this context? After the birth of quantum mechanics in the early 1920’s
we can encounter in the very final paragraph of the 1928 paper by Nyquist for
the first time the introduction of quantum mechanical noise via the substitution
of the energy kT from the classical equipartition law by the thermally averaged
quantum energy (but leaving out the zero point energy contribution) of the har-
monic oscillator. Nyquist’s remark thus constitutes a precursor of the celebrated
work by Callen and Welton who generalized the relations by Einstein, Nyquist
and Johnson to include quantum effects.

Without doubt, quantum fluctuations constitute a prominent noise source in
many nano-scale and biological systems. Let me just mention one situation here:
the tunnelling and the transfer of electrons, quasi-particles, and alike, is assisted
by noise for which the quantum nature cannot be neglected. The features of
this noise change drastically as a function of temperature: at sufficiently high
temperatures a crossover occurs to classical Johnson-Nyquist (thermal) noise.

There exist a rich variety of methods to tackle quantum fluctuations and quan-
tum dissipation in open systems in particular. I mention here the generalized
quantum master equation (QME) approach, the quantum Langevin description
(QLE), the powerful functional integral techniques for the time evolution for a
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corresponding reduced density operator, the stochastic Liouville-von Neumann
equations, stochastic and nonlinear Schrödinger equations, the method of quan-
tum trajectories, etc.. Some of these schemes are formally equivalent – others
are not. Rather than presenting in this report only a glimpse of such methods
taken from this rich zoo of differing approaches to quantum dissipation I decided
to focus in some greater detail on one such approach: the formalism of a – Quan-
tum Langevin Equation –, together with a discussion of subtleties and possible
shortcomings. This QLE is capable of describing consistently quantum friction
within a quantum mechanical setting. At the end I will list some sources deal-
ing with the description of open, dissipative quantum systems for useful further
reading.

II. DISSIPATION IN NONLINEAR QUANTUM SYSTEMS: THE
GENERALIZED QUANTUM LANGEVIN EQUATION (QLE)

A. Bath of oscillators

A popular model for the dynamics of a dissipative quantum system subject
to quantum Brownian noise is obtained by coupling the system of interest to a
bath of harmonic oscillators. Accordingly, we write for the total Hamiltonian

H =
p2

2M
+ V (q, t) (1)

+

N
∑

i=1

[

p2
i

2mi

+
mi

2
ω2

i x2
i − qcixi + q2 c2

i

2miω2
i

]

where the first two terms describe the system as a particle of mass M moving in
a generally time-dependent potential V (q, t). The sum contains the Hamiltonian
for a set of N harmonic oscillators which are bi-linearly coupled with strength
ci to the system. Finally, the last term, which depends only on the system
coordinate, represents a potential renormalization term which is needed to ensure
that V (q, t) remains the bare potential. This Hamiltonian has been studied since
the early 60’s for systems which are weakly coupled to the environmental degrees
of freedom. Only after 1980, it was realized by Caldeira and Leggett that this
model is also applicable to strongly damped systems and may be employed to
describe, for example, dissipative tunnelling in solid state physics and chemical
physics.
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B. Quantum Langevin equation

One may convince oneself that the Hamiltonian (1) indeed models dissipation.
Making use of the solution of the Heisenberg equations of motion for the external
degrees of freedom one derives a reduced system operator equation of motion,
the so-called generalized quantum Langevin equation (QLE)

Mq̈(t) + M

∫ t

t0

dsγ(t − s)q̇(s) +
dV (q, t)

dq
= ξ(t) (2)

with the damping kernel

γ(t) = γ(−t) =
1

M

N
∑

i=1

c2
i

miω2
i

cos(ωit) (3)

and the quantum Brownian force operator

ξ(t) = −Mγ(t − t0)q(t0)

+

N
∑

i=1

ci

(

xi(t0) cos(ωi[t − t0]) (4)

+
pi(t0)

miωi

sin(ωi[t − t0])

)

.

The generalized quantum Langevin equation (2) appears first in a paper by
Magalinskĭı who started from (1) in the absence of the potential renormalization
term.

The force operator (4) depends explicitly on the initial conditions at time
t0 of the bath position operators xi(t0) and bath momenta pi(t0). The initial
preparation of the total system, which fixes the statistical properties of the bath
operators and the system degrees of freeedom, turns the force ξ(t) into a random
operator. Note that this operator depends not only on the bath properties but as
well on the initial system position q(t0). To fully specify the reduced dynamics
it is thus of importance to specify the preparation procedure. This in turn then
also fixes the statistical properties of the quantum Brownian noise. Clearly, in
order to qualify as a stochastic force the random force ξ(t) should not be biased;
i.e. its average should be zero at all times. Moreover, this Brownian quantum
noise should constitute a stationary process with time homogeneous correlations.

Let us also introduce next the auxiliary random force η(t), defined by

η(t) = ξ(t) + Mγ(t − t0)q(t0) (5)

which only involves bath operators. In terms of this new random force the QLE
(2) no longer assumes the form of an ordinary generalized Langevin equation: it
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now contains an inhomogeneous term γ(t − t0)q(t0), the initial slip term. This
term is often neglected in the so-called “Markovian limit” when the friction
kernel assumes the ohmic form γ(t) → 2γδ(t). For a correlation-free preparation,
the initial total density matrix is given by the product ρT = ρS(t0)ρbath, where
ρS(t0) is the initial system density matrix. The density matrix of the bath alone
assumes canonical equilibrium, i.e.

ρbath =
1

N
exp

(

−β

N
∑

i=1

[

p2
i

2mi

+
mi

2
ω2

i x2
i

]

)

, (6)

with N denoting a normalization constant.
The statistical properties of the random force η(t) then follow immediately:

η(t) is a stationary Gaussian operator noise obeying

<η(t)>ρbath
= 0 (7)

Sηη(t − s) =
1

2
<η(t)η(s) + η(s)η(t)>ρbath

(8)

=
~

2

N
∑

i=1

c2
i

miωi

cos
(

ωi(t − s)
)

coth

(

~ωi

2kT

)

.

Being an operator-valued noise, its commutator does not vanish

[η(t), η(s)] = −i~

N
∑

i=1

c2
i

miωi

sin
(

ωi(t − s)
)

. (9)

Setting for the initial position operator q(t0) = q0, the last expression in (8)
is also valid for the noise correlation Sξξ(t) of the noise force ξ(t) provided the
average is now taken with respect to a bath density matrix which contains shifted
oscillators. The initial preparation of the bath is then given by the new density
matrix ρ̂bath;

ρ̂bath =
1

N
exp

{

− β

[

∑

i

p2
i

2mi

(10)

+
miω

2
i

2

(

xi −
ci

miω2
i

q0

)2 ]}

.

This scheme of the QLE can also be extended to the nonequilibrium case with
the system attached to two baths of different temperature. Two most recent
applications address the problem of the thermal conductance through molecular
wires that are coupled to leads of different temperature. Then the heat current
assumes a form similar to the Landauer formula for electronic transport: The
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heat current is given in terms of a transmission factor times the difference of
corresponding Bose functions.

Furthermore, the QLE concept can be extended as well to fermionic systems
which are coupled to electron reservoirs and which, in addition, may be exposed
to time-dependent driving. The corresponding Gaussian quantum noise is now
composed of fermion annihilation operators.

C. Important subtleties and pitfalls

The use of the generally nonlinear QLE (2) is limited in practice for several
reasons. More importantly, the application of the QLE bears some subtleties
and pitfalls which must be observed when making approximations. These same
subtleties typically also emerge with other approaches/methods to quantum dis-
sipation; thus it is beneficial to dwell on these in some detail. Important features
of the QLE are:

• The QLE (2) is an operator equation that acts in the full Hilbert space of
system and bath. The coupling between system and environment also im-
plies an entanglement upon time evolution even for the case of an initially
factorizing full density matrix. Together with the commutator property of
quantum Brownian motion, see eq. (9), we find that the reduced, dissipa-
tive dynamics of the position operator q(t) and momentum operator p(t)
obey – as they should – the Heisenberg uncertainty relation for all times.

This latter feature is crucial. For example, the non-Markovian (colored) Gaus-
sian quantum noise with real-valued correlation Sξξ(t) = Sξξ(−t) cannot simply
be substituted by a classical non-Markovian Gaussian noise force which iden-
tically obeys the correlation properties of (Gaussian) quantum noise ξ(t). An
approximation of this type clearly would not satisfy the commutator property
for position and conjugate momentum of the system degrees of freedom.

The literature is full of various such attempts wherein one approximates the
quantum features by corresponding colored classical noise sources. Such schemes
work at best near a quasi-classical limit, but even then care must be exercised.
For example, for problems that exhibit an exponential sensitivity, such as the
dissipative decay of a meta-stable state discussed in the next section, such an
approach gives no exact agreement with the quantum dissipative theory. It is
only in the classical high temperature limit, where the commutator structure of
quantum mechanics no longer influences the result. Perfect agreement is only
achieved in the classical limit.

The study of quantum friction in a nonlinear quantum system by means of
the QLE (2) is plagued by the fact that the nonlinearity forbids an explicit solu-
tion. This solution, however, is needed to obtain the statistical properties such
as mean values and correlation functions. This (unknown) nonlinear response
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function also determines the derivation of the rate of change of the reduced
density operator, i.e. the generalized quantum master equation (QME), and its
solution of the open quantum system.

The very fact that the QLE acts in full Hilbert space of system and envi-
ronment also needs to be distinguished from the classical case of a generalized
Langevin equation. There, the stochastic dynamics acts solely on the state space
of the system dynamics with the (classical) noise properties specified a priori.

• The quantum noise correlations can, despite the explicit microscopic ex-
pression given in (8), be expressed solely by the macroscopic friction kernel
γ(t).

This result follows upon noting that the Laplace transform γ̂(z) of the macro-
scopic friction assumes with Rez > 0 the form

γ̂(z) =
1

2M

N
∑

i=1

c2
i

miω2
i

[

1

z − iωi

+
1

z + iωi

]

. (11)

With help of the well known relation 1/(x+ i0+) = P (1/x)− iπδ(x) we find that

Reγ̂(z = −iω + 0+)

=
π

2M

N
∑

i=1

c2
i

miω2
i

[δ(ω − ωi) + δ(ω + ωi)] . (12)

By means of (8) we then find the useful relation

Sξξ(t) = Sηη(t) (13)

=
M

π

∫

∞

0

dωReγ̂(−iω + 0+)~ω coth

(

~ω

2kT

)

cos(ωt) .

In the classical limit this relation reduces, independent of the preparation of
the bath with ρ or ρ̂, to the non-Markovian Einstein relation Sξξ(t) = MkTγ(t).
The relation (13) is by no means obvious: It implies that a modelling of quantum
dissipation is possible in terms of macroscopic quantities such as the friction
kernel γ(t) and the temperature T . For other coupling schemes between system
and bath we generally can no longer express the correlation of quantum noise
exclusively in terms of macroscopic transport coefficients. As an example we
mention the coupling of the system to a bath of two-level systems (spin bath)
rather than to a bath of harmonic oscillators.

Note also the following differences to the classical situation of a generalized
Langevin equation.

• The quantum noise ξ(t) is correlated with the initial position operator
q(t0). This feature that <q(t0)ξ(t)>ρ̂ 6= 0 follows from the explicit form
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of the quantum noise ξ(t). The correlation function vanishes only in the
classical limit. Note also that the expectation value of the system-bath
interaction is finite at zero temperature. These features reflect the fact
that at absolute zero temperature the coupling induces a non-vanishing
decoherence via the zero-point fluctuations.

Moreover,

• the initial slip term γ(t − t0)q(t0) appears also in the absence of the po-
tential renormalization in the Hamiltonian (1). With this initial value
contribution being absorbed into the quantum fluctuation ξ(t), these be-
come stationary fluctuations with respect to the initial density operator of
the bath ρ̂bath given by (10). Note, however, that with respect to an av-
erage over the bare, non-shifted bath density operator ρbath, the quantum
fluctuations ξ(t) would become non-stationary.

It is also worthwhile to point out here that this initial value term in the QLE
should not be confused with the initial value term that enters the corresponding
generalized QME. In the case of a classical reduced dynamics it is always possi-
ble – by use of a corresponding projection operator – to formally eliminate this
initial, inhomogeneous contribution in the generalized master equation. This in
turn renders the time evolution of the reduced probability a truly linear dynam-
ics. This property no longer holds for the reduced quantum dynamics: for a
non-factorizing initial preparation of system and bath this initial value contri-
bution in the QME generally is finite and presents a true nonlinearity for the
time evolution law of the open quantum dynamics.

There exist even further subtleties which are worthwhile to point out. The
friction enters formally the QLE just in the same way as in the classical general-
ized Langevin equation. In particular, a time-dependent potential V (q, t) leaves
this friction kernel invariant in the QLE. In contrast to the classical Markovian
case, however, where the friction enters the corresponding Fokker-Planck dy-
namics independent of the time scale of driving, this is no longer valid for the
generalized quantum master equation dynamics of the corresponding reduced
density matrix.

For the bilinear system-bath interaction with the bath composed of harmonic
oscillators it was possible to integrate out the degrees of freedom of the bath
explicitly. Does this hold as well for other interactions? The elimination of the
bath degrees of freedom is still possible for a nonlinear coupling to a bath of
harmonic oscillators if the system part of the coupling is replaced by a nonlinear
operator-valued function of either the momentum or position degree of freedom
of the system as long as the bath degrees of freedom appear linearly. The
resulting friction kernel then appears as a nonlinear friction but the influence of
the bath degrees of freedom is still obtained in exact form.

Yet another situation for which one can derive an exact QLE is when a non-
linear system, such as a spin degree of freedom, interacts with a collection of
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quantum (Bose) oscillators in such a way that the interaction Hamiltonian com-
mutes with the system Hamiltonian, thus constituting a quantum non-demolition
interaction. This case corresponds to pure dephasing; it was originally addressed
by  Luczka and van Kampen for the problem of a spin in contact with a thermal
heat bath.

We end this subsection by mentioning also the coupling of a system to a bath of
independent fermions with infinitely many excitation energies: a suitable trans-
formation then allows a mapping of the dissipation onto a bosonic environment
with an appropriate coupling strength.

III. FURTHER READING

The presented material outlined above is based on a longer comprehensive
article which I co-authored with Prof. Dr. G.-L. Ingold. It appeared during
the world year of physics in 2006 in the journal CHAOS (see below) in
celebration of Einstein’s work of 1905 on Brownian motion. The reader can
find further insightful information on the use and abuse of quantum dissipation
by consulting the pdf’s of recent review and feature articles on the web:
http://www.physik.uni-augsburg.de/theo1/hanggi/Quantum.html

Some useful such reports for further reading are:

• T. Dittrich, P. Hänggi. G.-L. Ingold, B. Kramer, G. Schön, and W. Zw-
erger, Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998).

• M. Grifoni and P. Hänggi, Driven Quantum Tunneling, Phys. Rep. 304:
229-354 (1998)

• U. Weiss, Quantum Dissipative Systems, second edition (World Scientific,
Singapore, 1999)

• G.-L. Ingold, Path integrals and their application to dissipative quantum
systems, Lect. Notes Phys. 611: 1-53 (2002)

• S. Kohler, J. Lehmann, and P. Hänggi, Driven quantum transport on the
nanoscale, Phys. Rep. 406: 379-443 (2005)

• I. Goychuk and P. Hänggi Quantum dynamics in strong fluctuating fields,
Adv. Physics. 54: 525-584 (2005)

• P. Hänggi and G. L. Ingold, Fundamental aspects of quantum Brownian
motion, Chaos 15: 026105 (2005)

The above link also provides access to the pdf of the talk which I presented
for CCP6, Dynamics of Open Quantum systems, at the University of Wales,
Bangor, August 23-25, 2006.
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