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In this work we present a new approach to the problem of diagnosing and forecasting
various states in patients with Parkinson’s disease. Recently we have achieved the following
result. In real complex systems the non-Markovity parameter (NMP) can serve as a reliable
quantitative measure of the current state of a complex system and can help to estimate
the deviation of this state from the normal one. Our preliminary studies of real complex
systems in cardiology, neurophysiology, epidemiology and seismology have shown, that the
NMP has diverse frequency dependence. It testifies to the competition between Markov
and non-Markov, random and regular processes and makes a transfer from one relaxation
scenario to the other possible. On this basis we can formulate the new method of diagnosing
deflections in the central nervous system caused by Parkinson’s disease. We suggest the
statistical theory of discrete non-Markov stochastic processes to calculate the NMP and the
quantitative evaluation of various dynamic states of real complex systems. With the help
of NMP we have found evident manifestation of Markov effects in a normal (healthy) state
of the studied live system and its sharp decrease in the non-Markov states in the period of
crises and catastrophes and various human diseases. The given observation creates a reliable
basis for predicting crises and catastrophes, as well as for diagnosing and treating various
human diseases, Parkinson’s disease, in particular.
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Keywords: discrete non-Markov processes, time series analysis, stochastic processes, Parkinson’s
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1. Introduction

Various methods and models have been used
in attempts to characterize physical peculiarities
and physiological mechanisms of the treatment
of patients. Today treatment of serious diseases
of human nervous and motor systems attracts a
lot of attention. Methods of biophysics, biochem-
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istry and neurophysiology allow to receive more
effective means of treating the majority of dis-
eases, including Parkinson’s disease. These new
methods of treatment are an alternative to the
regular treatment of Parkinson’s disease. They
substantially change the process of treatment of
the patients.

The records of a tremor of human extremi-
ties are analyzed to study physiological changes
at Parkinson’s disease. The basic problems con-
nected with the change of human gait dynamics
as well as of various disorders of human motor ac-
tivity, are considered in the papers of J. Hausdorff
[1]-[6]. In the works the stride-to-stride variabil-
ity and its temporal organization in children [1],
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the steady long-range correlation of fluctuations
of young people’s step interval [2], the increase
of instability of elderly people’s gait [3, 4], the
changes of the fractal dynamics of human’s gait
with age and patients’ gait [5, 6] are investigated.
The use of nonlinear time series analysis for the
study of normal and pathological human walk-
ing is considered in Refs. [7, 8]. In addition to
the study of a muscle tremor of legs the scientists
are engaged in the analysis of the time series of
a physiological and pathological tremor of hands
(and muscle activity) [9]-[13]. In Ref. [14] the
periodic structure in the time series of a hand
tremor in a patient with Parkinson’s disease was
found be means of a nonlinear signal and multi-
modal (independent) oscillations. The analysis of
a physiological state of a patient with Parkinson’s
disease is also carried out by studying the time
series of a pathological tremor of fingers [15]-[20].

The present work is based on a qualitatively
different physical approach to the study of a phys-
iological state of a patient with Parkinson’s dis-
ease under different medical interventions. For
the study of various dynamic states of a live sys-
tem we consider the statistical effects of non-
Markovity. The effects of non-Markovity in real
complex systems: biological [21]-[24], physical
[23, 25, 26], natural [27, 28], and live [27], [29]-
[32] ones are of special interest for the correla-
tion analysis. As a starting point we use sep-
arate concepts and points of the statistical the-
ory of discrete non-Markov random processes in
statistical physics [27]. The study of various dy-
namic features of complex systems in seismology
[28], cardiology [29], neurophysiology [30, 32] and
epidemiology [31] have allowed to propose a new
method of diagnosing and forecasting Parkin-
son’s disease. The essence of this methods con-
sists in the following. As the first stage, sta-
tistical processing of initial time series of mea-
surements of the observed physiological param-
eter is carried out. The second stage consists
in defining a special identifier, in our case the
non-Markovity parameter ε1(ω) (i = 1, 2, 3...).
The first point of the non-Markovity parameter
ε1 = ε1(ω) (further simply the non-Markovity

parameter) is of special significance here. As a
whole, the non-Markovity parameter is used for
quantitative description of long-range memory ef-
fects in real complex systems. The initial idea
of the present concept was to separate Markov
(with short-range time memory) and non-Markov
(with long-range time memory) stochastic pro-
cesses. However, the study of real complex sys-
tems has allowed to reveal additional possibili-
ties of this parameter. We have discovered un-
usual behavior of the non-Markovity parameter
(ε1(0)) in various physiological states of a human
[29]-[32], when the greater values of the parame-
ter ε1(0) are characteristic of stable physiological
states of systems [29, 30] and the minimal val-
ues of this parameter are typical of pathological
states of live systems [29, 30, 32]. Thus, by the
increase or decrease of the non-Markovity param-
eter one can judge about physiological status of
a live organism with a high degree of accuracy.
Therefore, the non-Markovity parameter allows
to define a deviation of the physiological state of
a system from its normal state.

In this work the new method of diagnos-
ing and forecasting is applied to live systems.
The possibilities of the new approach are re-
vealed when analyzing experimental data on var-
ious states of a patient with Parkinson’s disease.
Parkinson’s disease is a chronic progressing dis-
ease of the brain observed in 1-2 % of elderly peo-
ple. The disease was described in 1817 by James
Parkinson in the book ”An essay on the shaking
palsy”. In 19th century the French neurologist
Pierre Marie Charcot called this disease ”Parkin-
son’s disease”. Complex biochemical processes
characteristic of Parkinson’s disease results in the
lack of chemical substance of dopamine mediator
which is a carrier of signals from one nerve cell to
another. The basic symptoms typical for Parkin-
son’s disease form the so-called classical triad:
tremor, rigidity of muscles (disorder of speech,
amimia), and depression (anxiety, irritability, ap-
athy). The existing therapy comprises a set of
three basic treatments: medical treatment, surgi-
cal treatment and electromagnetic stimulation of
the affected area of the brain with the help of an
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electromagnetic stimulator.
Earlier we found the way to define the lia-

bility of a person to frustration of the central ner-
vous system due to Parkinson’s disease [30]. The
present work is an expansion and development of
informational possibilities of the statistical the-
ory of discrete non-Markov random processes and
the search for parameters affecting the health of
subjects. Treatment of patients with Parkinson’s
disease requires exact estimation of the current
state of the person.

2. The statistical theory of
discrete non-Markov random processes.
The non-Markovity parameter and its
frequency spectrum

The statistical theory of discrete non-
Markov random processes [27]-[29] forms a math-
ematical basis for the present study of complex
live systems. The theory allows to calculate a
wide set of dynamic variables, correlation func-
tions, memory functions, power spectra, statis-
tical non-Markovity parameter, kinetic and re-
laxation parameters. The full interconnected set
of these variables, functions and parameters al-
lows to receive information on stochastic pro-
cesses, connected with functioning of a live or-
ganism [29]-[32].

We use the non-Markovity parameter ε as
a quantitative measure of non-Markov proper-
ties of a statistical system. The non-Markovity
parameter ε, first appearing in [33], allows one
to obtain valuable information concerning non-
Markovian properties of the wide range of relax-
ation processes. The non-Markovity parameter
allows to attribute real stochastic processes into
Markov processes (ε → ∞), quasi-Markov pro-
cesses (ε > 1) and non-Markov processes (ε ∼1).
Besides the non-Markovity parameter we also use
the concept of the spectrum of non-Markovity pa-
rameter [34]. We define the spectrum as a set of
all values of the physical parameter used for de-
scribing the state of a system or a process. Let
us consider the first and the nth kinetic equa-

tions of the chain of connected non-Markov finite-
difference kinetic equations [27, 29]:

∆a(t)
∆t

= λ1a(t) − τΛ1

m−1∑
j=0

M1(jτ)a(t − jτ), (1)

· · ·

∆Mn(t)
∆t

= λn+1Mn(t)

−τΛn+1

m−1∑
j=0

Mn+1(jτ)Mn(t − jτ).

The first equation is based on the Zwanzig’-
Mori’s kinetic equation in nonequilibrium statis-
tical physics [35]-[39]:

da(t)
dt

= −Ω2
1

∫ t

0
dτM1(τ)a(t − τ).

Here a(t) is a normalized time correlation func-
tion (TCF):

lim
t→0

a(t) = 1, lim
t→∞ a(t) = 0.

The zero order memory function a(t) and the first
order memory function M1(t) in Eq. (1):

M0(t) = a(t) =
< A0

k(0)Am
m+k(t) >

< |A0
k(0)|2 >

,

t = mτ,

M1(jτ) =
< A0

k(0)L̂12{1 + iτ L̂22}jL̂21A0
k(0) >

< A0
k(0)L̂12L̂21A0

k(0) >
,

M1(0) = 1,

A0
k(0) = (δx0, δx1, δx2, · · · , δxk−1),

Am
m+k(t) = {δxm, δxm+1, δxm+2, · · · , δxm+k−1},

describes the statistical memory in complex sys-
tems with discrete time (A0

k(0) and Am
m+k(t) are
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the vectors of the initial and final states of the
studied system). The operator L̂ is a finite-
difference operator:

iL̂ =
�
�t

, �t = τ,

where τ is a discretization time step, L̂ij = ΠiL̂Πj

(i, j = 1, 2) are matrix elements of the splittable
Liouville’s quasioperator, Π1 = Π, Π2 = P = 1 −
Π and Π are projection operators.

Let us define the relaxation times of the ini-
tial TCF and of the first-order memory functions
M1(t) [25]-[27] as follows :

τa = Re

∫ ∞

0
a(t)dt = ∆t

N−1∑
j=0

a(tj),

τM1 = Re

∫ ∞

0
M1(t)dt = ∆t

N−1∑
j=0

M1(tj), · · · ,

τMn = Re

∫ ∞

0
Mn(t)dt = ∆t

N−1∑
j=0

Mn(tj).

Then the spectrum of non-Markovity pa-
rameter {ε} [34] is defined as a set of dimension-
less numbers:

{ε} = {ε1, ε2, ..., εi, ..., εn−1}, (2)

ε1 = τa/τM1 , ε2 = τM1/τM2 , · · · , εn−1 = τMn−1/τMn ,

ε = τrel/τmem.

Note, that a(t) = M0(t). The number εn−1 char-
acterizes the ratio of relaxation times of the near-
est memory functions Mn−1 and Mn. If at some
n− 1 the value of the parameter εn−1 → ∞, then
this relaxation level is Markov. If εn−1 changes in
limits from zero to unity, then the relaxation level
is defined as non-Markov ones. The times τrel

(relaxation time) and τmem (memory life time)
appear when the effects of statistical memory in
complex discrete system are taken into account by
means of the Zwanzig’-Mori’s method of kinetic

equations. Thus, the non-Markovity parameter
spectrum is defined by the stochastic properties
of the TCF.

The concept of the generalized non-
Markovity parameter for a frequency - dependent
case:

εi(ω) =
{

µi−1(ω)
µi(ω)

} 1
2

, (3)

was introduced in the work [27]. Here as µi(ω)
we designated the frequency power spectrum of
ith memory functions:

µ1(ω) = |Re

∫ ∞

0
M1(t)eiωtdt|2

= |
N−1∑
j=0

M1(tj) cos ωtj |2, · · · ,

µi(ω) = |Re

∫ ∞

0
Mi(t)eiωtdt|2

= |
N−1∑
j=0

Mi(tj) cos ωtj |2.

The new offered method of diagnosing and
forecasting infringements of central nervous sys-
tem for patients with Parkinson’s disease is based
on the use of the first point of the non-Markovity
parameter. For a frequency - dependent case the
first point of the non-Markovity parameter [27] is
defined as follows:

ε1 = ε1(ω) =
{

µ0(ω)
µ1(ω)

} 1
2

. (4)

The use of εi(ω) allows to find the details of
the frequency behavior of power spectra of time
correlation and memory functions.

3. Using the non-Markovity
parameter for quantitative estimation of
a physiological state of live systems

In this work the study of live systems is car-
ried out on the basis of interrelation which in-
cludes the non-Markovity parameter and infor-
mation on a physiological state of a live system,
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which defines a qualitative state of a real system.
The existence of the given interrelation is very im-
portant for the analysis of a wide range of prob-
lems in medical science and physics of complex
systems of diverse nature. The value of the first
point of the non-Markovity parameter at zero fre-

quency is defined as: ε1(0) =
{

µ0(0)
µ1(0)

} 1
2 (see, Eq.

(4)). The physical sense of the given parame-
ter consists in comparing the relaxation scales of
the time correlation function (a(ω) = µ0(ω)) to
the memory functions of the first order (µ1(ω)).
Depending on the values of this parameter one
can discriminate Markov processes (with short-
range memory) and non-Markov processes (with
long-range memory effects). Thus memory is un-
derstood as information on the previous states of
a system. The behavior of non-Markovity under
various influences in a live system contains infor-
mation about its physiological state (including its
pathological state) [29]-[32]. The greater values
of the parameter ε1(0) ∼ 102 are typical for nor-
mal physiological state. In a pathological state
of a system the value of non-Markovity decreases
ε1(0) ∼ 100. The change of non-Markovity re-
flects the change of a physiological state of a
live system. Thus, the definition of the non-
Markovity parameter for time series allows to de-
fine with high degree of reliability either a state
of a live system is physiological or pathological
one. It testifies to close interrelation of the non-
Markovity parameter and information, character-
izing the state of a system. The submitted inter-
relation is, in fact, a type of informational obser-
vation.

4. Quantitative factor of the qual-
ity of treatment

One of the major problems of medical
physics consists in the development of a reliable
criterion defining quality of medical treatment,
diagnosing and forecasting of live complex sys-
tems behavior. As one can see from the previ-
ous section, the criterion should include the pa-

rameter of non-Markovity of alive organism. The
creation of a quantitative factor of the quality
of treatment QT is based on the behavior of the
non-Markovity parameter ε1(0) in the stochastic
dynamics of live complex systems.

The factor QT defines the efficacy or the
quality of the treatment and is directly connected
with the changes of the non-Markov effects in
a live organism. We shall calculate QT for the
concrete example. Let us consider 1 as the pa-
tient’s state before therapy, and 2 the state of
the patient after certain medical intervention.
Then ε1(1) and ε1(2) represent quantitative mea-
sures of randomness for the physiological states 1
and 2. The ratio δ of these values (δ = ε1(2)

ε1(1))
will define the efficacy of the therapy. Various
j processes occur simultaneously in the therapy.
Therefore the total value of the parameter δ can
be defined in the following way:

δ =
n∏

j=1

εj
1(2)

εj
1(1)

, (5)

where j = 1, 2...n is the number of factors affect-
ing the behavior of the non-Markovity parameter.
However, the natural logarithm ln δ is more con-
venient for use.

Then we have:

δ > 1, ln δ > 0,

δ = 1, ln δ = 0,

δ < 1, ln δ < 0.

The above mentioned three values of δ cor-
respond to the three different situations of the
quality of the treatment: effective, inefficient and
destructive treatment. Thus, one can define the
value QT (ε) = ln δ according to Eq. (5) as fol-
lows:

QT (ε) = ln
n∏

j=1

εj
1(2)

εj
1(1)

. (6)

However, the total factor QT is defined both
by the non-Markovity parameter (stochastic con-
tribution) and by other physiological and bio-
chemical data. Now we shall consider the transi-
tion of the patient from state 1 to state 2. Then
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by analogy, one can introduce physiological pa-
rameter k(1), determined for state 1, and k(2)
for state 2. In case of Parkinson’s disease one can
introduce amplitude or dispersion of the tremor
velocity of extremities (hand or leg) as this pa-
rameter. In other cases any medical data, which
are considered for diagnostic purposes, can be
used. For greater reliability it is necessary to use
the combination of various parameters kj(1) and
kj(2).

So, the value:

QT = ln
n∏

j=1

εj
1(2)

εj
1(1)

∗
{

kj(2)
kj(1)

}
, (7)

will be considered as a generalized quantitative
factor of the quality of the therapy.

However in real conditions it is necessary ei-
ther to increase or weaken the magnitude of con-
tribution, determined by the non-Markovity pa-
rameter or physiological contributions to Eq. (7).
For this purpose we shall take the simple ratio:

ln
∏

(anbm...) = n ln a + m ln b + ...

By analogy, we can either reinforce or weaken var-
ious contributions depending on the concrete sit-
uation:

QT = ln
n∏

j=1

(
εj
1(2)

εj
1(1)

)mj

∗
{

kj(2)
kj(1)

}pj

. (8)

If experimental data in some situations are in-
complete one can assume pj = 1 (attenuation
of the physiological contribution). The value
of mj > 1 can mean the amplification of the
stochastic contribution, determined by the non-
Markovity parameter. Otherwise, if we want to
weaken the contribution, determined by the non-
Markovity parameter, we should take (mj = 1),
and if we reinforce the physiological contribution
we come to (pj > 1). We have presented the
results of the concrete calculations of the quanti-
tative factor QT in 6th Section.

5. The experimental data

We have taken the experimental
data from Refs. [40, 41] (see, also
http://physionet.org/physiobank/database/).
They represent the time records of the tremor
velocity of an index finger of a patient with
Parkinson’s disease. The effect of the chronic
high frequency deep brain stimulation (DBS) on
the rest tremor was investigated [40, 41] for a
group of subjects with Parkinson’s disease (PD)
(16 subjects). Eight PD subjects with a high
amplitude tremor and eight PD subjects with
a low amplitude tremor were examined by a
clinical neurologist and tested with a velocity
laser to quantify time and frequency domain
characteristics of a tremor. The participants
received DBS of the internal globus pallidus
(GPi), the subthalamic nucleus (STN) or the
ventrointermediate nucleus of the thalamus
(Vim). A tremor was recorded with a velocity
laser under two conditions of DBS (on-off) and
two conditions of medication (L-Dopa on-off).

All the subjects gave informed consent and
institutional ethics procedures were followed.
The selected subjects were asked to refrain from
taking their medication at least 12 h before the
beginning of the tests and were allowed to have
no more than one coffee at breakfast on the two
testing days. A rest tremor was recorded on
the most affected side with a velocity-transducing
laser [42, 43]. This laser is a safe helium-neon
laser. The laser was placed at about 30 cm from
the index finger tip and the laser beam was di-
rected perpendicular to a piece of reflective tape
placed on the finger tip. Positive velocity was
recorded when the subjects extended the finger
and negative velocity when the subjects flexed
the finger.

The conditions, counterbalanced across sub-
jects, included the following:

1. The L-Dopa condition (no stimulation).
2. The DBS condition (stimulation only).
3. The ”off” condition (no medication and

no stimulation).
4. The ”on” condition (on medication and
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on stimulation).
5. The effect of stopping DBS on tremor

(time record of the tremor after 15, 30, 45, 60
min since switching off of the stimulator).

In Fig. 1 the time records of the tremor ve-
locity changing of an index finger of the second
patient’s hand (man, 52 years old) under vari-
ous conditions of influence on the organism are
submitted as an example. High tremor velocity
is observed: 1) in a natural condition of the pa-
tient (a), 2) 15 (45) minutes after the stimulator
was switched off. Lower speed of the tremor is in
cases: 1) when both methods (stimulation, med-
ication) are used, 2) when each of these methods
is used separately, 3) 30 (60) minutes after the
stimulator was switched off. The similar results
are received in Refs. [40, 41].

6. The results of application of the
theory

In this section the results of processing of
the experimental data for one of the patients (the
subject 2) are shown. The similar pictures are ob-
served in the experimental data of all other sub-
jects.

6.1. The non-Markovity parameter and
a pathological tremor in patients with Parkin-
son’s disease

In this subsection the calculation technique
of quantitative and qualitative criteria under var-
ious conditions that influence the state of a pa-
tient with Parkinson’s disease is presented. The
basic idea of the approach consists in defining the
non-Markovity parameter to receive the informa-
tion on a physiological state of a patient. As one
of the examples we shall consider the velocity of
the changes of the subject’s index finger tremor
in case of Parkinson’s disease. The comparative
analysis of the initial time record and the non-
Markovity parameter for all the submitted exper-
imental data allows to discover the following fea-
ture. The value of the non-Markovity parameter

ε1(0) decreases with the increase of the tremor
velocity of fingers (deterioration of the physiolog-
ical state) and increases with the decrease of the
tremor velocity (improvement of the state of the
patient). We shall also consider the power spec-
tra of the initial TCF µ0(ω) under various con-
ditions that influence an organism, the window-
time behavior of the power spectrum µ0(ω), the
non-Markovity parameter ε1(ω), and the time de-
pendence of local relaxation parameter λ1(t) as
additional sources of information.

Fig. 2 represents the power spectra of the
initial TCF for various conditions of the experi-
ment. One can observe a powerful peak for all
figures at the frequency ω = 0.07f.u.(f.u. =
1/τ, τ = 10−2 second). The figures are sub-
mitted according to the initial time series. The
given peak testifies to a pathological state of the
studied system. The similar picture is observed
in patients with myocardial infarction [29]. The
least amplitude 75τ2 corresponds to the condition
(ON, ON) (deep brain stimulation on and medi-
cation on; see, Fig. 2b). The highest amplitude
4.34 ∗ 104τ2 corresponds to the greatest speed of
a tremor (see, Figs. 1e, 2e). The comparison of
these values reflects the amplitude of the tremor
velocity at the initial record of time. The similar
picture is observed for all other patients.

In Fig. 3 the initial time record (the nor-
mal state of the subject: (OFF, OFF)) and the
window-time behavior of the power spectrum of
the TCF (see, Section 6.2) are submitted (the
technique of the analysis of the given behavior
is considered in Ref. [32]). For the observed
data of a tremor of the right index finger of the
patient’s hand (the second subject: stimulation
and medication of the brain are not applied) with
Parkinson’s disease, we divide the entire time evo-
lution data into nonoverlapping epochs of 256
data points each. For each epoch, we have cal-
culated the power spectra of the TCF a(ω). The
time evolution of the spectra is shown in three-
dimensional diagrams. In these figures Regions 1,
2, 3, which correspond to the least values of the
tremor velocity are shown. The minimal ampli-
tude of the peaks of the power spectrum µ0(ω)

Nonlinear Phenomena in Complex Systems Vol. 9, No. 1, 2006
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FIG. 1. The tremor velocity change of the right index finger of the patient’s hand (the second subject) with
Parkinson’s disease under various conditions of the experiment. (a)-deep brain stimulation off, medication off;
(b)-the subject was receiving stimulation of the GPi, medication on; (c)-deep brain stimulation off, medication
on; (d)-the subject was receiving stimulation of the GPi, medication off; (e)-(h)-the recording of rest tremor in
the right index finger of the subject 15 (30, 45, 60) minutes after the stimulator was switched off, this subject

was off medication for at least 12 hours.

corresponds to the regions with least velocity of
the tremor.

In Fig. 4 the frequency dependence of the
first point of the non-Markovity parameter ε1(ω)
(see, Eq. (4)) is submitted for the second sub-
ject under various conditions of the experiment.
The figures are submitted according to the ini-
tial time series. The value of the parameter
ε1(0) on zero frequency is special importance for
our study of manifestations of randomness. It
is possible to judge the change of the state of a
subject by the increase (or by the decrease) of
this value. The comparative analysis of the ini-
tial time records allows to come to the similar

conclusions. In Figs. 4d-h a well-defined fre-
quency structure of the non-Markovity param-
eter can be seen. This structure is completely
neutralized and disappears only when therapy
is applied. The characteristic frequency of fluc-
tuations corresponds, approximately, to the fre-
quency of ω = 0.07f.u., 1f.u. = 100Hz. These
multiple peaks are most appreciable at low fre-
quencies. At higher frequencies these fluctuations
are smoothed out. As can be seen in these figures,
2nd subject has a strong peak which remains sta-
ble over time. The similar structure of the fre-
quency dependence of the non-Markovity param-
eter testifies to the presence of the characteristic
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FIG. 2. The power spectrum of the initial TCF µ0(ω) for the tremor velocity changing of the second subject
under various conditions that influences an organism. (a)-deep brain stimulation off, medication off; (b)-deep
brain stimulation on, medication on; (c)-deep brain stimulation off, medication on; (d)-deep brain stimulation
on, medication off; (e)-(h) the power spectrum of the initial TCF µ0(ω) for the recording of rest tremor in the
right index finger of the subject 15 (30, 45, 60) minutes after the stimulator was switched off, medication off.

On frequency ω = 0.07f.u., 1f.u. = 100Hz (the characteristic frequency) peak is found. The presence and
amplitude of the peak are determined by the state of the patient.

frequency of pathological tremor fluctuations of
human extremities [15]-[17]. Parkinson’s disease
is a serious neurological disorder with a broad
spectrum of symptoms. One of the most obvi-
ous and disabling symptoms is a large amplitude
and a low frequency tremor [40, 41]. Such peri-
odic structure is defined by a nonlinear signal and
multimodal (independent) oscillations [14].

Table 1. The interval of dispersion of the values
ε1(0) and the average value of the first point of the non-
Markovity parameter ε1(0)int and ε1(0)av.val under vari-
ous conditions of the experiment for the group of 16 sub-
jects. 1 - Deep brain stimulation, 2 - Medication. Condi-
tions are submitted according to the initial time series.

Value OFF OFF ON ON OFF ON ON OFF
ε1(0)int 1 - 1.8 1.5 - 8 2 - 22 2 - 18
ε1(0)av.val 1.41 3.17 5.31 4.14

Value 15 OFF 30 OFF 45 OFF 60 OFF
ε1(0)int 1.5 - 3 1.8 - 5 1.7 - 4.5 2 - 6
ε1(0)av.val 2.43 2.92 2.76 2.93

In Table 1 the interval of dispersion
(ε1(0)min ÷ ε1(0)max) of values ε1(0) and the av-

erage value (εav.val =
16∑
i=1

ε1(0)i/16) for the whole

group of subjects (for all 16 subjects) are shown.
Let us consider 2 conditions: (OFF, OFF) and
(OFF, ON). The interval of dispersion and the av-
erage value of parameter ε1(0) in the first case are
minimal. It means the presence of a high degree
of pathology of a physiological state of the patient
(see, Fig 1a). The value of the non-Markovity
parameter appreciably grows with application of
any method of treatment. The maximal value of
the non-Markovity parameter corresponds to the
condition ((OFF, ON): medication only is used).
The difference of ε1(0)av.val with medication and
without it (OFF, OFF) is 3.8 times (!). On the
basis of the comparative analysis of the given pa-
rameters the best method of treatment for each
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FIG. 3. The initial time series and the window-time behavior of the power spectrum of the TCF µ0(ω). Two
figures are submitted to illustrate the case of subject 2: stimulation and medication of the brain are not
applied. The change of regimes in the initial time series is reflected in the decrease of the tremor velocity
(regions 1, 2 and 3) and becomes visible as a sharp reduction of the power of spectrum µ0(ω) (see, the

1th, 12th, 17th windows for more detail).

individual case can be found. In our case for the
second patient it is a treatment by medication.
It is necessary to note, that this reasoning is true
only for the study of the component, determined
by the non-Markovity parameter (QT (ε); see, Eq.
(6)). The most trustworthy information about
the quality of treatment can be given by the total
quantitative factor QT which takes into account
other diagnostic factors (see, Eq. (8)).

Results of the calculation of the quantita-
tive factor QT are given in Table 2. The data are
submitted separately for the second patient and
for the whole group. Here QT (ε) is a contribution
to the quantitative factor, determined by the non-
Markovity parameter (see, Eq. (6)). QT is a total
quantitative factor (see, Eq. (8)), where ε(1) and
ε(2) are contributions, determined by the non-
Markovity parameter, for the tremor amplitudes
k(1), k(2). The total factor QT provides detailed
information about the quality of the treatment.

The present factor includes both the stochastic
component QT (ε) and the physiological (diag-
nostic) contribution QT (k) (it also speaks diver-
gences with component QT (ε)). QT (k) allows to
take into account those features of the system
which the component QT (ε) does not contain.
The calculation QT (k) is described in Section 4.
One can define the quality of the treatment by
means of QT . The positive value of the given
factor defines an effective method of treatment
(the greater the given factor, the more effective
is the method of treatment). For a separate pa-
tient and for the whole group the parameter QT

has the maximal value under condition of (ON,
ON). Thus, taking into account all the contribu-
tions, determined by the non-Markovity param-
eter as well as by the physiological factors it is
possible to tell, that the best method of treat-
ment is the combination of two medical meth-
ods: electromagnetic stimulation and medication.
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FIG. 4. The first point of the non-Markovity parameter ε1(ω) for the second subject under various conditions
of the experiment: (a)-deep brain stimulation off, medication off; (b)-deep brain stimulation on, medication on;

(c)-deep brain stimulation off, medication on; (d)-deep brain stimulation on, medication off; (e)-(h)-the
recording of rest tremor in the right index finger of the subject 15 (30, 45, 60) minutes after the stimulator was

switched off, medication off. The non-Markovity parameter at zero frequency ε1(0) has a special role. These
values (for example, 6.02 in the second case and 1.0043 in the last one) define the physiological state of the

second patient.

For the second patient under condition (15, OFF)
(see, Table 2) the factor QT has a negative value.
It testifies to the negative influence of the given
method of treatment on the organism of the pa-
tient.

6.2. Definition of the predictor of the
sudden changes in time series dynamics of the
tremor velocity

In this subsection the window-time behav-
ior of the non-Markovity parameter ε1(ω) for a
certain case (the second patient, two methods of
medical treatment are used) and the procedure
of localization of the relaxation parameters were
considered. These procedures allow to determine
specific predictors of the change of regimes in the
initial time records.

Table 2. The quantitative factor QT (ε) and the total
quantitative factor QT for the second patient and for the
whole group (16 subjects). 1 - Deep brain stimulation, 2
- Medication. mj = 1, pj = 1. Conditions are submitted
according to the initial time series.

The 2 patient
Value OFF OFF ON ON OFF ON ON OFF
QT (ε) - 1.756 2.556 0.785
QT - 2.654 2.013 1.763

Value 15 OFF 30 OFF 45 OFF 60 OFF
QT (ε) 0.291 0.438 0.041 0.017
QT -0.013 0.883 -0.004 0.856

The whole
group

Value OFF OFF ON ON OFF ON ON OFF
QT (ε) - 1.810 1.326 1.077
QT - 4.071 2.883 3.661

Value 15 OFF 30 OFF 45 OFF 60 OFF
QT (ε) 0.544 0.728 0.671 0.731
QT 1.473 1.734 1.624 1.742

The idea of the first procedure is that the
optimum length of the time window (28 = 256

Nonlinear Phenomena in Complex Systems Vol. 9, No. 1, 2006
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FIG. 5. The initial signal is the change of tremor velocity when the second patient is treated by two methods
and the window-time behavior of the first point of non-Markovity parameter ε1(ω). At the time of the sharp
change of the mode (sharp increase of tremor velocity) in the initial time series behavior (regions 1-7) gradual

decrease of the non-Markovity parameter up to the value of a unit (the 3th, 6th, 10th, 14th, 17th, 20th, 27th
windows) is observed. The decrease of the non-Markovity parameter begins 2-2.5 sec earlier of acceleration of

tremor on an initial series.

points) is found first. In the initial time series
the first window is cut out. For a given win-
dow (the array of points is from 1 to 256) the
construction of the frequency dependence of the
non-Markovity parameter is executed. Then the
second window is cut out (from point 257 to point
512) and the same procedure is repeated. In to-
tal 30 windows are constructed (see, Fig. 5). For
more detail see Ref. [32]. This construction al-
lows to find the local time behavior of the non-
Markovity parameter. At the critical moments
when the tremor velocity increases the value of
the non-Markovity parameter comes nearer to
unity. One can observe that the value of the non-
Markovity parameter starts to decrease by 2-2.5
sec before the increase of the tremor velocity.

The idea of the second procedure consists
in the following. One can consider the initial
data set and take an N-long sampling. We can
calculate local relaxation parameters λ1 for the
given sampling and carry out the operation of
”a step-by-step shift to the right”. Then we cal-
culate the local relaxation parameter λ1. After
that we execute one more ”step-by-step shift to
the right” and continue the procedure up to the
end of the time series. Thus the local parame-
ters (in the work one of them is considered) have
high sensitivity to the effects of intermittency and
of non-stationarity. Any non-regularity in initial
time series is reflected instantly in the behavior
of the local parameters. The use of this proce-
dure requires a choice of the optimal length of a
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FIG. 6. The change of the tremor velocity for the second patient (stimulation of the brain and medication are
not used) and the time dependence of the local relaxation parameter λ1(t). The procedure of localization allows

to find sudden changes of relaxation regimes of the researched system. The amplitude values of the local
relaxation parameter are in the region of the lowest tremor velocity. The change in the time behavior of the

parameter λ1(t) begins 2-3 sec earlier than the change of the regimes in the initial time series appears.

sampling which enables to receive most trustwor-
thy information. If a sampling is too short, noise
effects do not allow to obtain qualitative infor-
mation. Besides with a short length sampling we
have significant errors. On the other hand with
a great length of a sampling the local parameters
lose ”sensitivity” necessary for the study. As a
result of the study of local samplings of different
length we have received the optimal length which
makes 120 points, for more detail see Ref. [31].
In Fig. 6 the initial time record and the time de-
pendence of the local relaxation parameter λ1(t)
are submitted for one case. The change in the
time behavior of the parameter λ1(t) begins 2-
3 sec prior to the change of the regimes of the
time record of the tremor velocity. The increase
of speed of relaxation (λ1(t)) testifies to the de-
crease of the tremor velocity.

7. Conclusions

In the present paper we offer new physical
method of diagnosing and forecasting Parkinson’s
disease. It is based on the application of the sta-
tistical theory of discrete non-Markov stochastic

processes, the statistical non-Markovity parame-
ter and its spectrum. This approach allows to
define the difference between a healthy person
and a patient by means of numerical values of
the non-Markovity parameter. This observation
gives a reliable tool for the strict quantitative es-
timates for diagnosis and quantification of the
treatment of patients. As an example we have
considered the changes of various dynamic states
of patients with Parkinson’s disease. The quanti-
tative and qualitative criteria used for the defini-
tion of various physiological states of live systems,
allow to reveal new informational opportunities
of the statistical theory of discrete non-Markov
random processes. The new concept allows to
estimate quantitatively the efficacy and the qual-
ity of treatment of different patients with Parkin-
son’s disease. It makes possible the investigation
of various dynamic states of complex systems in
real time.

The statistical parameter of non-Markovity
ε1(0) bears in itself certain information on a phys-
iological state of a live system, that may be used
to diagnose and forecast a system state. In case of
Parkinson’s disease the variation of this parame-
ter defines the change of a physiological state of
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the system. The increase of the non-Markovity
parameter reflects the decrease of pathology and
improvement of the patient’s state. The decrease
of non-Markovity parameter defines a high de-
gree of pathological states of live systems. The
combined power spectra of the initial TCF µ0(ω),
the three memory functions of junior orders and
the frequency dependence of the non-Markovity
parameter carry in themselves the information,
which defines the degree of pathological varia-
tions in a human organism.

The new procedures (the window-time pro-
cedure and the procedure of localization) show
evident predictors of the change of the initial time
signal. The window-time behavior of the non-
Markovity parameter ε1(ω) reflects the increase
of the tremor velocity 2-2.5 sec earlier. It happens
when the non-Markovity parameter approaches a
unit value. The procedure of time localization of
the relaxation parameter λ1(t) reflects the relax-
ation changes of physiological processes in a live
system. The behavior of the local parameter λ1(t)
reacts to the change of relaxation regimes in the
initial time record 2-3 sec earlier. These predic-
tors allow to lessen the probability of ineffective
use of different methods of treatment.

General conclusions, which are taking into
account the total factor of the quality of treat-
ment QT (determined by parameter of non-
Markovity and by physiological factors), consist
in the following. If we consider the whole of
group of patients, the combination of two differ-
ent methods (medication, electromagnetic stim-
ulator) produce the most effective result (QT =
4.071) in comparison with the effect of medica-
tion or stimulation given separately. Used sepa-
rately, stimulation is more effective (QT = 3.661),
than the use of medication (QT = 2.883). In
some cases both medication and stimulation ex-
ert a negative influence on the state of the sub-
ject. The effectiveness of various medical proce-
dures and the quality of treatment can be esti-
mated quantitatively for each subject separately

with utmost precision. For the second patient
the best method of treatment is the combination
of two method of treatment (QT = 2.654). For
the given patient the separate effect of a medicine
(QT = 2.013) is more effective, than the separate
use of stimulation (QT = 1.763). The given con-
clusion corresponds to the results of work [15].
After the stimulator is switched off its afteref-
fect has an oscillatory character with character-
istic low frequency.

When estimating the quality of treatment,
we take into account the non-Markovity param-
eter (QT (ε)) only, the results will be a little dif-
ferent. It is due to the fact that the total factor
of the quality of treatment QT takes into account
the diagnostic (physiological) factors of the stud-
ied system.

In conclusion we would like to state that
our study gives a unique opportunity for exact
quantitative description of the states of patients
with Parkinson’s disease at various stages of the
disease as well as the treatment and recovery of
the patient. On the whole, the offered method of
study of live systems opens up great opportunities
for alternative analysis, diagnosis and forecasting
of the stochastic behavior of live complex system.
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