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We present the analysis of the first passage time problem on a finite interval for the generalized Wiener
process that is driven by Lévy stable noises. The complexity of the first passage time statistics �mean first
passage time, cumulative first passage time distribution� is elucidated together with a discussion of the proper
setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-
Gaussian noises. The validity of the method is tested numerically and compared against analytical formulas
when the stability index � approaches 2, recovering in this limit the standard results for the Fokker-Planck
dynamics driven by Gaussian white noise.

DOI: 10.1103/PhysRevE.73.046104 PACS number�s�: 02.50.Ey, 05.10.Gg, 05.10.Ln

I. INTRODUCTION

Stochastic Lévy processes serve as paradigms for the de-
scription of many unusual transport processes leading to
anomalous diffusion as characterized by an anomalous mean
squared displacement, i.e.

��x�t� − �x�t���2� = ���x�2� � t�, �1�

which deviates with ��1 from the linear dependence
���x�2�� t that characterizes normal diffusion. In the above
formula � stands for the anomalous diffusion exponent that
specifies the process at hand as either behaving subdiffusive
�with 0���1�, superdiffusive �1���, or ballistic �for �
=2� �1–4�. Among the class of Lévy processes, the free Lévy
flights �LF� represent a special class of discontinuous Mar-
kovian processes, for which the mean squared displacement,
as defined in Eq. �1� diverges due to the heavy-tail distribu-
tion of the independent increments �x. In this case, the mean
squared displacement is always superdiffusive; i.e., ��x�t�
− �x�t���2�� t2/�, where 0���2 denotes the stability index
of the Lévy-Brownian motion process, see below in Sec. II.
In contrast to the spatiotemporal coupling characterizing
general forms of non-Markovian, or more precisely, semi-
Markovian �2� Lévy walks �LW� �1,3,4�, Lévy flights corre-
spond to the class of Markov processes that emerge from a
Langevin equation with � correlated, white Lévy noise. Be-
cause LFs typically possess a broad jump length distribution
with an asymptotic power law behavior their trajectories dis-
play at all scales self-similar clustering of local sojourns that
become interrupted by long jumps into the other location in
the phase space where a new clustering forms. Early discov-
eries of LF-like phenomena were related to intermittent cha-
otic systems and description of the motion of the fluid par-

ticles in fully developed turbulence �1–3�. Nowadays, their
applications range from description of the dynamics in plas-
mas, diffusion in the energy space, self-diffusion in micelle
systems, and transport in polymer systems under conforma-
tional motion �1,5� to the spectral analysis of paleoclimatic
�6� or economic data �7�. Despite the ubiquitous use of LFs
as phenomenological models for noise sources, their influ-
ence on the kinetics subjected to boundary conditions has
been addressed scarcely only. For free normal diffusion, the
knowledge of the Green function, together with the local
boundary conditions, is sufficient to determine the first pas-
sage time statistics. The same information can be also ob-
tained by use of the method of images or by solving the
corresponding, local boundary value problem of the diffusive
Fokker-Planck equation �8,9�.

In particular, for processes driven by white Gaussian
noise these boundary conditions for reflection or absorption
are locally defined and well known �9,10�. However, for the
case of LFs, the method of images fails, yielding results that
contradict the Sparre-Andersen theorem �11,12�. By virtue of
the latter �13�, for any discrete time random walk starting out
at x0�0 with the step length sampled from a continuous,
symmetric distribution, the first passage time density decays
asymptotically as t−3/2. In order to further explore the intri-
cate problem of proper boundary conditions for absorption
and reflection for non-Gaussian white noise composed of
independent Lévy flight increments, we elucidate with this
work the situation of a free, overdamped Lévy-Brownian
motion, being restricted to a bounded domain of attraction.

II. RESTRICTED LÉVY-BROWNIAN MOTION

We consider the free Brownian motion on a restricted,
finite interval that is driven by Lévy stable noise. More spe-
cifically, the dynamical evolution of a stochastic state vari-
able x�t� is described in terms of the Langevin equation

dx�t�
dt

= ��t� , �2�

where ��t� denotes a Lévy stable white noise process which
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is composed of independent differential increments that are
distributed according to the stable density with the index �;
i.e., L�,��� ;	 ,
=0�. Put differently, ��t� stands for the gen-
eralized white noise process which is obtained from the time
derivative of the corresponding Lévy-Brownian �Markovian�
stable process. The parameter choice �=2 yields the usual, �
correlated Gaussian white noise. In contrast, with 0���2
the corresponding Lévy white noise is generated from Lévy-
Brownian motion possessing discontinuous sample paths
with infinite variance and the higher cumulants. Its statistical
properties can be however characterized by fractional mo-
ments of order � which exist and are finite for ����2 �14�.
Because it is composed of independent increments, this Lévy
stable white noise also constitutes a singular white noise pro-
cess whose autocorrelation again is formally � correlated
�14�. Here, the parameter � denotes the stability index, yield-
ing the asymptotic power law for the jump length distribu-
tion being proportional to ���−1−�. The parameter 	 charac-
terizes a scale, � defines an asymmetry �skewness� of the
distribution, whereas 
 denotes the location parameter. We
deal only with strictly stable distributions not exhibiting a
drift regime; this implies a vanishing location parameter 

=0 throughout the remaining part of this work. For ��1, the
characteristic function ��k�=�−�

� eik�L�,��� ;	 ,
=0�d� of an
� stable random variable � can be represented by

��k� = exp	− 	��k��
1 − i� sgn�k�tan
�

2
�� , �3�

while for �=1 this expression reads

��k� = exp	− 	�k�
1 + i�
2


sgn�k�ln�k��� . �4�

The three remaining parameters vary within the regimes �
� �0,2�, �� �−1,1�, 	� �0,��.

The stochastic differential equation in �2� yields normal,
free Brownian motion when �=2, and free superdiffusion
when �� �0,2�. The numerical integration of Eq. �2� has
been performed by use of standard techniques of integration
of stochastic differential equation with respect to the Lévy
stable measures and studied by use of the Monte Carlo meth-
ods �15�. In particular, the error bars visible in the figures
were calculated using the bootstrap method. The position of
a Lévy-Brownian particle has been obtained by a direct in-
tegration of Eq. �2� leading to the following approximation
�16–21�

x�t� = 
0

t

��s�ds � �
i=0

N−1

��s�1/��i, �5�

where �i are independent random variables distributed with
the probability density function �PDF� L�,��� ;	 ,
=0� and
N�s= t. All our illustrations in this work are based on trajec-
tory calculations sampled from the Langevin equation �2�.
Absorbing boundary conditions have been realized by stop-
ping the trajectory whenever it reached the boundary, or,
more typically, it has jumped beyond that boundary location.
The condition of reflection has been assured by wrapping the
hitting �or crossing� trajectory around the boundary location,

while preserving its assigned length. The Appendix provides
some further details on the numerical scheme for stochastic
differential equations driven by Lévy white noise. We also
would like to emphasize that our results omit cases when �
=1 with ��0. In fact, this parameter set is known to induce
instabilities in the numerical evaluation of corresponding tra-
jectories �16–21�. Thus, for our numerics with ��0, the
parameter value �=1 has been excluded from the consider-
ation.

III. MEAN FIRST PASSAGE TIMES FOR � STABLE
NOISES

Our main objective is the investigation of the mean first
passage time �MFPT� of Lévy-Brownian motion on a finite
interval as illustrated with Fig. 1. The boundaries at both
ends will be assumed to be of either absorbing or also of the
reflecting type. With generally non-Gaussian white noise the
knowledge of the boundary location alone cannot specify in
full the corresponding boundary conditions for absorption or
reflection, respectively. In particular, the trajectories driven
by non-Gaussian white noise depict discontinuous jumps, cf.
Figs. 2 and 4 below. As a consequence, the location of the
boundary itself is not hit by the majority of discontinuous
sample trajectories. This implies that regimes beyond the lo-
cation of the boundaries must be properly accounted for
when setting up the boundary conditions. Most importantly,
returns �i.e., so termed recrossings of the boundary location�
from excursions beyond the specified state space back into
this very finite interval where the process proceeds must be
excluded. Thus, the problem of proper formulation of bound-
ary conditions in such cases poses an open challenge that has
not been addressed with sufficient care in the prior literature
�22,24�. In contrast to the case with normal diffusion
�i.e., when �=2, �=0�, these boundary conditions are of a
nonlocal nature; as a consequence, an analytical investiga-
tion of the mean first passage problem becomes very de-
manding and cumbersome. In this work, we therefore restrict
ourselves predominantly �for ��2� to detailed, precise nu-
merical simulations.

FIG. 1. Setup for the investigation of the first passage time
analysis of Lévy white noise driven free Brownian motion being
confined between the two boundaries located at B1 and B2,
respectively.
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The setup for the studies is schematically depicted in Fig.
1. The stochastic motion of a free Lévy particle is confined in
an interval specified by the two boundaries B1, B2. The dy-
namics of the LFs trajectories derived from Eq. �2� are con-
sequently confined to this state space in between B1 and B2.

A. The test case: normal diffusion

For �=2 �see Fig. 2�, white Lévy stable noise becomes
equivalent to Gaussian white noise and the corresponding
Langevin eqution �2� describes a free Brownian motion
�Wiener process� for which the probability density functions
�PDFs� of the first passage times distributions are known
explicitly from the literature �8,9�. Here, due to reasons of
convenience, instead of estimating the PDFs itself we simu-
late the equivalent cumulative distribution functions �CDFs�
of first passage times. For the sake of simplicity it has been
assumed that the left boundary is located at x=0 and the
other one at x=L. In the following we typically use, although
not exclusively, for the initial condition, x0, the center of the
interval, x0=L /2. In the case when both B1 and B2 are ab-
sorbing boundaries, denoted as AA, the cumulative distribu-
tion function F of first passage times has been obtained by
integration of the first passage time density f�t�, i.e., F�t�
=�0

t f�t��dt� �8–10�

F�t� = 1 −
2


�
j=1

�
1 − cos j

j
sin

jx0

L
exp	− 
 j	

L
�2

t� .

�6�

Analogously, for a left absorbing boundary �A� and a reflect-
ing right boundary �R�, denoted as AR, the corresponding
CDF of first passage times reads �8–10�

F�t� =
4


�
j=0

�
1

2j + 1
sin

�2j + 1�
2

cos
�2j + 1��L − x0�

2L

��1 − exp	− 
 �2j + 1�	

2L
�2

t�� . �7�

Finally, for a left reflecting boundary �R� and a absorbing
right boundary �A�, denoted as RA, the corresponding CDF
of first passage times reads �8–10�

F�t� =
4


�
j=0

�
1

2j + 1
sin

�2j + 1�
2

cos
�2j + 1�x0

2L

��1 − exp	− 
 �2j + 1�	

2L
�2

t�� , �8�

where the scaling parameter 	 stands for the amplitude of the
noise intensity for the additive white Gaussian noise; i.e.,
���t���s��=2	2��t−s�. Note, that for a particle starting its
motion at x0=L /2, F�t� for a RA boundary setup is the same
as for the symmetrically chosen AR situation, cf. the formu-
las above. To test our employed software, we evaluated nu-
merically the first passage times distributions with the same
boundary conditions as specified above. Equation �2� has
been integrated numerically for B1=0, B2=5, x0=3.5 with
�t=10−5 and averaged over N=3�104 realizations. Figure 3
depicts the numerical results along with their corresponding
analytical expressions for the corresponding compound dis-
tribution functions �CDFs� of first passage times for a Lévy-
Gaussian case ��=2�. We find a perfect agreement between

FIG. 2. Left panel: Typical sample trajectories of confined, nor-
mal diffusion, i.e., �=2, with two absorbing AA boundaries. Right
panel: Confined normal Brownian motion between a left-sided re-
flecting boundary �R� and a right-sided absorbing boundary �A�,
denoted as RA in the text. The particles start out at midpoint x /L
=0.5, undergoing state-continuous stochastic motion with evolving
time t.

FIG. 3. First passage time statistics for free normal diffusion
��=2� occurring between two boundaries located at x=0 and x=5.
The cumulative first passage time distribution F�t� is depicted ver-
sus the first passage time variable t. The initial motion starts out at
x0=3.5 and the noise strength is 	2=5. The chosen time step is
�t=10−5 and the results have been averaged over N=3�104 real-
izations. The simulation results are presented for AA, RA, and AR
configurations �from the top to the bottom� along with lines repre-
senting the analytical formulas for these cases. The numerical data
match perfectly the analytical results, plotted on superimposed
lines. The inset depicts this agreement on an extended time span up
to time t=20.
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the theoretical and the numerical results. On purpose, we
have chosen here an asymmetric starting point in order to
impose an explicit difference between the AR and the corre-
sponding RA setup, respectively.

B. Confined Lévy-Brownian motion

After having tested the numerical algorithm, we next
study the mean first passage time for confined Lévy-
Brownian motion on a finite interval.

1. MFPT for symmetric Lévy noise

Using the discussed simulation procedure we start out
with the case of confined Lévy-Brownian motion with
symmetric stable Lévy noise, i.e., we set �=0. Exemplary
trajectories are depicted in Fig. 4. for the stability index �
=1.4. In clear contrast to normal Brownian motion we detect
discontinuous jumps, characterizing random jumps over
large distances �note the horizontal excursions in Fig. 4�. As
a consequence, the boundaries at B1, B2 are typically not hit,
but rather crossed in a flightlike manner, being characteristic
for Lévy distributed jumps. In fact, for ��2 large excur-
sions of the trajectory are more probable than for normal
Brownian motion. In effect, a test “particle” can skip over
the border, i.e., it can escape from the domain of motion via
a single jump.

As discussed in the literature �1,3,11�, the scaling nature
of the jump length PDFs causes a clustering of Lévy flights.
Random localized motion is occasionally interrupted by long
sojourns on all length scales and, additionally, there are clus-
ters of local motion within clusters. Anomalous trajectories
of Lévy flights with stability index ��2 influence also the
boundary condition for the mean first passage time and its
corresponding statistics.

From the perspective of a random walk approximation to
the Langevin equation in �2�, the behavior of a Lévy walker

is drastically different for Lévy jump length statistics as
compared with a traditional Gaussian case: The increments
of the normal �state continuous� diffusion process x�t� are
characterized by statistics which excludes with very large
probability the occurrence of long jumps. Therefore, the
walker is more probable to approach, and eventually hit, a
pointlike boundary �cf. Fig. 2�. In contrast �see Fig. 4�, with
the Lévy jump statistics ���2�, a meandering particle may
easily cross the local boundary during its long jump and may
recross into the finite interval many times, unless the particle
is immediately absorbed upon crossing for the first time the
boundary B1 or B2, respectively. This brings about a formu-
lation of the boundary condition that necessarily must be
nonlocal in nature.

Indeed, the first passage time problem for Eq. �2� can also
be rephrased in terms of the fractional Fokker-Planck equa-
tion �11,25–29�. For a free Lévy-Brownian motion this equa-
tion with �=0 assumes the form

�p�x,t�
�t

= 	� ��

��x��
p�x,t� . �9�

The boundary conditions for the first passage time problem
associated with two absorbing boundaries at B1 and B2 are
now nonlocal; reading

p�x,t� = 0 for x � B1 and p�x,t� = 0 for x � B2.

�10�

Due to discontinuous character of trajectories of Lévy pro-
cesses we note that the usual form of boundary conditions,
i.e., p�x=0, t�=0 and p�x=L , t�=0, incorrectly employed in
the literature �22,24,30,31� is expected to lead to erroneous
results; such a boundary condition does not account for the
fact that the process can skip the location of the boundary
without hitting it. The corresponding MFPT can be numeri-
cally integrated, yielding

MFPT = 
0

�

− tdt
B1

B2

ṗ�x,t�dx , �11�

which after a partial integration equals

MFPT = 
0

�

dt
B1

B2

p�x,t�dx . �12�

This expression has been tested versus the statistical defi-
nition based on histogram analysis of the corresponding tra-
jectories Eq. �2�, for which the appropriate boundary condi-
tions were imposed.

Likewise, we also have studied the case where one of the
two boundaries becomes reflecting. The reflecting boundary
is imposed on the trajectory simulations via an infinite high
hard wall, yielding immediate reflection �32�. For the nu-
merical implementation of this reflecting case see below Eq.
�5�. In Fig. 5 we compare our numerical results for the case
of two absorbing boundaries, case AA, and as well, for the
symmetric situation, AR=RA, of a reflecting boundary and
an absorbing boundary with the initial starting value chosen
at midpoint.

FIG. 4. Sample trajectories for AA �left panel� and RA �right
panel� with the two boundaries located at B1=0 and B2=L for sym-
metric Lévy flights with �=1.4, �=0. For ��2 large excursions of
the trajectory are more probable than for the normal Brownian mo-
tion. A test “particle” can skip over the border, i.e., it can escape
from the domain of motion with a single jump.
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Figure 5 depicts the numerical results for the MFPT for
symmetric Lévy stable noise after implementing numerically
the appropriate boundary conditions as discussed above. In
the left panel of Fig. 5 the numerical results for the MFPT
are compared with the theoretical findings for the MFPT
�T in this superdiffusive case, reading from Eq. �39� in
Refs. �22,23�

T =
4

D�

 L


��

�
m=0

�
�− 1�m

�2m + 1�1+� , �13�

where D�=	�.
The maximal MFPT is assumed for ��1. The behavior

of the MFPT assumes a bell-shaped behavior around �=1; it
reflects the different interplay of the probability of finding
long jumps versus a decreasing stability index ��2, imply-
ing a decreasing noise intensity 	�. Put differently, the oc-
currence of long jumps beyond the finite interval is dominat-
ing the escape over a decreasing noise intensity for
��1.

The expected discrepancy between these analytical results
and numerical estimation is due to assumed local boundary
condition of vanishing probabilities p�x=0�= p�x=L�=0,
which are correct only for normal Brownian motion; i.e., �
=2. Indeed, our numerical result just coincides precisely at
this very special value. In our simulation of the Langevin
equation in �2� the whole exterior of the prescribed interval
�B1=0, B2=4� is absorbing throughout, while for the analyti-
cal calculations the flawed, pointlike boundary conditions are
assumed �22�.

Clearly, the extension of the absorbing regime to the
whole two semilines outside the confining interval yields the

physically correct value that accounts for the escape of the
particle from the interval via long jumps. The numerical re-
sults for ��2 systematically exceed the theory result of Ref.
�22�.

The right panel of Fig. 5 depicts the case for the MFPTs
with AR and RA boundaries, respectively. Due to symmetric
chosen initial condition and the symmetric stochastic driving
the results for AR and RA become identical.

2. MFPT for asymmetric Lévy noise

Asymmetric Lévy noise is characterized by a nonvanish-
ing skewness parameter ��0 �see the exemplary probability
density functions in Fig. 6�. Figure 7 presents the results of
MFPT evaluations for fully asymmetric Lévy stable noise
driving with ���=1. The left panel displays results for the
Lévy-Brownian motion with �=1 within the AA boundaries
setups. Due to the imposed symmetry of a starting point, the
results coincide with those for the Lévy noise driving with
�=−1. The right panel depicts the results for AR boundaries
with �= ±1. As can be inferred by inspection of Fig. 6, due
to the skewness character of the Lévy stable distribution, the
results for AA boundaries with ��1 and �=1 are the same
as for AR boundaries with ��1 and �=−1. The effect is
caused by a visible shift of the probability mass apart from
x=0 to the left �or to the right� for skewed distributions with
��1. In contrast, these results differ for ��1 where both
boundary setups, i.e., AA and AR, lead to different values for
MFPTs.

As can be intuitively expected, the cumulative first pas-
sage time distributions �CDFs� of the first passage times as
governed by Eq. �2� for the AA boundaries with a symmetric
starting point, i.e., x0=L /2, are invariant under the transfor-
mation �→−�. Therefore, the quantities derived from the

FIG. 5. Mean first passage time versus the stability index � of
confined Brownian motion driven by stable symmetric Lévy noise.
We depict the case of two absorbing boundaries, AA �left panel�,
and the situation of a reflecting and absorbing barrier, AR /RA �right
panel�. The initial starting point has been chosen at midpoint x0

=2, yielding identical results for AR and RA, respectively. The
simulations parameters are: �=0, 	=�2, time step �t=10−4, num-
ber of realizations N=2�104. The boundaries are located at B1

=0 and B2=4. The theory result from Ref. �22� �Eq. �39� therein� is
plotted as a dashed line.

FIG. 6. Probability density functions for the � stable variables x
with �=1.5 �left panel� and �=0.9 �right panel�. The symmetric
case is for �=0, while �= ±1 corresponds to asymmetric densities.
Note the differences in the positions of the maxima for ��1 and
��1. Most importantly, the support of the densities for the fully
asymmetric cases with �= ±1 and ��1 �right panel� is covering
not the whole axis; it assumes only negative values for �=−1 and
only positive values for �=1. This in turn causes the discontinuous
behavior depicted with Fig. 7.
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numerically determined CDFs are symmetric around �=0,
cf. the left panel of Fig. 8. Furthermore, because of the cho-
sen symmetric initial conditions the cumulative first passage
time distributions evaluated for the RA boundaries setup can
be constructed from the appropriate distribution for the AR
case by exchanging � with −�. It is caused by the fact that
the asymmetry induced by a nonzero skewness parameter
can be compensated by an exchange of boundaries, cf. right
panel of Figs. 8 and 6.

C. First passage time statistics

The simulation data for the mean first passage time yield
as well the results for the cumulative first passage time dis-
tribution functions �CDFs�. Typical such distributions are de-
picted in Fig. 9 for symmetric � stable noise and in Fig. 10

for asymmetric stable Lévy white noises with a stability in-
dex �=1.5. With symmetric noise we observe that the es-
cape, starting out at midpoint, is speeded up with two ab-
sorbing boundaries AA as compared to the situation with
AR=RA. The reflecting boundary clearly slows down the ul-
timate escape from the finite interval.

For escape driven by asymmetric white Lévy noise, see
Fig. 10, we note that for the case of two absorbing bound-
aries AA �left panel� the CDFs become identical for �=−�,
given the midpoint starting value. We also can detect a more
rapid saturation with ��0 as compared to the fully symmet-
ric situation with �=0; implying a somewhat faster escape
scenario. This fact originates from the skewness in the dis-
tribution of jump values, implying a faster escape towards
the corresponding absorbing boundary.

With an AR boundary setup the situation becomes more
intricate. Now, depending on the choice of the asymmetry
parameter the escape can be enhanced, reflecting the skew-
ness of the corresponding stable distribution and the relative
character of the boundary setup.

This complexity is elucidated further in panel 11 for the
case of stable Lévy-Smirnoff noise where �=0.5, �=1. The
CDF F�t� is depicted in Fig. 11. For ��1 and ���=1 Lévy
stable distributions are totally skewed, taking on either only
positive values ��=1� or negative values only �=−1. There-
fore, the results for ��1 and ���=1 for AA boundaries are
the same as for AR ��=−1� or RA ��=1� boundaries. This
effect is clearly visible for the Lévy-Smirnoff case depicted
in Fig. 11. Now, the results for AA and RA boundaries are the
same, as expected. A similar behavior is observed in Fig. 7
above, where the values of the MFPTs for ��1 for AA and
AR boundaries agree.

FIG. 7. MFPTs versus the stability index � for asymmetric Lévy
noise for different boundary conditions: AA �left panel�, AR �right
panel�. The simulations parameters are as in Fig. 5. Note that the
results for the AR setting with �=−1 and ��1 are the same as for
the AA settings with �±1 and ��1.

FIG. 8. MFPTs versus the skewness parameter � for AA �left
panel� and AR �right panel� boundaries for Lévy-Brownian motion
with �=0.5. The simulations parameters are like in Fig. 5.

FIG. 9. Cumulative first passage time distribution function for
symmetric Lévy-Brownian motion on a restricted interval, i.e., �
=0, with �=1.9,1.0,0.5 for AA �left panel� and AR �right panel�
boundaries. The results have been simulated for 	=�2, �t=10−4

and have been averaged over N=2�104 realizations. The bound-
aries B1, B2 are located at x=0 and x=4. The particle starts out at
midpoint; i.e., x0=2.
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1. Survival probability: Comparison with Sparre-Andersen
scaling

The survival probability S�t�=1−F�t� for symmetric
Lévy-Brownian motion on the finite interval is displayed in
Fig. 12. The motion on a confined support leads to an expo-
nential decay of the survival probability with the steepness of
the slope depending on the stability index �. Notable differ-
ences can be observed for various boundary setups: For mo-
tion occurring between two absorbing boundaries, the sur-
vival probability decays faster than for the case when one of
the boundaries is taken as reflecting. It is also useful to em-
phasize that deviations from the exponential behavior of the
survival probability can be observed in systems subjected to
both, dichotomic and Lévy stable noises �33,34�, respec-
tively.

Finally, for the systems driven by Lévy stable noises we
also tested the Sparre-Andersen scaling behavior on an infi-
nite half line. According to the Sparre-Andersen theorem
�13� for a free stochastic processes driven by symmetric
white noises, the first passage time densities f�t�= dF

dt =− dS
dt ,

process from the real half line asymptotically behave like
t−3/2. Consequently the survival probability, i.e., the probabil-
ity of finding a particle starting its motion at x0�0 in the real
half line, scales like t−1/2. In Fig. 13 the survival probability
S�t�=1−F�t� is depicted for various stability indices � and
various initial conditions x0. It is clearly visible that the sur-

FIG. 10. Cumulative first passage time distri-
bution function versus first passage time t for
Lévy noises with �=1.5 and �=−1.0,0.0,1.0 for
AA �left panel� and AR �right panel� boundaries.
The simulations details are the same as in Fig. 5.
Note that the results for the AA settings with �
= ±1 overlap.

FIG. 11. The cumulative first passage time distribution F�t� ver-
sus first passage time t for Lévy-Smirnoff driven Lévy-Brownian
motion, i.e., �=0.5 and �=1 and a scale parameter 	=�2. Because
the Lévy-Smirnoff statistics assumes only positive values the distri-
butions F�t� for AA and RA configurations become the same. The
simulations parameters are as in Fig. 5.

FIG. 12. Survival probability S�t�=1−F�t� for confined, sym-
metric Lévy-Brownian motion �=0 on the interval B1=0, B2=4
with absorbing half line for x�0 and absorbing �or reflecting� half
line for x�4 for various values of the stability index � and mid-
point initial conditions at x0=2. The left panel depicts the results for
AA boundary setups; the AR cases are displayed with the right
panel. The solid line in both data sets represents the power law t−1/2

which describes an asymptotic behavior foreseen by the Sparre-
Andersen theorem �13� for diffusion on semi-infinite intervals.
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vival probability S�t� behaves like a power law with the ex-
ponent �−1/2�, as predicted by the Sparre-Andersen theo-
rem. For the testing of the Sparre-Andersen theorem the
whole negative half line was assumed to be absorbing.

IV. CONCLUSIONS

With this work we investigated the problem of the mean
first passage time and the first passage time statistics for
Markovian, Lévy-Brownian motion proceeding on a finite
interval. The intricate problem of setting up the proper
boundary conditions for absorption and reflection are dis-
cussed with possible pitfalls being pointed out. In particular,
it has been demonstrated by numerical studies that the use of
the commonly known, local boundary condition of vanishing
flux �in case of reflection� and vanishing probability �in case
of absorbtion�, valid for normal Brownian motion �i.e., �
=2� no longer apply for Lévy white noise. This is so, because
the large, jump like excursions of Lévy flight increments
causes non-continuous, i.e., discontinuous sample trajecto-
ries. This in turn requires the use of nonlocal boundary con-
ditions. It is presently not known how these nonlocal bound-
ary conditions can be recast as in equivalent form as a
modified, locally defined differential condition involving the
statistical quantities of interest �the MFPT and the first pas-
sage time densities� at the location of the boundary alone
�35,36�.

For symmetric, � stable Lévy white noise driven Brown-
ian motion we find a bell shaped, nonmonotonic behavior of
the MFPTs for absorbing-absorbing boundaries, with the
maximum being assumed for �=1. In contrast, for
reflecting-absorbing boundaries we find a monotonic in-
crease. With asymmetric Lévy white noise, i.e., with a non-
vanishing skewness parameter ��0 the MFPT results in an
even more complex behavior. As a function of the stability

index � the MFPT can exhibit a discontinuous behavior, see
the right panel in Fig. 7.

In addition we have studied also the statistics of the first
passage times in terms of the cumulative first passage time
distribution function �CDF� and the corresponding survival
probability. In this context, we also belabor the role of a
finite support and different boundary setups for Lévy white
noise driven Brownian motion for the universal scaling law
of Sparre-Andersen. While the restricted Lévy-Brownian
motion exhibits an exponential behavior on finite intervals,
the crossover to the universal t−1/2 power law, being valid on
the half line for all stability indexes is assumed for large
intervals only.
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APPENDIX: � STABLE RANDOM VARIABLES

The random variables � corresponding to the characteris-
tic functions �3� and �4� can be generated using the Janicki-
Weron algorithm �16,17�. For ��1, their representation
reads

� = D�,�,	
sin���V + C�,���

�cos�V��1/� 	 cos�V − ��V + C�,���
W

��1−��/�

,

�A1�

with the constants C, D given by

C�,� =

arctan	� tan
�

2
��

�
, �A2�

D�,�,	 = 		cos�arctan	� tan
�

2
����−1/�

. �A3�

For �=1, the random variable � can be calculated from the
formula

� =
2	

 �


2
+ �V�tan�V� − � ln�



2
W cos�V�



2
+ �V �� .

�A4�

In the above equations V and W denote independent random
variables; namely, V is uniformly distributed in the interval
�− 

2 , 
2

� while W is exponentially distributed with a unit mean
�16�. The numerical integration scheme has been performed

FIG. 13. Survival probability S�t�=1−F�t� for free Lévy flights
on the half line with absorbing boundary for x�0 for various val-
ues of stability index � and various initial conditions x0. Remaining
simulation parameters like in Fig. 5. The survival probability nicely
fits t−1/2 slope predicted by Sparre-Andersen scaling.
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for 
=0 with the increments of �x �see Eqs. �2� and �5��
sampled from the strictly stable distributions �19�.

The analytical expressions for stable probability distribu-
tions L�,��� ;	 ,
� are known in few cases only: For �=0.5,
�=1 the resulting distribution is the Lévy-Smirnoff one; i.e.

L1/2,1��;	,
� = 
 	

2
�1/2

�� − 
�−3/2exp
−
	

2�� − 
�� .

�A5�

In contrast, for �=1, �=0 one obtains the Cauchy
distribution

L1,0��;	,
� =
	



1

�� − 
�2 + 	2 . �A6�

The familiar case with �=2 with arbitrary � yields the
Gaussian PDF. The prominent characteristic feature of the
distributions L�,��� ;	 ,
� is its existence of moments up to
the order �, i.e. the integral �−�

� L�,��� ;	 ,
���d� is finite.
This statement results in the conclusion that the only
stable distribution possessing a finite second moment is the
Gaussian; for all other values of � the variance of a stable
distribution diverges, and for ��1 even the first moment
does not exist.
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