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Stochastic resonance vs. resonant activation
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Abstract. – The phenomenon of stochastic resonance by which it is possible to boost the
transduction of information by tuning into noise is experimentally and numerically contrasted
with the phenomenon of resonant activation, i.e. the occurrence of a minimal, averaged resi-
dence time at an optimal time-scale in the presence of barrier modulations. The experimental
system consists of a periodically modulated bistable colloidal Brownian dynamics. Interestingly
enough, the two phenomena may occur simultaneously in the same system, although typically
in quite different parameter regimes.

The application of a suitable dose of noise can significantly enhance the synchronization
of a system’s response to periodic signals. The most intriguing example for this is stochastic
resonance (SR) where the response of a nonlinear system to a periodic signal is optimized
by the presence of a certain amount of noise [1]. SR is a generic effect and has been experi-
mentally observed in digital devices and an abundance of physical systems [1–6]. In addition,
there emerges continuing evidence suggesting the role of SR for intrinsic use and function
in biological systems [7]. Another widely studied phenomenon manifesting the constructive
role of noise in physical systems is resonant activation (RA) [8–11]. Here, the cooperative
interplay between the barrier modulation process and thermal noise assisting barrier crossing
events can cause an enhancement of the reaction kinetics. As such, RA is a generic effect for
the barrier crossing dynamics of temporally modulated energy landscapes [8–14].

Despite the apparent similarity of SR and RA, it is important to realize a fundamental dif-
ference between the two phenomena: While in SR the constructive role of noise is to optimize
and synchronize the actual response when metastable states are periodically modulated [1,7]
the RA phenomenon maximizes the time-averaged escape rate over a time-modulated energy
barrier. Therefore, it is expected that a system’s response to a periodic signal generally cannot
be optimized simultaneously for SR and RA, but is either optimized for the strength of the
modulated response (at the expense of the transition rate) or for the optimal, shortest mean
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Fig. 1 – A) Two-dimensional probability distribution P (x, y) of a particle’s position in the static
double-well potential underlying the measurements. B) Cross-section of the potential at y ≈ 0µm
reconstructed from P (x, y) (symbols) with V (x) used in the simulations (line).

residence time (at the expense of the synchronization efficiency). Thus far, SR and RA are
typically treated separately in the literature. This is due to the fact that SR is usually exam-
ined as a function of the noise intensity, while RA is studied as a function of the characteristic
time scales which reign over the barrier modulation process, such as the correlation time scale
of the applied nonequilibrium noise [8–11]. It should also not go unnoticed that the strict
coherent external driving implies that SR results from a non-stationary process while typi-
cally the use of a stationary noise that is employed for RA causes a time-homogeneous escape
dynamics, possessing a stationary mean residence time [8–11]. Moreover, in SR the average
rate of escape for weak driving strengths typically decays monotonically, with respect to both
increasing driving frequency and increasing noise strength [15]. This result, however, may no
longer hold true in the regime of nonlinear response [16]. It is this situation, with our system
being driven at strong, but still subthreshold strengths which we shall address with this work.

Given the possibility that both phenomena can occur simultaneously, the objective of our
study is to contrast SR and RA for a driven stochastic metastable dynamics. In particular, we
demonstrate that RA is observed in the generic model system which is typically used to exam-
ine SR, i.e. a rocked, non-inertial (i.e. overdamped) bistable dynamics. This is achieved by
a comparative experimental and numerical investigation of the behavior of a heavily damped
particle in a periodically modulated bistable potential for different modulation frequencies.
Experimentally, the situation is realized with a colloidal particle which is subjected to a time-
dependent optical potential. The numerical study is performed by computer simulations of the
Langevin dynamics of a Brownian particle moving in a corresponding potential. Despite the
fact that SR and RA are observed in the same system, the conditions for both effects to occur
are distinct. Consequently, these effects are observed in different regions of parameter space.

Our experimental setup consisting of scanned laser tweezers, a sample cell containing a
colloidal suspension, and a video microscope was described in [6, 17]. For the measurements
presented here we used silica beads of diameter 2r = 1.57 µm. Figure 1A shows the two-
dimensional probability distribution P (x, y) of a particle fluctuating in a (static) double-well
potential created by two focussed laser spots. From the hopping process between the two wells
we determined the system Kramers time of TK ≈ 27 s. The symbols in fig. 1B present a cross-
section at y ≈ 0 µm of the potential determined from P (x, y) using the Boltzmann distribution.
From the experimentally imposed potential we can estimate the following parameters: 2x0 =
1.8 µm, ∆V = 3 kBT , Apot = 8kBT . These will be used below for our numerical simulations.
Herein, 2x0 denotes the separation of the static potential’s minima, ∆V is the barrier height for
the static potential and Apot the potential difference between the two minima in the maximally
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Fig. 2 – A) Sample experimental measurements of x(t) for TΩ = 0.5 s, 10 s, 60 s. B) Corresponding
histograms for the measured residence time distributions (RTD). The system is strongly driven around
85% of the threshold driving strength (as defined below eq. (3)).

tilted state of the modulated potential. Moreover, kB denotes the Boltzmann constant and T
is the temperature (room temperature in our case). The solid line in fig. 1B corresponds to
the function

V (x) = ∆V

[(
x

x0

)2

− 1

]2

(1)

which represents the static part of the double-well potential in the simulations. In the central
region which is relevant for the particle dynamics the experimental potential is described very
well by this function.

The basis for the analysis of our experimental data are the particle trajectories exhibiting
a bistable hopping dynamics. Figure 2A depicts typical sections of the trajectories for the
modulation times TΩ = 0.5 s, 10 s and 60 s, where the two potential wells were modulated
sinusoidally and in opposite phase, at approximately 85% of the threshold driving strength.
Here, it becomes already obvious that the mean time between particle jumps is larger both
for TΩ = 0.5 s and 60 s than for TΩ = 10 s while the jumps occur most regularly for TΩ = 60 s.
From these trajectories we determined the residence time distributions by applying thresholds
in order to allocate the continuous particle position to either the left or the right potential
well [1]. The threshold values were chosen as the positions ±x0 of the minima of the static
double-well potential. Figure 2B depicts the residence time distributions for TΩ = 0.5 s, 10 s
and 60 s. In case of a fast modulation, i.e. TΩ = 0.5 s, the particle experiences de facto an aver-
age double-well potential. The residence time distribution thus depicts no structure and decays
exponentially. For TΩ = 10 s the particle responds to the potential modulation which results in
a corresponding modulation of the transition probability. Escape events occur now more fre-
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Fig. 3 – Mean residence time MRT (upper panel) and the area P1 under the first peak of the residence
time distributions (lower panel) as a function of the driving angular frequency Ω for experimental (•)
and numerical (◦) results.

quently as compared to TΩ = 0.5 s and the residence time distribution displays a series of peaks
which are located at odd multiples of TΩ/2, in accordance with theory [1]. This peak structure
emerges naturally if we consider that a particle jumps most likely when the relevant potential
barrier assumes a minimum. Then, the new relevant potential barrier assumes its minimum
half a period later. So the preferred residence time is tres = TΩ/2. If the particle misses a “good
opportunity” to jump it has to wait for another (or multiple) TΩ. Finally, for TΩ = 60 s the par-
ticle jumps occur very regularly. In this case the condition for stochastic resonance, TΩ ≈ 2TK,
is approximately fulfilled and we observe just a single peak in the residence time distribution.

In order to characterize resonant activation in our system we computed the mean residence
time (MRT), i.e. the mean time the system dwells on one of the (symmetric) metastable states,
as a function of the modulation parameter TΩ. The resulting experimental values of the MRT
vs. the angular driving frequency Ω are depicted in the upper part of fig. 3 (full symbols).
The curve displays a pronounced minimum around Ω = 1 Hz. For Ω � ΩK (ΩK = 2π/TK)
the particle experiences a quasi-static potential with a time-averaged barrier height. With
decreasing frequency, the particle jumps preferentially when the barrier is smallest which
reduces the MRT by more than a factor of 2. For Ω � ΩK we reach the adiabatic case where
the MRT is given as the average of the mean residence times for all instantaneous potentials.

In order to compare the findings for the MRT with SR we need a measure that as well
depends on the time-scale of the driving, i.e. the period TΩ. Knowingly, the signal-to-
noise ratio is in leading order independent of the driving period and, moreover, the spectral
amplification measure [18] typically does not depict a pronounced resonance-like, bell-shaped
behavior vs. frequency at a fixed noise strength [1,18]. A more suitable quantifier for SR that
does sensitively account for the intrinsic synchronization feature of SR is the area P1 under
the first peak of the residence time distribution [19–21]. It typically exhibits a “bona-fide”-
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resonance-like behavior and it is computed here according to

P1 =
∫ 0.7TΩ

0.3TΩ

P (tres)dtres , (2)

where P (tres) is the (normalized) residence time distribution. Within this regime of integra-
tion and our choice of driving parameters, the role of the background can safely be neglected
(see fig. 2B). A preferred measure for synchronization would be the probability P (2) of finding
precisely 2 transitions of forward-and-backward escapes (or vice versa) per external driving
period [21]. Due to a lack of stability of the modulation frequency of ±10% in our performed
experimental time-series we cannot determine this quantifier faithfully. However, using nu-
merical simulations we confirmed that in our case P (2) depicts a peak at the same modulation
frequency Ω where also P1 shows a peak.

Our results for P1 are depicted in the lower part of fig. 3 (full symbols). Note that the angu-
lar driving frequencies where RA and SR occur are not identical. This becomes clear when we
compare the residence time distributions in fig. 2. The best synchronization between the mod-
ulation signal and the particle motion is achieved for TΩ = 60 s. However, although the particle
motion is less regular at TΩ = 10 s and the hopping events are distributed over many peaks in
the residence time distribution, the absolute timescale between jumps is shorter in this case.

In addition to our in situ experiments, we also performed Langevin simulations to study
the motion of an overdamped Brownian particle in a double-well potential. For the sake of
simplicity, we only considered a one-dimensional potential which has been demonstrated to
describe our experimental situation very well [17].

The time evolution of a particle moving in a double-well potential subjected to an external
periodic driving can be described in terms of the Langevin equation

η
dx(t)

dt
= −V ′(x) + A0 cos(Ωt + φ) + ξ(t). (3)

x(t) represents the particle’s position, ξ(t) is a Gaussian white process with zero mean and
autocorrelation 〈ξ(t)ξ(s)〉 = 2ηkBTδ(t−s), i.e. the Gaussian white noise arising from the heat
bath, and V (x) denotes the generic double-well potential defined in eq. (1). The external peri-
odic driving is introduced by the A0 cos(Ωt+φ) = A0 cos( 2π

TΩ
t+φ) term, in which Ω represents

the angular driving frequency, φ denotes the phase shift. A0 = Apot/2x0 = (
√

3/2)Athreshold

is the strength of the subthreshold driving force used in the experiments. Furthermore, η
denotes the friction coefficient.

Equation (3) was integrated by standard techniques of integration of stochastic differential
equation with respect to the Brownian motion [22]. Properties of the system were examined
by use of Monte Carlo techniques [23]. From the simulated ensemble of very long realizations
of the underlying asymptotic, nonstationary stochastic process in eq. (3) the residence time
distributions were evaluated and analyzed for various angular driving frequencies Ω.

The parameters of the potential and the modulation were adjusted in order to match
the experimental ones as discussed above. The friction coefficient η was estimated from
Stokes’ formula and then adjusted numerically in order to optimally fit the agreement between
experiment and simulation for the MRT. For all simulations presented here we used η =
1.7 × 10−8 kg s−1 which is slightly higher than the value estimated from Stokes’ formula [17].

As a characteristic quantifier of RA we have used up to here the MRT, as determined
from the long-time trajectories. We found very good agreement with our experimental results
depicted in fig. 3 (upper panel). The open symbols in fig. 3 depict the simulation results. The
error bars presented in the figure have been calculated using the bootstrap method [23].
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Fig. 4 – Mean residence time MRT as a function of the driving angular frequency Ω for sinusoidal (•
and ◦) and square-wave driving (� and �). Filled symbols represent the experimental findings, open
squares denote the numerical simulation results.

We would like to remark here that the concept of the MRT can be readily determined
from the corresponding stationary time-series of residence times of the simulations (after the
transients have quieted down). In contrast, for a time-dependent, nonstationary process the
concept of the mean first-passage time (MFPT) is not simply related to the MRT; this is so,
because the MFPT now depends (apart from the initial condition) also on the initial time
point (phase) of the forcing [24] with its mean value determined over a phase-dependent,
oscillating time-inhomogeneous first-passage time density.

Finally, we also investigated how the shape of the modulation signal affects the MRT. It
has already been demonstrated previously by numerical simulations that the MRT can vary
significantly, depending on the shape of the modulation signal [25]. Using not the identical
but similar parameters for the potential and its modulation as above, we performed a series
of experiments in order to compare the MRT obtained for a sinusoidal signal (• in fig. 4) with
the MRT for rectangular, square-wave driving (� in fig. 4). In the latter case the minimum
of the MRT is deeper and slightly shifted to smaller frequencies. Around Ω ≈ ΩK the particle
jumps occur mainly when the potential barrier is smallest. Since in case of rectangular driving
a small barrier is maintained over a longer time than for sinusoidal modulation with the same
frequency, this leads to a deeper minimum in the MRT curve. In the adiabatic limit, i.e.
at Ω � ΩK, the sinusoidal driving yields a smaller MRT because the average of the mean
residence times for all instantaneous potentials is smaller than for rectangular driving. For
Ω � ΩK the particle experiences an average potential and the MRT is independent of the shape
of the driving signal. The open symbols in fig. 4 correspond to Langevin simulation results
which show excellent agreement with the corresponding experimental data (filled symbols).

Conclusion. – Experimental and numerical studies evidence that stochastic resonance
and resonant activation can be observed in the very same system of an overdamped Brownian
dynamics that stochastically evolves in a periodically modulated double-well potential. We
have explicitly addressed the correlation between the two effects which despite certain similar-
ities probe rather different properties of the system dynamics. The detection of SR indicates
the high level of synchronization of the particle position with the external periodic driving
while the presence of RA indicates an optimal speed-up of the kinetics (i.e. the inverse of
the MRT) of the barrier crossing process. We demonstrated that with a strong sub-threshold
driving a single parameter (in our case the modulation frequency) is sufficient to optimize
the system either for SR or for RA. Yet another class of related systems that comes to mind
where this beneficial interplay between RA and SR crucially determines the physics are rocked
Brownian motor devices which are able to perform work against external bias forces [26].
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