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Abstract. We study magnetic fluxes and currents in mesoscopic systems of cylindrical
symmetry like rings, toroids and cylinders. We analyze the time evolution of the magnetic flux
and the characteristic time of a formation of the ordered state. We investigate how, starting
from some symmetric initial state, the magnetic flux or the current approach their corresponding
asymptotic state.

1. Introduction
Quantum phenomena manifested at the mesoscopic level have attracted much theoretical and
experimental attention [1]. Phase coherence and persistent currents in mesoscopic systems of
cylindrical symmetry can be mentioned as examples. Persistent currents predicted as early
as in 1938 [2] have been observed experimentally only since 1990 [3]. In this paper we study
the dynamics of magnetic fluxes and currents in mesoscopic cylinder under conditions when
dissipation and fluctuations can play an important role [4].

2. Evolution equation for the magnetic flux
We consider a collection of rings composed of individual current channels, which form a cylinder.
There are Nz channels in the direction of the cylinder axis and Nr in the direction of the cylinder
radius. We assume that the thickness of the cylinder wall is small as compared with the radius.
Because of the mutual inductance between rings, the current in one ring induces a flux in the
other rings. In turn, the flux induces a current, and so on. We assume that the rings are not
contacted. So, there is no tunneling of electrons among the channels and the charge carriers
moving in the different rings are independent. It has been shown [5] that the effective interaction
between the ring currents, when taken in the selfconsistent mean field approximation, results in
the magnetic flux φind = LItot felt by all electrons, where L is the cylinder inductance and Itot

is the total current in the cylinder. At temperature T > 0, the total magnetic flux φ consists of
a sum of the external flux φext and the flux φind stemming from the total current, which in turn
is a sum of the dissipative ’normal’ Ohmic current and the non-dissipative persistent current
resulting from the presence of the ’phase-coherent’ electrons in the system [4], i.e. it assumes
the form:

φ = φext + LItot = φext + L[Icoh(φ, T ) + Inor(φ, T )]. (1)
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Note that φext is induced by an external magnetic field and can either take a fixed value or it
can be a random function. Taking into account an explicit form of the ”normal” current, as it
follows from the Lenz’s and Ohm’s rules complemented with the Johnson-Nyquist noise term
[6], Eq. (1) takes the form [4]

1
R

dφ

dt
= − 1

L
(φ − φext) + Icoh(φ, T ) +

√
2kBT

R
Γ(t), (2)

where R is the resistance of the cylinder, kB is the Boltzmann constant and Γ(t) denotes a zero-
mean Gaussian delta-correlated white noise modeling Nyquist equilibrium current noise. This
equation takes the form of a classical Langevin equation and it constitutes our basic evolution
equation.

The dimensionless form of (2) reads [4]

ẋ = −V ′(x) +
√

2D Γ̃(t̃), (3)

where the dot denotes a derivative with respect to the rescaled time t̃ = t/τ0 with τ0 = L/R
being the relaxation time of the averaged normal current. The prime denotes a derivative
with respect to the dimensionless flux x = φ/φ0, where the flux quantum φ0 = h/e is the
ratio of the Planck constant h and the elementary charge e. The generalized potential reads
V (x) ≡ V (x, λ, i0, p, T ) = 1

2x2 − λx − i0F (x, p, T ), where λ = φext/φ0 is the rescaled external
flux. The prefactor is i0 = NLI0/φ0 with N = NzNr. The function F (x) ≡ F (x, p, T ) =∫

f(x, p, T )dx characterizes the coherent current and f(x, p, T ) = pfe(x, T ) + (1 − p)fo(x, T ),
where fe(x, T ) =

∑∞
n=1 An(T ) sin(2nπx) = fo(x − 1

2 , T ). The functions fe and fo describe the
coherent current flowing in the channel with an even or odd number of electrons, respectively
[7]. The amplitudes An(T ) are decreasing functions of temperature. Their explicit forms are
given in [4, 7]. The quantity p ∈ [0, 1] denotes the probability of the occurrence of the single
current channel with an even number of electrons. In the following we consider the symmetric
case, i.e. p = 1/2.

The dimensionless intensity D of rescaled Gaussian white noise Γ̃(t̃) ≡ √
τ0 Γ(τ0t̃) is

D = kBT/2ε0, where the characteristic magnetic energy ε0 = φ2
0/2L. Let us notice that the

resistance R does not enter into the rescaled equation (3). Moreover, the prefactor i0 depends on
the geometry and material of the sample [8]. Although formally the above equations can also be
applied to a single mesoscopic ring or toroids, we consider a cylinder because for such a system the
prefactor i0 in the effective potential can take sufficiently large value (because N = NzNr). We
choose the parameters of the system in such a way that the diffusion coefficient D ∼ 0.001T/T ∗

and i0 = 1. The characteristic temperature T ∗ is defined by the relation kBT ∗ = ∆F /2π2, where
∆F marks the energy gap at the Fermi surface. The values of parameters which occur in the
amplitudes An(T ) are the same as in [4, 8].

As it follows from (1), the total current Itot is linearly related to the magnetic flux φ (and to
the rescaled flux x). As a consequence, the properties and behavior of the current are identical
to the properties and behavior of the magnetic flux. Therefore, below we use equivalently these
two characteristics of the system. ¿From now on, we will use only the dimensionless variables
and omit the ’tilde’ for the rescaled time, t̃ ≡ t. Temperature will be measured in units of T ∗.

3. Dynamics of the magnetic flux
First, let us consider the deterministic case of the Langevin stochastic equation (3) formally
neglecting the Nyquist noise term Γ̃(t̃), i.e.,

ẋ = −V ′(x). (4)

322



The stationary solutions xs of (4), for which ẋs = 0, correspond to extrema of the generalized
potential V (x). The solutions xs of the gradient differential equation (4) are stable provided
they correspond to a minimum of the generalized potential and they are unstable in the case
of a maximum. For the case when the externally induced flux is zero we have λ = 0 and when
xs �= 0, the stable stationary states of the dynamical system (4) correspond to the so called
self-sustaining currents which can flow without any external driving [9].

The Langevin equation (3) defines a Markov diffusion process. Its probability density p(x, t)
obeys the Fokker-Planck equation [10]

∂

∂t
p(x, t) =

∂

∂x
V ′(x)p(x, t) + D

∂2

∂x2
p(x, t) (5)

with the natural boundary condition, i.e. lim|x|→∞ p(x, t) = 0.
The stationary solution ps(x) is asymptotically stable and ergodic, i.e. it does not depend on

the initial condition. Its explicit form is

ps(x) = N0e−V (x)/D (6)

with the normalization constant N0. The properties of steady-states were investigated in [4, 8].
In the following we study the time evolution of the probability density p(x, t) in the absence of
the external flux, λ = 0, and for the symmetric initial conditions. As an example, we assume
that the initial flux probability distribution is Gaussian, i.e. p(x, 0) = exp(−x2/2σ)/

√
2πσ with

σ = 0.005. The numerical solutions of the Fokker-Planck equation (5) are depicted below.
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Figure 1. The probability density of the
magnetic flux at several instants of time
measured in units of τ0. The temperature
is set at T = 1. The graph at t=10
and the asymptotic probability density are
indistinguishable.
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Figure 2. The Shannon information defined
by the equation (7)(main graph) and the
second derivative of the probability density
at zero (inset) as a function of time in units
of τ0 and different temperatures. The change
in sign of p(2)(0, t) indicates the formation of
the bistability.

Because the initial condition as well as the generalized potential are symmetric with respect
to the magnetic flux x, the averaged magnetic flux becomes < x(t) >= 0. ¿From the practical
point of view, the experimental results are accumulated around the most probable values which
correspond to maxima of the probability distribution p(x, t). In the stationary state, they
correspond to the minima of the generalized potential V (x). If the maximum xM of p(x, t) is
non-zero, it corresponds to the case of the self-sustaining current and an ordered state. In the
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stationary case and for the fixed values of parameters that we have assumed, the ordered states
exist only below some critical temperature Tc, for details see [8]. For the assumed values of
the parameters, Tc ≈ 1.66. In figure 1 we depict the time evolution of p(x, t) in the bistability
case when in the stationary regime two symmetric ordered states coexist, i.e. when ps(x) has
two symmetric maxima. One can observe the time-transition from the monostable state to the
bistable state. We can introduce some characteristic time tf of the formation of the ordered
states. It can be related to the time when the maximum of p(x, t) at x = 0 changes to the
non-zero value, xM �= 0. It leads to the definition of this characteristic time tf as the time
when p(2)(0, tf ) = 0, i.e. when the second derivative with respect to x at zero changes its
sign (note that for this definition the time tf depends on the initial condition). The initially
’concave-up’ function becomes ’concave-down’ at zero. We see that this time tf is an increasing
function of temperature, cf. figure 2. It tends to infinity when temperature tends to its critical
value, T → Tc. Above the critical temperature [4], there are no values of parameters which can
guarantee the change of sign of p(x, t) at x = 0. Let us notice that for vanishing temperature
the curve representing p(2)(0, t) approaches asymptotically zero. It is clear since at T = 0 the
asymptotic probability density of the flux is ps(x) = δ(x − xs)/2 + δ(x + xs)/2.

The quantity of interest is the entropy or the information gained or loosed during the
evolution. We investigate the time-evolution of the Shannon information defined by the relation

I[p](t) =
∫ ∞

−∞
p(x, t) ln(p(x, t))dx. (7)

The time evolution of the Shannon information belongs to one of three qualitatively different
classes. At larger temperatures, the information can be either an increasing or a decreasing
function of time, depending on the relation between the initial and asymptotic states. The
most interesting non-monotonic behavior appears at low temperatures. The initial information
lost connected with the formation of bistability is followed by the information gain originating
from the quasi-localization of the flux x in maxima of p(x, t). This localization is caused by a
relatively long escape time at low temperatures [4].

In conclusion, we have investigated the time evolution of the probability distribution of the
magnetic flux in a mesoscopic cylinder. For our chosen parameters, there is a critical temperature
below which ordered states can exist in the system. This bistability phenomenon corresponds to
the self-sustaining currents flowing in the system. For this case, we have defined the characteristic
time of formation of the ordered states. It is an increasing function of temperature and it diverges
as temperature approaches its critical value.
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