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The understanding of the microscopic dynamics of
supercooled liquids and of its relation with the glass
transition is one of the problems that remain open in the
physics of the condensed matter, which has led to the
performance of numerous experimental [1–3] and the-
oretical investigations [4]. Although different details of
the microdynamics of supercooled liquids and glasses
have been essentially exactly determined, much
remains unclear even now. So, for example, even
though the relation between the phenomenology of
glass transition and the long-time dynamics has been
almost clarified, the effect of “the structural arrest” on
the high-frequency collective vibrational motion and
the role of memory effects in structural relaxation is
much less clear [5–7]. The present paper is devoted to
the study of this issue.

The most convenient way to study the dynamics of
density fluctuations is to determine the dynamic struc-
ture factor 
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), which can be experimentally
obtained by means of the scattering of light, neutrons,
and x rays. One of the common features established for
glass and supercooled liquids via the above-mentioned
experimental techniques consists in the fact that acous-
tic-like excitations in these systems are propagated up
to a value of the wavenumber 

 

k

 

 corresponding to the
interparticle distances. As this takes place, the broaden-
ing of high-frequency peaks corresponding to these col-
lective excitations follows a power law 
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, where 

 

D

 

 is
practically independent of temperature. We need to
note that similar features were earlier established in the
microdynamics of density fluctuations in liquid alkali
metals [8–10]. From the theoretical point of view, 
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) can be found from the generalized Langevin equa-
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tion [11] for the normalized density correlator 
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) is the second-order memory function,

(

 

k

 

) and (

 

k

 

) are the frequency relaxation parame-
ters, which are expressed through the even frequency
moments of 
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Namely,
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As was recently shown (see [7], and [12, Eq. (7)]), the

Laplace transform, (

 

s

 

) = , of the non-

Markovian equation (1) for the case of nonergodicity
glass systems allows one to obtain the dynamic struc-
ture factor in the following form:
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Abstract

 

—A study of the microdynamics of supercooled liquids and glasses is executed through calculations
of the dynamic structure factor 
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). The theory developed on the basis of a self-consistent approach in the
framework of the memory function formalism is applied to define the frequency spectra (
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) of
supercooled argon at the temperature 

 

T

 

 = 5 K for the wavenumber region from 2 to 8.5nm

 

–1

 

. The results
obtained are in good agreement with the molecular dynamics simulation data.
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where (
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i

 

ω

 

) = (

 

k

 

, 

 

ω) + (k, ω); S(k) =

〈|δρk(0)|2〉 is the static structure factor; and f(k) is the
nonergodicity factor, which is expressed thorough

(k) and (k) [4, 6]:

 (6)

Then, the problem of defining the dynamic structure
factor S(k, ω) is reduced to finding the second-order
memory function M2(k, t) (or its Laplace transform),
which is also the time correlation function describing
the corresponding relaxation process. From the point of
view of the Zwanzig–Mori formalism [13, 14], the
Laplace transforms of the whole set of memory func-
tions arising in a hierarchical chain of non-Markovian
equations are interrelated by the following recurrent
relation:

 (7)

where (k) is the relaxation parameter of the n order.
The finding of the term M2(k, t) can also be executed in
the framework of a self-consistent approach based on
an assumption regarding the equalization of time scales
of high-order memory functions, τ3(k) and τ4(k), where

τn(k) = (k, t) [8].2 As a result, we obtain the ter-

mination in the recurrent relation (7) and find exactly
the following expression for M2(k, t) without any trivial
approximations for the memory function M2(k, t) (or
M2(k, s)) by different model time (frequency) depen-
dences:

 (8)

Now, the spectra S(k, ω) can be deduced through the
simple substitution of Eq. (8) into Eq. (5). So, the posi-

2 This interrelation between τ3(k) and τ4(k) is based on the assump-
tion the time scales for the TCF of energy current fluctuations and
its memory function are equal.
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Fig. 1. Frequency spectra of (m/kBT)S(k, ω) of supercooled argon for T = 5 K at k = (a) 2.0, (b) 2.9, (c) 5.0, and (d) 8.5 nm–1. Circles
are the data from molecular dynamics simulations [6], and the solid line is our theoretical results.
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tion, as well as the broadening, and the amplitude of the
high-frequency peak of S(k, ω) in this approach are
interrelated terms determined by the frequency relax-

ation parameters (k) and (k). We need to note
that, as was recently shown in [15], this approach
allows one to obtain the second-order memory function
in terms of simple relaxation functions. This is in full
agreement with the concepts of mode-coupling theory
[16]. In accordance with the presented approach, the
spectra of the dynamic structure factor S(k, ω) were cal-
culated by Eqs. (5) and (8) for supercooled argon at a
temperature T = 5 K for wavenumbers k = 2.0, 2.9, 5.0,

and 8.5 nm–1. The parameter (k) was determined
exactly from Eq. (3), whereas the numerical values of

Ω3
2 Ω4

2

Ω1
2

the second-order relaxation parameter (k) were

taken from [6]. The frequency parameters (k) and

(k) were determined from a comparison of the the-
oretical results with the molecular dynamics simulation
data. The theoretical results obtained for the reduced
dynamical structure factor (m/kBT)S(k, ω) (solid line)
together with the results of the molecular dynamics
simulation (circles) [6] are presented in Fig. 1. We need
to note that the molecular dynamics study from [6] was
performed for a system of N = 2048 argon atoms inter-
acting via a Lennard–Jones potential (�/kB = 125.2 K,
σ = 3.405 Å). It is obvious that the theoretical curves
are in good agreement with the molecular dynamics
data for the whole range of wavenumber values. The
insignificant oscillations observed in the data from
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Fig. 2. (a) Dispersion of the side peak of the dynamic structure factor for supercooled argon (T = 5 K), (b) k dependence of the side
peak amplitude, and (c) dependence of the side peak amplitude hc on the frequency of collective excitations ωc/2πc. The solid line
represents theoretical results, and circles are the data from molecular dynamics simulations [6].
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molecular dynamics simulations for the low-frequency
regions of the dynamic structure factor spectra are
related to errors that arise at the numerical Laplace
(Fourier) transform of data for the density correlator
[6]. Good agreement between theory and the molecular
dynamics simulation data are also seen in Fig. 2, where
dispersion of the high-frequency peak of the dynamic
structure factor (see Fig. 2a) and the dependences of the
side peak amplitude hc on the wavenumber k (see
Fig. 2b) and on the frequency ωc/2πc at fixed values of
k (see Fig. 2c) are presented. In Fig. 3, we present the
numerical values of the frequency relaxation parame-

ters (k), n = 1, 2, 3, and 4 used in our calculations.
We need to note here that all frequency relaxation
parameters have the same k dependence. A similar sce-
nario was found earlier for the description of the micro-
scopic dynamics of liquid alkali metals (lithium,
sodium, rubidium, cesium) near their melting tempera-
tures [8–10, 15].

In conclusion, this paper is devoted to the develop-
ment of a self-consistent approach executed in the
framework of the memory function formalism and sug-
gested earlier for description of the microdynamics of
liquid alkali metals for finding the dynamic structure
factor of supercooled liquids. The results of the theoret-
ical analysis of S(k, ω) performed for supercooled
argon at the temperature T = 5 K for wavenumbers val-
ues ranging from 2.0 to 8.5 nm–1 are in good agreement
with the data from molecular dynamics simulation.
This allows us to make the following inferences.

(1) It is possible to use the quasi-hydrodynamic
approach for the description of “instantaneous” dynam-
ical processes in supercooled liquids and glasses on a
time scale of 10–12 s in microscopical spaces.

Ωn
2

(2) Microscopic processes and the corresponding
collective excitations observed in the terahertz fre-
quency region of the dynamic structure factor spectra
have a common origin in liquid alkali metals, as well as
in supercooled liquids, which can serve as convincing
proof of the benefit of the assumptions made in [17].
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