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Abstract

The noise-assisted, directed transport in a one-dimensional dissipative, inertial Brownian motor of the rocking type that

is exposed to an external bias is investigated. We demonstrate that the velocity–load characteristics is distinctly non-

monotonic, possessing regimes with a negative differential mobility. In addition, we evaluate several possible efficiency

quantifiers which are compared among each other. These quantifiers characterize the mutual interplay between the viscous

drag and the external load differently, weighing the inherent rectification features from different physical perspectives.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Brownian motors are small physical micro- or even nano-machines that operate far from thermal
equilibrium by extracting the energy from both, thermal and non-equilibrium fluctuations in order to generate
work against external loads [1–6]. They present the physical analogue of bio-molecular motors that also work
out of equilibrium to direct intracellular transport and to control motion and sensation in cells [7]. The most
popular models assume an overdamped Brownian dynamics [8–13]. In many situations, such as in biological
applications, such a simplification can be well justified from physical grounds. There exists several situations,
however, where the inertial effects are prominent [14,15]; being intrinsically the case for quantum Brownian
motors [16,17]. In this paper we will deal with inertial Brownian motors [18–25]. The underlying deterministic
dynamics can be chaotic [18,19,23,26,27] and thus it is distinctly more complex than its overdamped
counterpart [8,28]. Despite an abundance of research works dealing with numerous variants of Brownian
motors and Brownian ratchets [1–6], there remain still intriguing features awaiting to be discovered. This
present study is to the best of our knowledge the first work that considers the behavior of the noise-activated,
directed current of an inertial Brownian motor versus an external bias; thus yielding the velocity– load behavior

when inertial effects dominate. Here, we will demonstrate that a rocked, inertial Brownian motor degree of
freedom, if put to work against a load, can exhibit negative differential mobility. This striking phenomenon has
e front matter r 2006 Elsevier B.V. All rights reserved.

ysa.2006.04.086

ing author. Tel.: +49 821 598 3250; fax: +49 821 598 3222.

esses: Marcin.Kostur@physik.uni-augsburg.de (L. Machura), Hanggi@Physik.Uni-Augsburg.de (P. Hänggi).

www.elsevier.com/locate/physa
dx.doi.org/10.1016/j.physa.2006.04.086
mailto:Marcin.Kostur@physik.uni-augsburg.de
mailto:Hanggi@Physik.Uni-Augsburg.de


ARTICLE IN PRESS
M. Kostur et al. / Physica A 371 (2006) 20–24 21
been observed within a quantum mechanical setting for electron transfer phenomena [29] or for AC–DC-
driven tunnelling transport [30], in the dynamics of cooperative Brownian motors [31–33], Brownian transport
with complex topology (entropic ratchets) [34–39] and in some stylized, multistate models with state-
dependent noise [40,41], to name but a few.

Furthermore, we also investigate the efficiency for this forced Brownian inertial transport; in this case, it is
possible to devise and to compare several qualifiers characterizing the efficiency of energy conversion and of
rectification.
2. Biased, rocked inertial Brownian motor

Upon introducing an appropriate scaling of time and length (the details are elaborated in Ref. [24]) the
dynamics of a massive Brownian particle can be written in dimensionless form; i.e.,

€xþ g _x ¼ �V 0ðxÞ þ F þ a cosðotÞ þ
ffiffiffiffiffiffiffiffiffi
2gD

p
xðtÞ, (1)

where g denotes the friction coefficient, V ðxÞ ¼ V ðxþ 1Þ is a spatially periodic and asymmetric ratchet
potential (i.e., no reflection symmetry holds) with both, the period and the barrier height set equal to one. The
quantity F denotes the external, constant load force. Additionally, the particle is driven by an unbiased, time-
periodic force of amplitude a and angular frequency o. The interaction with the thermal bath is modeled by
white Gaussian noise xðtÞ with auto-correlation function hxðtÞxðsÞi ¼ dðt� sÞ, satisfying Einstein’s
fluctuation–dissipation relation. D stands for the re-scaled noise intensity and as such it is proportional to
the physical temperature.

For the ratchet potential V ðxÞ we choose a linear superposition of three spatial harmonics [24]; i.e.,

V ðxÞ ¼ V 0½sinð2pxÞ þ c1 sinð4pxÞ þ c2 sinð6pxÞ�, (2)

where V0 normalizes the barrier height to unity and the parameters c1 and c2 determine the specific ratchet
profile. Below, we analyze in detail the case when c1 ¼ 0:245 and c2 ¼ 0:04, yielding V0 ’ 0:461 . . . :
3. Rectification efficiency in presence of friction and load

The efficiency of a machine is defined as the ratio of the power P ¼ Fhvi done against en external force F

and the input power Pin, i.e., Z ¼ P=Pin. The same definition of efficiency of energy conversion was used for
Brownian motors [3–5,42,43]:

ZE ¼
Fhvi

Pin

. (3)

A grave disadvantage of such a characterization is that it yields a vanishing measure (i.e., ZE ¼ 0) in the
absence of a load force F. In many cases, however, like e.g., for protein transport within a cell, the Brownian
motor operates at a zero bias regime (F ¼ 0) and its objective is to carry a cargo across a viscous environment.
Clearly, the minimal energy input required to move a particle in presence of friction g over a given distance
depends on the velocity, tending to zero when we move it very slowly. If one is interested in delivering the
cargo in a finite time, one should require that the transport is accomplished at an average motor velocity hvi.
In this case, the necessary energy input is finite. Thus, we replace the load force in the expression (3) by the
viscous force ghvi to obtain the called Stokes efficiency [44]; i.e.,

ZS ¼
ghvi2

Pin

. (4)

Upon combining the two above given notions we recover the rectification efficiency originally proposed by
Suzuki and Munakata [45,46] or its equivalent version presented by Derenyi et al. [47]

ZR ¼
Fhvi þ ghvi2

Pin

. (5)
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It is made up of the sum of the efficiencies ZS and ZE . Therefore, it accounts for both, the work that the
Brownian motor performs against the external bias F as well as the work that is necessary to move the object a
given distance in a viscous environment at the average velocity hvi.

The average input power for a tilted rocking ratchet is given by [24,25,48]

Pin ¼ g½hv2i �D�. (6)

This expression follows from an energy balance of the underlying equation of motion (1) [24].

4. Numerical analysis

Focussing on the directed current, we investigate the asymptotic, time-periodic regime after effects of the
initial conditions and transient processes have died out. Then, the statistical quantifiers of interest can be
determined in terms of the statistical average over the different realizations of the process (1) and over the
driving period T.

Clearly, there exist no analytical methods of analyzing Eq. (1) in presence of inertia. Therefore, we
performed extensive, precise numerical studies by employing the Stochastic Runge–Kutta (SRK) algorithm of
order 2 with a time step h ¼ 10�3. For the initial conditions we used a uniform distribution of the initial
position xðt ¼ t0Þ at time t0 on an interval lying between two neighboring maxima of the ratchet potential
given in (2). The initial starting velocities vðt ¼ t0Þ were randomly chosen from an uniform distribution over
the interval ½�0:2; 0:2�. All quantities were averaged over 100 different trajectories, each of which evolved over
105 driving-periods T. For the investigation of the efficiency quantifiers defined in Section 3 above, we restrict
the discussion here to a set of optimal driving parameters, reading, a ¼ 3:7, D0 ¼ 0:001, o ¼ 4:9 and g ¼ 0:9
(see for the details in Refs. [24,25]).

4.1. Current– load behavior

In Fig. 1 we depict the load–velocity characteristics of the non-equilibrium Brownian motor dynamics (1).
Contrary to the familiar, usually monotonic dependence found for overdamped ratchet dynamics [1,28,49], the
velocity–load behavior becomes now considerably more complex, exhibiting distinct non-monotonic
characteristics. Around the forces F ’ �1:4 and 0 an increase of the bias F results in a corresponding
decrease of the average velocity. This behavior is termed negative differential mobility. The effect is extremely
pronounced in the neighborhood of F ¼ 0.

Let us elucidate the underlying working mechanism in greater detail: at a zero load the corresponding
deterministic dynamics possesses one stable attractor of period one (in velocity space, see in Ref. [25]) which
translocates the particle from one to the next potential well during one period T of driving. The particle moves
with a high Stokes efficiency as a consequence of small fluctuations of the velocity from its average value.
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Fig. 1. Average velocity of the inertial Brownian motor (1) as a function of an external, constant force F. The system parameters are:

a ¼ 3:7, o ¼ 4:9, g ¼ 0:9 and D ¼ 0:001. The dotted line denotes the average velocity of a particle moving in the absence of a periodic

potential, being the limiting case for the Brownian motor dynamics at F !1. One can note a few regimes where the differential mobility

(qhvi=qF ) assumes a negative value. The most pronounced such behavior occurs for small positive values of the bias F (depicted in the

inset). For bias forces F 2 ðF stall ; 0Þ, F stall ’ �0:074, the Brownian motor performs against the external load.



ARTICLE IN PRESS

0

0.25

0.5

0.75

1

Fstall -0.06 -0.04  -0.02 0

F

Fstall -0.06 -0.04  -0.02 0

F

0

0.02

0.04  

(a) (b)

Fig. 2. Behavior of different efficiency measures within the regime of ‘‘uphill motion’’. The efficiency of rectification ZR, the closely related

Stokes efficiency ZS , in panel (a), and efficiency of energy conversion ZE , panel (b), versus the external load F, varying between the stall

force F stall and the vanishing bias F ¼ 0 are depicted. The Stokes efficiency assumes much larger values than the corresponding energetic

one; it is therefore dominating the viscous, noise-assisted transport.
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A residence within this regime, however, requires that all system parameters are precisely tuned. A consecutive
increase of the external load F, regardless of its sign, drives the system away from this most efficient regime
and the average velocity starts dropping to small values. This is a result of the complex inertial dynamics
where a forcing of the particle into the direction of its motion diminishes, rather than increases the average
velocity. In contrast, at very large magnitudes of the load force F, the velocity assumes its asymptotic value,
reading hvi ¼ F=g.

4.2. Efficiency for forced, rocking Brownian motors

As we remarked already above, near the bias F ’ 0, the Brownian motor operates optimally. With Fig. 2(a),
we depict the behavior of the Stokes efficiency within an interval of bias forces F 2 ðF stall ; 0Þ where the motor
does work against the external force. The Stokes efficiency assumes a value around 0:75 at F ¼ 0, and
monotonically decreases, reaching zero at the stall force F stall , where the average velocity vanishes. In between,
F 2 ðFstall ; 0Þ, the ratchet device pumps particles uphill, cf. Fig. 1. The behavior of the rectification efficiency in
this regime closely matches the behavior of the Stokes efficiency. Indeed, within this forcing regime the
efficiency of energy transduction ZE assumes much smaller values, see Fig. 2(b). Within this forcing regime the
bell-shaped character of ZE is an immediate consequence of its definition in Eq. (3): it acquires vanishing
values of both, at the stall force, where the velocity becomes zero and at F ¼ 0, where the output power
vanishes. In this regime Pin varies only slightly.

5. Summary

Biased, inertial rocking Brownian motors can exhibit an intriguing velocity–load characteristics. We
discovered that the average velocity assumes a non-monotonic behavior as a function of the external load; i.e.,
in certain regimes of external forcing the differential mobility is negative-valued. Near small negative load
forces the rocked, inertial Brownian motor is able to perform ‘‘uphill’’-motion against the external force.
Within this regime the bell-shaped energetic efficiency ZE is distinctly smaller than the corresponding efficiency
of rectification and also smaller than the related Stokes efficiency. These latter two efficiencies clearly
dominate over conversion of energy within this very regime, where particles move against an externally
applied load.
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