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Abstract

Regular and stochastic behavior in the time series of Parkinsonian pathological tremor velocity is studied on the basis of

the statistical theory of discrete non-Markov stochastic processes and flicker-noise spectroscopy. We have developed a new

method of analyzing and diagnosing Parkinson’s disease (PD) by taking into consideration discreteness, fluctuations, long-

and short-range correlations, regular and stochastic behavior, Markov and non-Markov effects and dynamic alternation

of relaxation modes in the initial time signals. The spectrum of the statistical non-Markovity parameter reflects Markovity

and non-Markovity in the initial time series of tremor. The relaxation and kinetic parameters used in the method allow us

to estimate the relaxation scales of diverse scenarios of the time signals produced by the patient in various dynamic states.

The local time behavior of the initial time correlation function and the first point of the non-Markovity parameter give

detailed information about the variation of pathological tremor in the local regions of the time series. The obtained results

can be used to find the most effective method of reducing or suppressing pathological tremor in each individual case of a

PD patient. Generally, the method allows one to assess the efficacy of the medical treatment for a group of PD patients.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction. Parkinson’s disease

Recently, much effort has been made in searching new alternative methods of diagnosing, treating and
preventing severe diseases of central nervous and locomotor systems. Among them, Parkinson’s disease (PD)
is one of the most serious illnesses. PD, was called so by the French neurologist Pierre Marie Charcot in the
19th century to honor Dr. James Parkinson, who first described the disease in 1817. Dr. Parkinson presented
the account of the observation results made, about six patients in his book An essay on the shaking palsy.
e front matter r 2006 Elsevier B.V. All rights reserved.
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The present paper deals with two physical methods used in combination to analyze, diagnose and treat PD.
The possibilities of the methods are assessed and compared. The comparison allowed us to add extra
information about the behavior of PD pathological tremor physical parameters.

The first method is based on the notions and concepts of the statistical theory of discrete non-Markov
stochastic processes [1,2]. The method is connected with the studies of statistical non-Markov effects, long-
and short-range statistical memory effects, regularity and stochastic behavior effects, and dynamic alternation
of relaxation modes in the patient in various dynamic states. The study of non-Markov effects in complex
systems in biology [3–6], physics [6–9], seismology [10,11], and medicine [2,12–14] is of special interest for
correlation analysis. The scale of time fluctuations, long-range effects, discreteness of various processes and
states, and the effects of dynamic alternation in the initial time series are important role in this respect. The
discreteness of experimental data, statistical effects of long- and short-range memory and the constructive role
of fluctuations and correlations can be used to obtain information about the properties and parameters of the
system under study. Within this method, a set of quantitative and qualitative parameters allows one to
determine typical distinctions between the natural and after treatment states of a patient, describes a detailed
variation in patient’s pathological tremor, and helps to choose the most effective treatment of separate
patients and statistical groups.

The second method, flicker-noise spectroscopy (FNS), is a general phenomenological approach to the
analysis of the behavior of complex nonlinear systems. It is designed to extract the information
contained in chaotic signals of various natures: time series, spatial series, and complex power spectra
produced by the systems. Within the FNS method, the series of various irregularities (spikes, jumps,
discontinuities of derivatives of various orders) of the dynamic variables of a system at all levels of its temporal
and spatial hierarchy are analyzed to extract the information that can help to predict the behavior of the
system. The use of irregularities in the dynamic variables as the information basis or ‘‘colors’’ of the FNS
methodology enables us not only to classify all the information contained in the chaotic series in the most
general phenomenological form, but also to extract distinctively any desired portion of this information. The
FNS method can be used to solve three types of problems: to determine the parameters, or patterns,
characterizing the behavior or structural features of open complex (physical, chemical, natural) systems; to
determine the precursors of the sharpest changes in the state of open dissipative systems of various natures
using the prior information about the behavior of the systems; to determine the redistribution behavior of
excitations in the distributed systems by analyzing dynamic correlations in chaotic signals measured
simultaneously at different points.

PD is a progressing chronic brain disease manifesting itself in movement disorders. PD is caused by complex
biochemical processes accompanied by the lack of the chemical substance dopamine. Dopamine acts as a
transmitter of signals from one nervous cell to another. The lack of the neurotransmitter dopamine causes
changes in the brain parts that control human motor functions.

The origin of PD is not clear. It is most frequently believed that this disease is caused by a combination of
three factors: biological aging, heredity and exposure to some toxins. The major PD symptoms are
hypokinesia, stiffness and tremor. New ideas and principles are required to solve the problems emerging in
classical treatment methods. The diagnostics of the disease in the early stages is one of these problems. Only
the joint efforts of experts from different science areas can bring a solution to this kind of problems. For
example, the modern methods of biophysics, biochemistry and neurophysiology enabled us to make
considerable progress in understanding PD reasons and developing the methods of its treatment.

Today, there are three methods of PD treatment: medicamentous therapy, neurologic surgery and
electromagnetic stimulation of certain brain areas. To obtain a more reliable picture of PD evolution, it is
necessary to use physical methods. In this case, statistical methods of analysis are of special importance. They
are used to analyze experimental time series of various parameters of tremor in patient’s limbs. As a rule, the
experimental data are obtained by conventional biomechanical methods [15–17] such as recording of electric
signals in leg muscles when the patient is walking [18] or by laser recording of physiological and pathological
tremor in human hands [19–23].

A nonlinear dynamical model is used to analyze a variety of human gaits [24]. The stride-interval time series
in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the
fluctuations becomes more pronounced under both the increase and decrease in the average gait [24].
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Nonlinear time series analysis is applied in studying normal and pathological human walking [18]. The
problems caused by age changes in a human gait [25–28], various movement disorders and locomotor system
diseases [29,30] are studied by Hausdorff. A nonlinear signal, multimodal (independent) oscillations, and the
periodic pattern of time records in hand tremor and muscle activity in a PD patient are studied in Ref. [23]. PD
patients exhibit tremor, involuntary movements of the limbs. Typically the frequency spectrum of tremor has
broad peaks at ‘‘harmonic’’ frequencies, much like that is seen in other physical processes. In general, this type
of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear
oscillation or a superposition of (multiple) independent modes of oscillation [23]. Various dynamical states of
PD patients are also studied by means of the time series of pathological tremor in fingers [31–35].

At present special attention is attached to the problems of distinguishing and analyzing of the stochastic and
regular components of experimental time series of biological systems. Thereto various methods of nonlinear
physics and simulation by nonlinear oscillators [36–40], the methods of fractal analysis of time series [41–46],
the methods of detrended fluctuation analysis [47,48] are used.

In Ref. [36] Babloyantz et al. presented a simple graphical method that unveils subtle correlations between
short sequences of a chaotic time series. Similar events, even from noisy and nonstationary data, are clustered
together and appear as well-defined patterns on a two-dimensional diagram and can be quantified. The general
method is applied to the electrocardiogram of a patient with a malfunctioning pacemaker, the residence times
of trajectories in the Lorenz attractor as well as the logistic map. In this paper the authors introduced a simple
graphical method that projects the trajectories of chaotic attractors into various planes in a way mat unveils
very subtle correlations between consecutive sequences of events. The merit of the method resides in the fact
that these sequences may extend over more than ten events. The sequences with similar relationships but not
the same absolute values may appear as well-defined structures in a two-dimensional diagram. The advantage
of this mapping is that, although the sequences may take into account more than three consecutive events, the
two-dimensional projections are extremely helpful visual aides for elucidation of some aspects of chaotic
dynamics.

Goldbeter et al. studied various biological rhythms which regulate the vital activity of living systems and
determine the control mechanisms of these rhythms. In Ref. [38] the periodic oscillations at all levels of
biological organization, with periods ranging from a fraction of a second to years were observed. The authors
of Ref. [39] examined the mechanisms of transitions from simple to complex oscillatory phenomena in
metabolic and genetic networks. The mechanisms underlying such transitions are examined in models for a
variety of rhythmic processes in several live systems. Ref. [40] is devoted to the study of circadian oscillations
stochastic dynamics and the influences the gene expression exerts on it. Authors show the way robust circadian
oscillations are produced from a ‘‘bar-code’’ pattern of gene expression.

Liebovitch et al. reveal the local features of dynamics of various biological systems by the methods of fractal
analysis and various methods of nonlinear physics. In Ref. [41] the question was examined: the way the
dynamics of neural networks of the Hopfield type depends on the updating scheme, temperature dependence,
degree of locality of connections between elements and the number of memories. Further the results were
applied to interpret some features of protein dynamics. In Refs. [42,43] authors studied the self-organizing and
the synchronization of the trajectory of a coupled systems dynamics. In particular, in Ref. [42] the authors
introduced a scheme of controlling the dynamics of deterministic systems by coupling it to the dynamics of
other similar systems. The controlled systems synchronized their dynamics with the control signal in periodic
as well as chaotic regimes. In Ref. [44] the processes of transition from persistent to antipersistent correlation
was studied by means of fractal analysis methods of a time series: fractional Brownian motion, rescaled range
analysis, variance analysis, zero-crossing analysis. The authors discussed several simple random walk models
which produce such transitions (bounded correlated random walk, fractional Brownian motion with a long
relaxation time), and therefore are candidates for the mechanisms that may be present in some biological
systems. The authors have studied the way the pattern, seen in the experimental data of biological systems,
persistent at short time intervals and antipersistent at long time intervals, could arise from dynamical systems.
The comparison of Hurst coefficient, which was calculated on the basis of different fractal analysis methods,
was carried out. The article [45] is devoted to the study of the cardiac rhythm abnormalities by means of
estimation of the probability density function and Hurst rescaled range analysis. In paper [46] the authors
examined the effects of fractal ion-channel activity in modifications of two classical neuronal models:
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Fitzhugh-Nagumo and Hodgkin-Huxley. The authors came to the conclusion that fractal ion channel gating
activity was sufficient to account for the fractal-rate firing behavior.

In this paper a qualitatively new methodology of extracting the information from the time series on the
united basis of the theory of discrete non-Markov stochastic processes and the FNS for the case of PD is
submitted. This methodology presents a simple graphic and relatively inexpensive method of analysis of
various physiological and pathological patient’s states. In particular, it allows to make a quantitative
estimation of the quality of treatment and to define the most effective method of treatment in each individual
case and for a group of patients. We determine the structure of the initial time signal, and also the information
about the nonstationary effects or about the dynamic alternation by a set of quantitative physical
characteristics. We give special attention to the analysis of correlations and fluctuations which determine the
time evolution in live systems.

In particular, the signals of PD pathological tremor are physically interpreted to answer the following
questions:

(i) How can the study of the stochastic behavior and regularity in tremor signals help in evaluating the state
of a PD patient?

(ii) How do certain physical parameters related to Markov and non-Markov features, statistical memory
effects and dynamic alternation of relaxation modes in the initial time signal change?

(iii) How do the low- and high-frequency components of the initial time signal respond to the changes of
pathological tremor in the patient under treatment?

2. Basic concepts and definition of statistical theory of discrete non-Markov random processes

The theory of discrete non-Markov stochastic processes [1,2] is based on the finite-difference representation
of the kinetic Zwanzig–Mori’s [49–52] for condensed matters, which are well known in the statistical physics of
nonequilibrium processes. The theory is also widely used in analyzing complex biological and social systems.
Dynamic, kinetic and relaxation parameters provided by this theory contain detailed information on a wide
range of parameters and properties of complex systems.

Let the behavior of PD pathological tremor velocity be described by a discrete time series xj of variable X:

X ¼ fxðTÞ; xðT þ tÞ;xðT þ 2tÞ; . . . ;xðT þ tN � tÞg. (1)

Here T is the time at which the recording of the pathological tremor is started, ðN � 1Þt is the total time of
signal recording, and t is the discretization time. In the system under study the discretization time is t ¼ 10�2 s.
To describe the dynamic parameters of pathological tremor (correlation dynamics), it is convenient to use a
normalized time correlation function (TCF):

aðtÞ ¼
1

ðN �mÞs2
XN�1�m

j¼0

dxjdxjþm ¼
1

ðN �mÞs2
XN�1�m

j¼0

dxðT þ jtÞdxðT þ ðj þmÞtÞ,

t ¼ mt; 1pmpN � 1. ð2Þ

TCF depending on current t ¼ mt can be conveniently used to analyze dynamic properties of complex
systems. TCF usage means that the developed method is true of complex systems, when correlation function
exists. The mean value hX i, fluctuations dxj , absolute (s2) and relative (d2) dispersion for a set of random
variables (Eq. (1)) can be easily found by

hX i ¼
1

N

XN�1
j¼0

xðT þ jtÞ,

xj ¼ xðT þ jtÞ; dxj ¼ xj � hX i,

s2 ¼
1

N

XN�1
j¼0

dxj ; d2 ¼
s2

hX i2
.
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The function aðtÞ satisfies the normalization and relaxation conditions of correlations: limt!0 aðtÞ ¼ 1;
limt!1 aðtÞ ¼ 0.

By using the Zwanzig–Mori’s technique of projection operators [49–52] it is possible to receive an
interconnected chain of finite-difference equations of a non-Markovian type [1,2] for the initial TCF aðtÞ and
the normalized memory functions in the following way:

DaðtÞ

Dt
¼ l1aðtÞ � tL1

Xm�1
j¼0

M1ðjtÞaðt� jtÞ. (3)

Here l1 is the eigenvalue and L1 is the relaxation parameter of Liouville’s quasioperator L̂. Function M1ðjtÞ is
a normalized memory function of the first order:

l1 ¼ i
hA0

kð0ÞL̂A
0
kð0Þi

hjA0
kð0Þj

2i
; L1 ¼

hA0
kð0ÞL̂12L̂21A

0
kð0Þi

hjA0
kð0Þj

2i
,

M1ðjtÞ ¼
hA0

kð0ÞL̂12ð1þ itL̂22Þ
jA0

kð0Þi

hA0
kð0ÞL̂12L̂21A

0
kð0Þi

; M1ð0Þ ¼ 1. (4)

Gram–Schmidt orthogonalization procedure hWn;Wmi ¼ dn;mhjWnj
2i, where dn;m is Kronecker’s symbol,

can be used to rewrite the above equations in a compact form:

W0 ¼ A0
kð0Þ; W1 ¼ ðiL̂� l1ÞW0; W2 ¼ ðiL̂� l2ÞW1 � L1W0; . . . ,

Wn ¼ ðiL̂� lnÞWn�1 � Ln�1Wn�2 � . . . .

Then the eigenvalue l1 of Liouville’s quasioperator and the relaxation parameter L1 in Eq. (3) take the
form of:

l1 ¼ i
hW0L̂W0i

hjW0j
2i

; L1 ¼ i
hW0L̂W1i

hjW0j
2i

.

The normalized memory function of the first order in Eq. (3) is rewritten as

M1ðtÞ ¼
hW1ð1þ itL̂22Þ

mW1i

hjW1ð0Þj
2i

.

The finite-difference kinetic (3) represents the generalization of Zwanzig–Mori’s kinetic theory [49–52],
which is well known in statistical physics, for complex discrete non-Hamiltonian statistical systems. Within
our method of the analysis of dynamics of the statistical time series we do not use Eq. (3) as an object for the
subsequent theoretical analysis. In this connection we do not use the equations such as Zwanzig–Mori’s for
memory functions of the second and higher orders. We use the algorithm, which was above described, to
calculate the time dynamics aðtÞ, M1ðtÞ and parameters l1, L1. The dependences aðtÞ and M1ðtÞ are calculated
on the basis of the experimental data, independently of each other. At the same time we control the conformity
of the calculated dependences aðtÞ, M1ðtÞ and parameters l1, L1 to Eq. (3) (the precision of the conformity is
�2–5% for the cases described here). We use the dependences aðtÞ and M1ðtÞ to analyze the amplitude of
Parkinsonian tremor velocity. We also use these dependences to calculate the non-Markovity parameter [1,2]
which characterizes the degree of correlativity of the signal. The studies, which have been carried out earlier
[2,12,13], show that this parameter contains detailed information about the physiological state of a system.

In this paper, we shall use the spectral dependence �1ðnÞ of the first point of the non-Markovity parameter
[1,2]:

�1ðnÞ ¼
m0ðnÞ
m1ðnÞ

� �1=2

, (5)
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which is determined by means of Fourier transformations m0ðnÞ, m1ðnÞ of functions aðtÞ and M1ðtÞ, respectively:

m0ðnÞ ¼
XN�1
j¼0

aðtjÞ cosð2pntjÞ

�����
�����
2

; m1ðnÞ ¼
XN�1
j¼0

M1ðtjÞ cosð2pntjÞ

�����
�����
2

.

Further we shall show, that the application of the frequency-dependence �1ðnÞ and the values of this parameter
on zero frequency:

�1ðn ¼ 0Þ ¼ �1ð0Þ ¼
m0ð0Þ
m1ð0Þ

� �1=2

, (6)

allows to introduce the quantitative estimations for various dynamic states of a patient with PD. In
particular, we shall show, that the values of parameter �1ð0Þ�10

1 for the analyzed system are chara-
cteristic of stable physiological states (for the patient under treatment). The appearance of pathology in a
system leads to a sharp decrease in this parameter, approximately by one order. Thus, we can
compare quantitatively various dynamic states of the studied system considering the changes of the non-
Markovity parameter.
3. Flicker-noise spectroscopy for analysis of time series of dynamic variables

New information about chaotic time signals can be obtained by the method of the FNS [53–57]. Its
advantage consists in extracting information from the series of distinct irregularities (spikes, jumps,
discontinuities of derivatives of various orders) by analyzing the behavior of time, spatial and power dynamic
variables at each existential level of the hierarchical organization of the system. Thus, the most valuable
information is obtained by analyzing the power spectra and the difference moments (‘‘structural functions’’) of
various orders. It is necessary to point out, that the difference moments are formed exclusively by irregularities
of a jump type. On the other hand, the power spectra are formed by the contributions of two types of
irregularities: peaks and jumps.

The FNS method was applied to analyze the dynamics of various physical and chemical processes [58–65].
Among them are fluctuations of electric voltage in electrochemical systems (considered in the process of
formation of porous silicon under conditions of anodic polarization, formation of molecular hydrogen on
platinum under cathodic polarization, initiation of hydrodynamical instability in the field of an over-limiting
current in electro-membrane systems), fluctuating dynamics of the solar activity, fluctuation of a velocity
component in turbulent streams. Unique abilities of the FNS method to locate the multipoint correlation
interrelations were shown in Refs. [66–68]. That was done on the basis of the analysis of simultaneously
measured signals at spaced points of the distributed systems.

The basic relations of FNS are given below. We analyze the chaotic series of dynamic variable xðtÞ over the
time interval Ttot ¼ Nt, where t is a sampling time.

1. We proceed from the notion of hierarchy of spatial-temporal levels of the organization of open dynamic
dissipative systems.

2. The most valuable information in the chaotic series is stored in irregularities of various types, such as
peaks, jumps, breaks of derivatives of different orders. The parameters which characterize the properties of
irregularities, can be obtained by the analysis of power spectra Sðf Þ (f is a frequency):

Sðf Þ ¼
1

N

XN

k¼1

dxk cosð2pfktÞ

" #2
þ

1

N

XN

k¼1

dxk sinð2pfktÞ

" #2
, (7)

where xk ¼ xðT þ tkÞ and tk ¼ kt,

dxk ¼ xk �
1

N

XN

k¼1

xk
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and also by the analysis of transitive difference moments (‘‘transitive structural functions’’) Fð2ÞðtnÞ of the
second order:

Fð2ÞðtnÞ ¼
1

N � n

XN�n

k¼1

½xðtkÞ � xðtkþnÞ�
2, (8)

where tn is a delay parameter. Further, when considering the dependence Fð2ÞðtnÞ we will not specify the
bottom index.

It should be noted that the proposed averaging procedure differs from Gibbs’s procedure when averaging is
carried out by using the probability density. Actually, we do not consider the statistics of ensembles as it is
done in the statistical Gibbs’s thermodynamics which is based on ergodic hypothesis. We also generalize
Einstein’s approach to the analysis of fluctuation dynamics [69,70].

3. Parameters or ‘‘passport data’’, obtained by the analysis of dependences Sðf Þ and Fð2ÞðtnÞ, are correlation
times and dimensionless parameters. These dimensionless parameters describe the loss of ‘‘memory’’
(correlation relations) in irregularities of a ‘‘spikes’’ and ‘‘jumps’’ type.

4. For stationary processes in open dissipative systems the moment Fð2ÞðtnÞ depends only on the difference of
arguments nt. The self-similar structure is realized in this case. It means that the dependences Sðf Þ or Fð2ÞðtnÞ

are identical for each level of the system hierarchy.
It should be noted, that the reverse transformations in the FNS methodology are not used in the way it

takes place in Fourier- or in wavelet-analysis. Therefore, no constraints are imposed on the character of the
dependence xðtÞ except for the existence of average values.

3.1. Basic equations for stationary processes

Let us obtain approximations for Sðf Þ and Fð2ÞðtnÞ, which are determined by irregularities in the behavior of
dynamic variables. At the first stage the generalized d-functions are used to approximate the spikes of the
dynamic variables, and Heavyside functions are used to approximate the jumps. At the same time the ‘‘low-
frequency’’ limit f51=2pTi is considered, when the characteristic time intervals Ti between the nearest
irregularities are much less than all the characteristic times of the considered system. In case of stationary
processes the obtained expressions are the same for each of the hierarchical levels. Then simple approximation
dependence (see Refs. [53–57] for more information) can be obtained for Sðf Þ and Fð2ÞðtnÞ.

The approximation for the structural function of the second order reads:

Fð2ÞðtÞ ¼ 2 � s2 � ½1� G�1ðH1Þ � GðH1; t=T1Þ�
2. (9)

Here GðsÞ and Gðs;xÞ are, respectively, the gamma-function and incomplete gamma-function ðxX0 and s40Þ;
s is dispersion of the measured dynamic variable with dimension ½x�. Value H1 is a Hurst’s parameter. It
characterizes the rate of loss of ‘‘memory’’ during the time intervals shorter than the correlation time T1. As
follows from Eq. (9), Fð2ÞðtÞ ! s2 for tbT1; parameter T1 actually characterizes the time interval during
which ‘‘forgetting’’ of the previous value of the dynamic variable occurs. Such ‘‘forgetting’’ is the consequence
of the ‘‘jumps’’ of the dynamic variable at each level of the spatio-temporal hierarchy. True, the structural
function is zero, Fð2ÞðtÞ ¼ 0, for the sequences of the irregularities-spikes, which are represented by a sequence
of d-functions (see Chapter 4.3 (Fig. 51) of Schuster’s monograph [70]). At the same time, a continuous power
spectrum Sðf Þ can be calculated for the correlated sequence of d-functions within a low-frequency limit at
f51=2pTi, as was shown in Ref. [70]. Sðf Þ is determined by a correlation character of the analyzed sequence
of the generalized functions. In particular, Sðf Þ can have dependence of a flicker-noise type: Sðf Þ�1=f s, where
s�1. The conclusion about diverse information carried by the power spectra and the difference moments
underlies the FNS method. Some artificial time series, generalizing the image of the signal as the sequence of d-
functions, earlier introduced by Schuster is used in this case.

Any signal, formed exclusively by irregularities-jumps, can be subject to Fourier transformation to obtain
the power spectrum. Thus, the difference moment Fð2ÞðtÞ is formed only by jumps of a dynamic variable at
different spatio-temporal levels of the system hierarchy, and both spikes and jumps contribute to the power
spectrum Sðf Þ.
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The standard notion about the identity of the information represented by Fð2ÞðtÞ and Sðf Þ, is valid
only for ‘‘smooth’’ functions. However, real signals V ðtÞ are never smooth. Therefore, the FNS
method focuses on giving the essence of information on sequences of irregularities latent in real signals and
eliminates information discrepancy, making it possible to extract the information by considering various
features.

Eq. (9) can be used to find the phenomenological parameters ½H1;T1;s�. Contribution SJðf Þ to the power
spectrum Sðf Þ, determined by the influence of irregularities, such as jumps, is expressed by the formula:

SJðf Þ � SJ ð0Þ
1

1þ ð2pT1f Þ
2H1þ1

, (10)

SJð0Þ ¼ 4s2T1H1 1�
1

2H1G2ðH1Þ

Z 1
0

G2ðH1; xÞdx
� �

.

Due to spikes the contribution SBðf Þ to power spectrum Sðf Þ can be generally presented as the expression:

SBðf Þ �
SBð0Þ

1þ ð2pfT00Þ
n0
, (11)

where parameter n0 characterizes the velocity of the ‘‘losses of memory’’ (correlation relations) in a sequence
of spikes during the time intervals shorter than the correlation time T00. Parameters ½n0;T00;SBð0Þ�
characterize self-similarity in the correlation relations of the peaks. For the resulting power spectrum an
approximation is used:

Sðf Þ �
Sð0Þ

1þ ð2pfT0Þ
n , (12)

where Sð0Þ, T0 and n are phenomenological parameters. The parameters which are determined in such a way
differ from the parameters which are used in Eq. (10): SJð0ÞaSBð0Þ;T1aT0 and 2H1 þ 1an0. So, the
parameters determined from the power spectra and the structural functions of the second order give different
information. The comparison of the parameters obtained by the analysis of the experimental series with
numerical values of the parameters for model cases (Fick diffusion, Levy diffusion, Kolmogorov turbulence,
turbulent diffusion, see Ref. [57]) allows to estimate qualitatively the character of the studied evolution (see
Ref. [57] for more information).

The use of irregularities such as spikes, jumps, discontinuities of derivatives as the information basis of the
FNS method allows to classify and extract phenomenological information contained in chaotic series.
However, evolution of real biological systems has a more complex and nonstationary nature. In particular, the
resonance frequencies in the dependences described above, can be specific for the studied system. The
resonance frequencies appear as peaks in the power spectra Sðf Þ and the oscillatory character of function
Fð2ÞðtÞ. Thus, the values of resonance frequencies can change during the nonstationary evolution. Therefore
for each state of the studied dynamics, the dependences Sðf Þ and Fð2ÞðtÞ are to be considered as ‘‘patterns’’ or
‘‘cliche’’. These dependences allow to estimate individual informational characteristics of the state of the
system: times of loss of correlation relations, sets of specific frequencies, factors of nonstationarity. This will
be demonstrated below in the analysis of Parkinsonian tremor dynamics.

3.2. Relaxation smoothing of signal, splitting into ‘‘low-frequency’’ and ‘‘high-frequency’’ components

In the analysis of the experimental series we frequently face the problem of smoothing of the initial signals.
Usually the smoothing polynoms and wavelets are used to filtrate a signal and to extract a low-frequency
component. Here we will describe briefly the method [57] of splitting the signal into ‘‘low-frequency’’ xRðtÞ and
‘‘high-frequency’’ xF ðtÞ components. The method is based on an iterative procedure of a numeric solution of a
heat conductivity equation:

qx

qt
¼ w

q2x

qt2
. (13)
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It uses an elementary explicit finite difference scheme:

x
jþ1
k � x

j
k

Dt
¼ w

x
j
kþ1 þ x

j
k�1 � 2x

j
k

ðDtÞ2
, (14)

that gives:

x
jþ1
k ¼ x

j
k þ

wDt

ðDtÞ2
ðx

j
kþ1 þ x

j
k�1 � 2x

j
kÞ. (15a)

Using designation D ¼ wDt=ðDtÞ2, where D is a diffusion coefficient, we shall rewrite the last equation as

x
jþ1
k ¼ Dx

j
kþ1 þDx

j
k�1 þ ð1� 2DÞx

j
k. (15b)

Iterations of this formula give a stable solution to Do 1
2
[57]. For the smoothing procedure it is necessary to set

limiting conditions. Let smoothing be carried out for a series of M samples (points). At each step of iterations
extreme values for k ¼ 1 and M are calculated as

x
jþ1
1 ¼ ð1� 2DÞx

j
1 þ 2Dx

j
2; x

jþ1
M ¼ ð1� 2DÞxj

m þ 2Dx
j
M�1. (15c)

When calculating new values of signal x
jþ1
k for j þ 1 ‘‘relaxation’’ step by the values x

j
k (for j ¼ 0 the initial

signal xðtÞ is set) we can obtain ‘‘low-frequency’’ component xR. ‘‘High-frequency’’ component xF is obtained
by subtracting it from the initial signal. Actually, the smoothing procedure corresponds to the consecutive
reduction of local gradients of values of variables with mutual rapprochement of points. The splitting of the
initial signal xðtÞ into two components xRðtÞ and xF ðtÞ enables us to calculate the dependences Sðf Þ and Fð2ÞðtÞ
for three functions xJ ðtÞ ðJ ¼ R;F or G ¼ Rþ F Þ. Index G is used for the initial signal xðtÞ. In particular, the
low-frequency (‘‘flicker-noise’’) component, which is present in any chaotic signal, is effectively removed when
calculating dependence SF ðf Þ. Therefore, specific frequencies of the studied system come to light. This will be
shown below in the analysis of the fluctuations of Parkinsonian tremor velocity. The analysis of dependences
Sðf Þ and Fð2ÞðtÞ, which are calculated separately for each of components R and F, presents special interest for
the study of medical parameters.
4. Analysis of experimental data. Velocity of pathological tremor in patients with Parkinson’s disease

As the experimental data we use the time records of pathological tremor velocity in an index finger of
patients with PD [71,72].

Sixteen subjects with PD participated in the study. All subjects were receiving chronic stimulation either uni-
or bilaterally to relieve the symptoms of PD including tremor, dyskinesia or rigidity. The participants received
deep brain stimulation (DBS) of the internal globus pallidus (GPi) or subthalamic nucleus (STN), or
ventrointermediate nucleus of the thalamus (Vim). They were all under 70 years of age and the group included
11 males and five females. All participants were clinically stable at the moment of the tests; they did not show
cognitive impairment and did not suffer from a major depressive disorder. All subjects were under minimum
dopaminergic therapy (ranging from 300 to 1200mg per day of L-Dopa) at the time of the study and took
other PD related medications.

The selected subjects were asked to refrain from taking their medication for at least 12 h before the
beginning of the tests and were allowed to have not more than one coffee for breakfast on the two testing days.
Rest tremor was recorded on the most affected side with a velocity-transducing laser [73,74]. This laser is a safe
(Class II) helium–neon laser. The laser beam is split, with one part directed at the finger and the other, called
the reference, directed at a rotating disk inside the laser. Back scattered light from the rotating disk is used to
determine the sign of the velocity signal. Finger tremor was detected and converted into a calibrated voltage
output proportional to finger velocity. Velocity is more sensitive to low-frequency components inherent in
pathological and physiological tremor [74]. Than acceleration is the system did not require any special
calibration procedure. The laser was placed at about 30 cm from the index finger tip and the laser beam was
directed perpendicular to a piece of a reflective tape placed on the finger tip.
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Tremor was recorded with a velocity laser under two conditions of DBS (on–off), under two conditions of
medication (L-Dopa on–off) and under four conditions of 15, 30, 45, 60min periods after stopping DBS. The
conditions, counterbalanced among the subjects included the following.
1.
 The ‘‘OFF–OFF’’ condition (no medication and no stimulation).

2.
 The ‘‘ON–ON’’ condition (on medication and on stimulation).

3.
 The DBS condition—the ‘‘ON–OFF’’ condition (stimulation only).

4.
 The L-Dopa condition—the ‘‘OFF–ON’’ condition (no stimulation).
5–8.
 The ‘‘15 OFF’’, ‘‘30 OFF’’, ‘‘45 OFF’’, ‘‘60 OFF’’ conditions—the patient’s states 15, 30, 45, 60min after
the DBS is switched off, no medication.
5. Discussion of results. Comparison of statistical theory of discrete non-Markov random processes and

Flicker-noise spectroscopy

In this section we present the results of the analysis of the experimental data [71–73], which are obtained
on the basis of the statistical theory of discrete non-Markov stochastic processes and the FNS. As an
demonstrative example, we describe the results for one of the patients (the sixth patient, a woman, 61 years-
old, deep brain stimulated bilaterally target structures: subthalamic nucleus, total daily medication 300mg).
The analysis the of experimental data allows to reveal some dynamic properties of PD tremor in each
individual case and a group of patients. The obtained results characterize the group of 16 patients in a
general way.

5.1. Non-Markovity, randomness, dynamic alternation and pathological tremor caused by Parkinson’s disease

In Fig. 1 the initial time series of Parkinsonian tremor velocity of the patient’s (sixth patient) index finger
tremor is shown. By this record it is possible to reveal great differences (see the vertical scale) in tremor
velocity of the patient’s state, when the treatment is not used (Fig. 1a) and under medical treatment
(Figs. 1b–d). The amplitudes of the tremor velocity for the ‘‘OFF–OFF’’ patient’s state (Fig. 1a) and for the
‘‘ON–ON’’ state (Fig. 1b) differ by 94 times on average. The amplitude of tremor velocity when the DBS is
switched off (‘‘15 OFF’’, ‘‘30 OFF’’, ‘‘45 OFF’’, ‘‘60 OFF’’ conditions) (Figs. 1e–h) has a residual periodic
character. The analysis of the initial time records does not allow to determine a method with the best medical
effect. In some cases (Figs. 1e, h) a medical method produces a negative effect that results in the amplitude
increase of tremor velocity and deterioration of the state of the patient. It is difficult to draw a conclusion
about the efficacy of this or that treatment and to explain the after effect of the DBS based on the initial time
signals.

A different representation of the signal allows to reveal the effects of periodicity and randomness in the
initial time series. In Fig. 2 the initial time series of tremor velocity in two states of the patient (see Figs. 1a, d)
are shown. We have chosen some local areas (500 points) of these time records. For the ‘‘OFF–OFF’’ patient’s
state (Fig. 2c) the initial time signal has a periodic structure. Similar periodicity of the initial time signal is
connected to pathological tremor of the patient’s limbs (with frequency n ¼ 5:2Hz). Retention of the structure
is also observed when the DBS is switched off (see Figs. 1e–h). Medication produces a different effect on the
patient (‘‘OFF–ON’’ state, see Fig. 2d). The periodicity of the initial signal is replaced by randomness. The
similar picture is characteristic of all methods of treatment (see Figs. 1b–d). This conclusion confirms the
general idea about the transition of stochastic dynamic modes in case of the patient’s normal physiological
state to the periodic modes in a pathological state. This reasoning was confirmed by the analysis of the initial
time series of all 16 patients.

The plane projections of phase trajectories of the two first dynamic orthogonal variables W0; W1 (see
Section 2) in various states of the patient are shown in Fig. 3. All figures are submitted according to the initial
time series. The structure of the phase trajectories is determined by the presence of fluctuations in the initial
time series. The most significant fluctuations lead to deformation of phase clouds. The phase portraits consist
of empty cores and helicoidal trajectories with a high concentration of phase points in the ‘‘OFF–OFF’’
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Fig. 1. Pathological tremor velocity in the left index finger of the sixth patient with Parkinson’s disease. The registration of Parkinsonian

tremor velocity is carried out in the following conditions: (a) ‘‘OFF–OFF’’ condition (no treatment); (b) ‘‘ON–ON’’ condition (using DBS

and medicaments); (c) ‘‘ON–OFF’’ condition (DBS only); (d) ‘‘OFF–ON’’ condition (medicaments (L-Dopa) only); (e)–(h) the ‘‘15 OFF’’,

‘‘30 OFF’’, ‘‘45 OFF’’, ‘‘60 OFF’’ conditions—the patient’s states 15 (30, 45, 60) min after the DBS is switched off, no treatment. Let us

note the scale of the pathological tremor amplitude (see the vertical scale). Such representation of the time series allows us to note the

increase or the decrease of pathological tremor.
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patient’s state (Fig. 3a) and in the cases when the DBS is switched off (‘‘15 OFF’’, ‘‘30 OFF’’, ‘‘45 OFF’’, ‘‘60
OFF’’, see Figs. 3e–h). The presence of empty cores is explained by the insignificant quantity of small
fluctuations near a zero value. Such structure of the phase portrait is determined by periodicity in the initial
time signal (Fig. 2c). Here one can note a completely different picture of the effect any medical treatment has
on the patient’s organism. One can see rare significant fluctuations instead of small fluctuations of tremor
velocity. These peak deviations result in acute-angled deformations of the central cores with a high
concentration of phase points. The form of phase portraits corresponds to the dynamic alternation of periodic
and stochastic components of the initial time signal. It is possible to draw a conclusion about the most
effective method of treatment of each patient judging by the form of phase clouds. For the sixth patient two
methods of treatment are almost equivalent: the complex treatment of a patient by two medical methods
(Fig. 3b) and by using medicaments only (Fig. 3d).

The initial TCF power spectrum m0ðnÞ (see Section 2) in various physiological states of the patient is shown
in Fig. 4. All dependences are presented on a log–log scale. At characteristic frequency n ¼ 5:2Hz the peak is
observed for each power spectrum. The peak amplitude is determined by the amplitude of tremor velocity in
the initial time signal. In case of any medical treatment the peak amplitude considerably decreases. It happens
because the amplitude of pathological tremor decreases. Any power spectrum reflects dynamic alternation
effects in the initial time series. Oscillations are seen in the power spectra (Figs. 4a, e–h). Their periodic nature
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Fig. 2. The examples of the time series of some areas of pathological tremor velocity in the sixth patient: (a) The patient’s state with no

treatment. (b) The patient with treatment (medicaments only). The length of local sites of the time series constitutes 500 points. The local

representation clearly reflects the structure of the initial time signal. (c) The regularity and the periodic nature of pathological tremor in the

patient’s state with no treatment. (d) The randomness of the tremor time signal of the patient under medicamentous treatment.
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is clearly expressed by a low-frequency range. The periodic structure of the power spectra is broken,
oscillations disappear, the amplitude of the peak on frequency n ¼ 5:2Hz decreases under treatment. Such
form of the power spectra is connected to the amplification of randomness effects in the initial time series. The
periodic nature of the patient’s Parkinsonian tremor velocity is replaced by stochastic fluctuations with a low
amplitude of tremor velocity. On the whole, the comparative analysis of the power spectra shows that
medicamentous treatment has the most significant effect on the patient’s organism (thus the combined use of
medicaments and DBS is almost equivalent). The use of DBS stimulation does not decrease abnormal
oscillations significantly.

The effects of randomness and regularity are most visible in the frequency dependences of the first point of
the non-Markov parameter �1ðnÞ. The physical idea of this parameter consists in revelation of Markov and
non-Markov features in the time series. This parameter classifies all stochastic processes into random Markov
processes �b1, quasi-Markov (intermediate) processes �41 and non-Markov processes ��1. Thus, the first
point of the non-Markovity parameter at zero frequency �1ð0Þ contains the most significant information. This
point accumulates the information about all dynamic peculiarities of the time series. The increase of this value
testifies to the amplification of Markov random effects in the time signals and the appearance of the effects of
short range or instant memory. Thus, the comparative analysis of various physiological states of the patient
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Fig. 3. The phase portraits of the two first orthogonal dynamic variables W0;W1 for pathological tremor in the patient with Parkinson’s

disease. The phase portraits are submitted according to the initial time series. The form of the phase portraits reflects the initial time signal

dynamics. The periodic structure of the initial signal is determined by helicoidal phase trajectories (a, e–h); the randomness of the initial

signal is reflected in the curvature of the phase trajectories (b–d). The most significant fluctuations of the time signal cause deformation of

the phase portraits under any medical influence. The similar forms of phase clouds are characteristic of all the groups of patients.
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shows that the higher value of �1ð0Þ�10
1 corresponds to the smaller pathological tremor velocity. For the

smallest pathological tremor velocities (in one of the patients of the studied group) the values of this parameter
are maximal and achieve the value of �1ð0Þ�10

2. On the contrary, the decrease of this parameter reflects the
amplification of non-Markov effects in the initial time series. Thus, the decrease of parameter �1ð0Þ
corresponds to the increase in Parkinsonian tremor velocity in the initial time signal. The greatest pathological
tremor velocities (for one of the patients of the studied group) are characterized by minimal values �1ð0Þ�10

0.
Thus, the value of �1ð0Þ reflects the behavior of the patient’s tremor amplitude.

It should be noted that we use the value of the first point of the non-Markovity parameter at zero frequency
�1ð0Þ as the quantitative measure which reflects Markov and non-Markov effects in the initial time series. The
values of the non-Markovity parameter at zero frequency determine long-range correlations (in a limiting case
for t!1). The greater values of parameter �1ð0Þ determine stronger correlations. This thesis confirms a
general concept that long-range correlations should take place in a stable healthy live subject. We remind that
in this work we analyze the time series of pathological tremor of a patient and we observe only minimal
alterations of parameter �1ð0Þ (from a unit up to several tens).

The periodic structure of pathological tremor velocity is reflected also in frequency dependences of the first
point of the non-Markovity parameter (Figs. 5a, e–h). Oscillations emerge with a characteristic frequency
n�5:2Hz. The oscillations are most appreciable in the low-frequency range. This structure is completely
suppressed by medical influence on the patient’s organism. The fast change of various dynamic modes and the
amplification of randomness effects result in the infringement of the periodic picture. It is connected with the
decrease of pathological tremor, the ‘‘ON–ON’’, ‘‘OFF–ON’’ states (Figs. 5b, d).
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Fig. 4. The initial time correlation function m0ðnÞ power spectrum for pathological tremor in the patient with Parkinson’s disease. The

power spectra are submitted according to the arrangement of the initial time series. The log–log scale is chosen to receive a more detailed

information. In the initial TCF m0ðnÞ power spectrum the power peak is observed on frequency n ¼ 5:2Hz. The amplitude of this peak is

determined by the amplitude of the initial time signal. The oscillations (a, e–h) are clearly expressed in the low frequencies area of the

power spectrum. The low-frequency oscillations vanish, and the amplitude of the power peak on frequency n ¼ 5:2Hz decreases with the

application of any method of treatment (b–d). The amplitude of this peak changes a little bit when the DBS is used. It reflects low

efficiency of this method of treatment (of the sixth patient). The form of power spectrum m0ðnÞ is determined by the nature of the initial

time signals.
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The analysis of the values of parameter �1ð0Þ in different states of the patient specifies the most effective
method of treatment (pathological tremor suppression). Values �1ð0ÞM ¼ 14:87 in the ‘‘OFF–ON’’ patient’s
state (using medicaments) and �1ð0ÞON ¼ 13:53 in the ‘‘ON–ON’’ patient’s state (using medicaments and the
DBS) show, that these methods of treatment have almost the same positive effects. For comparison: we have
�1ð0ÞDBS ¼ 3:56 in the ‘‘ON–OFF’’ state of the studied patient (using the DBS), and �1ð0ÞOFF ¼ 1:47 in the
‘‘OFF–OFF’’ state of the patient (no treatment).

The window-time behavior of the initial TCF power spectrum m0ðnÞ (Fig. 6a) and the first point of
the non-Markov parameter �1ðnÞ (Fig. 6b) is shown in Fig. 6. For example, we selected the initial time
series in the ‘‘OFF–OFF’’ patient’s state. The design of this dependence was realized by means of the
localization procedure. The peculiarity of this procedure consist in reflecting the dynamical properties
of the local area of the initial time signal [13]. First, the optimal length of the sample (window)
must be determined. The preliminary analysis of various window lengths gave the optimal length of 256 ¼ 28

points. The correlation function power spectrum m0ðnÞ and the non-Markovity parameter �1ðnÞ are calculated
for each of the windows. This procedure shows the dynamic features of local areas of the initial time
signal.
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Fig. 5. The frequency dependence of the first point of the non-Markovity parameter �1ðnÞ for pathological tremor velocity in the patient.

For example, the sixth patient with Parkinson’s disease is chosen. The figures are submitted according to the arrangement of the initial

time series. The characteristic low-frequency oscillations are observed in frequency dependences (a, e–h), which get suppressed under

medical influence (b–d). The non-Markovity parameter reflects the Markov and non-Markov components of the initial time signal. The

value of the parameter on zero frequency �1ð0Þ reflects the total dynamics of the initial time signal. The maximal values of parameter �1ð0Þ
correspond to small amplitudes of pathological tremor velocity. The minimal values of this parameter are characteristic of significant

pathological tremor velocities. The comparative analysis of frequency dependences �1ðnÞ allows us to estimate the efficiency of each method

of treatment.
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In Fig. 6a power peaks are observed at frequency n ¼ 5:2Hz in the window-time behavior of the initial TCF
power spectrum. The amplitude of these peaks reflects the increase or decrease in Parkinsonian tremor. In
particular, the most significant peaks are visible for windows 1–3. Thus, the highest pathological tremor of the
initial time record corresponds to these areas. The similar behavior of the power spectrum confirms the
periodic nature of the initial time signal. The behavior of the non-Markovity parameter �1ðnÞ in Fig. 6b is as
follows. The value of parameter �1ð0Þ reaches a unit (see, windows 1–3, 8, 11, 13) at the moments of the
increase in pathological tremor velocity. Thus, the value of the non-Markovity parameter starts to decrease
2.5–3 s before the increase in tremor velocity. When pathological tremor velocity decreases, the value of
parameter �1ð0Þ increases to values 2–3 (in the ‘‘OFF–OFF’’ patient’s state, no treatment).

In Table 1 we present the root-mean-square amplitude hAi ¼ f
PN�1

j¼0 x2
j =Ng1=2, and the dispersion s2 ¼

ð1=NÞ
PN�1

j¼0 ðxj � hX iÞ
2 of kinetic parameter l1 for the sixth patient. The physical meaning of parameter l1

consists in determining the relaxation rate of the studied process [14]. The ratio of the mean-squared amplitude
in the ‘‘OFF–OFF’’ patient’s state (no treatment) and in the ‘‘ON–ON’’ patient’s state (using medicaments
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Fig. 6. The window-time behavior of the power spectrum m0ðnÞ (a) and the frequency dependence of parameter �1ðnÞ (b) for pathological
tremor in the ‘‘OFF–OFF’’ condition (c). The local representation of the TCF power spectrum and the frequency dependence of the non-

Markovity parameter allows us to reflect the dynamic features of some areas of the time series. The localization procedure consists in

choosing the optimum length of the local sample, in dividing the time series and in designing local characteristics for each sample. The

increase of pathological tremor velocity results in the increase of the amplitude of the power peaks at a characteristic frequency and in the

decrease of the non-Markovity parameter to a unit.

Table 1

The root-mean-square amplitude hAi, and dispersion s2 (absolute values) of the first kinetic parameter l1 in various physiological states of

the sixth patient, calculated by means of our theory

OFF–OFF ON–ON ON–OFF OFF–ON 15 OFF 30 OFF 45 OFF 60 OFF

hAi 17:4� 10�5 43:4� 10�3 21:7� 10�3 52:4� 10�3 10:7� 10�5 10:6� 10�5 10:4� 10�5 13:8� 10�5

s2 59:3� 10�3 0:392 0:291 0:569 51:5� 10�3 62:2� 10�3 63:3� 10�3 61:3� 10�3

1—DBS, 2—Medication (L-Dopa). For example, OFF–OFF—DBS off, medication off.
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and the DBS) makes 250 (!) times. It shows, that after the application of any type of treatment, relaxation rate
increases. Sharp distinctions of relaxation rate reflect pathological and normal physiological processes. Thus,
this quantitative characteristic allows to reveal effective or inefficient methods of treatment (to decrease
tremor velocity).

5.2. The use of the flicker-noise spectroscopy for the analysis of pathological tremor velocity caused by

Parkinson’s disease

In Fig. 7 the power spectra of high-frequency SF ðf Þ (Figs. 7a–d) and low-frequency SRðf Þ (Figs. 7e–h)
components of the initial time signal (the tremor of the index finger velocity in the four patient’s states, see
Figs. 1a–d) are shown. Frequency dependence of the power spectrum of high-frequency component SF ðf Þ is
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Fig. 7. The power spectra of high-frequency (a–d) and low-frequency (e–h) components of the initial time signal in the ‘‘OFF–OFF’’

condition (a, e) and in various conditions of treatment: medicaments and the DBS (‘‘ON–ON’’ condition) (b, f), the DBS only

(‘‘ON–OFF’’ condition) (c, g), medicaments only (‘‘OFF–ON’’ condition) (d, h). The power spectra of high-frequency component F are

submitted on a linear scale (a–d), the power spectra of low-frequency component R are submitted on a log–log scale (e–h). The set of

eigenfrequencies in the power spectra is connected to the periodic nature of Parkinsonian tremor.
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on a linear scale, and the power spectrum of low-frequency component of time signal SRðf Þ is on a log–log
scale. The small set of eigenfrequencies is characteristic of tremor of the ‘‘OFF–OFF’’ patient’s state
(Figs. 7a, e). These frequencies are clearly visible at f 01�5:2Hz and f 02�10:1Hz. According to Figs. 7c, g, the
situation does not change qualitatively, when the DBS (‘‘ON–OFF’’ patient’s state) is used, as the
small set of eigenfrequencies of tremor is preserved. However, the maximal values of SF ðf Þ decrease by three
orders and maximal values of SRðf Þ decrease by two orders. The situation changes qualitatively
when medicaments are used (‘‘OFF–ON’’, Figs. 7d, h), and also in case of the combined use of the DBS
and medicaments (‘‘ON–ON’’, Figs. 7b, f). Tremor velocity in these cases becomes more chaotic, since
a wide band of eigenfrequencies appears in the tremor power spectrum. The maximal values of freq-
uencies in dependence SF ðf Þ decrease by four orders, the values of SRðf Þ decrease in the low frequencies range
by two orders under the combined use of the DBS and medicaments (‘‘ON–ON’’). Values SRðf Þ in the low-
frequencies area (when using medicaments, ‘‘OFF–ON’’) are commensurable with values SRðf Þ in the
‘‘OFF–OFF’’ state.

The specific features characterizing tremor velocity in the patient with PD are seen in spectra SF ðf Þ and
SRðf Þ in Figs. 7a–h. It should be noted that the splitting of the initial time signal xðtÞ into components xRðtÞ

and xF ðtÞ depends on quantity N of iterations of ‘‘diffusion’’ smoothing and the value of ‘‘diffusion
coefficient’’ D (N ¼ 10 and D ¼ 1

4
for the plots). The analysis shows that the increase of the number of such
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iterations up to N ¼ 50 for various values of parameter D does not change the obtained results essentially.
Therefore, we use values N ¼ 10 and D ¼ 1=4 to calculate FNS dependences in the following way.

Fig. 8 shows the dynamics of tremor velocity of the patient in the cases when the DBS is switched off. The
use of this medical methods does not change the situation. The small set of eigenfrequencies of tremor velocity
remains the same. However, there is significant decrease in the maximal values of power spectra SF ðf Þ and
SRðf Þ. Frequency dependence SF ðf Þ should be considered as information valuable patterns when determining
the characteristic frequencies of the system, as SRðf Þ dependence do not changes significantly (see Fig. 8).

The difference moments of low- and high-frequency components of the initial signal Fð2ÞR ðtÞ, F
ð2Þ
F ðtÞ can also

carry valuable information about tremor dynamics. It is seen in Figs. 9 and 10. This dependence characterizes
the duration of correlation interval T1 during which ‘‘a loss of memory’’ about the local value of the signal
takes place.

The combined use of the DBS and medicaments (‘‘ON–ON’’, Figs. 9b, f) results in the strongest changes in
tremor velocity: the dispersion of fluctuations decreases by two orders and the contribution of ‘‘resonance’’
frequencies is considerably suppressed. It is seen in Fig. 9. The latter conclusion follows from the decrease of
the oscillatory component.

Time dependence in Fig. 10 characterizes the dynamics of pathological tremor velocity in the patient’s states
when the DBS is switched off (‘‘15 OFF’’, ‘‘30 OFF’’, ‘‘45 OFF’’, ‘‘60 OFF’’). The comparative analysis of
Figs. 9 and 10 shows that the initial parameters of the patient’s tremor (‘‘OFF–OFF’’ state) almost do not
vary. Thus, the dispersion of fluctuations somewhat decreases and the ‘‘resonance’’ component of the initial
signal actually does not change.
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6. Conclusions. The analysis of pathological tremor caused by Parkinson’s disease

In this work we offer a new method of analyzing one of the symptoms of PD. This method is based on the
combined use of the statistical theory of discrete non-Markov stochastic processes and the FNS. Each of the
offered theories reflects the specific dynamic peculiarities of PD tremor. Combined representation of the
obtained results allows to extract the most complete and trustworthy information about the dynamics of
Parkinsonian tremor.

As experimental data we used the time series of the tremor velocity of an index finger of the patient
with PD for various methods of treatment. The tremor of a human’s limbs certainly is just one of the
external symptoms of PD. However, the tremor dynamics of a human’s limb is caused by complex
interrelation of separate areas of brain, central nervous system, locomotor system, chemical and biological
metabolism. Any anomaly of one of these systems is clearly reflected in tremor dynamics. The analysis
of the stochastic dynamics of a human’s index finger tremor is only part of the complex analysis of the
patient’s states.

The analysis of stochastic dynamics of the pathological tremor velocity shows the change of the physical
nature of the signal. The robust periodic structure with specific oscillation frequency is characteristic of the
time series of pathological tremor velocity in ‘‘OFF–OFF’’ patient’s state (no treatment). The similar structure
of the initial time signal is connected to the pathological tremor of the limbs in the patient with PD. The
structure of the signal changes and becomes more stochastic when the patient undergoes treatment. The
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amplification of stochastic effects in the initial signal is connected to the increase of degrees of freedom in the
studied system. Their maximal value corresponds to a normal physiological state.

The first technique consists in determining the Markov and non-Markov components of the initial time
signal, manifestation of long- and short-range statistical memory effects, the amplification and degradation of
correlations in the initial time signal. This technique also allows to reveal the effects of randomness, regularity
and periodicity, dynamic alternation effects of various relaxation processes for overall initial time series and
their local areas. The statistical theory of discrete stochastic non-Markov processes makes it possible to obtain
the whole spectrum of quantitative and qualitative values and the characteristics based on the information
carried by fluctuations and correlations in the initial time signals.

The stochastic dynamics of pathological tremor velocity in various dynamic states of a patient with PD is
clearly reflected in the phase portraits of orthogonal variables, in power spectra of a correlation function and
memory functions of the lower orders, in frequency dependences of the non-Markov parameter, in local
relaxation and kinetic parameters. The analysis of all the information about the correlations and fluctuations
of the initial time series allows to estimate the efficiency of different methods of treatment. For example, we
analyzed the experimental data of one of the patients with PD.

We used the statistical spectrum of the non-Markovity parameter to reveal Markov and non-Markov effects
in the initial time series. The increase or decrease of pathological tremor velocity predetermines the changes of
the statistical non-Markovity parameter. The increase of the stochastic effects and the Markov components of
the initial time signal and the manifestation of long-range correlations correspond to the decrease of
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pathological tremor velocity. At the same time the increase of pathological tremor velocity is accompanied by
the occurrence of the effects of periodicity and regularity, harmonic oscillations, non-Markov effects, the
manifestation of memory effects and degradation of correlations in the initial time signals.

The described localization procedure reflects the dynamic properties of pathological tremor in
some local areas of the initial time series. The window-time behavior of the initial TCF m0ðnÞ and the first
point of the non-Markovity parameter �1ðnÞ reflects the predictors of changes in pathological tremor velocity.
Any changes of pathological tremor are instantly reflected in the window-time behavior of the dynamic
characteristics.

Dynamic characteristics hAi and s2 of relaxation parameter l1 reflect relaxation rate in various dynamic
patient’s states. The use of any method of treatment results in acceleration of stabilization process. Significant
distinctions in the dynamic characteristics of parameter l1 in the state of the patient with no treatment
(‘‘OFF–OFF’’ condition) and in the complex use of medicaments and the DBS (‘‘ON–ON’’ condition) allow
to estimate the relaxation scales of physiological processes for healthy and sick people.

Finally, the change of the nature of the pathological tremor time signal results in the change of the whole set
of quantitative and qualitative characteristics and exponents. The general algorithm of these changes can be
determined in the following way. The structure of the initial time series becomes more stochastic with
reduction of Parkinsonian tremor velocity. The increase of the number of degrees of freedom determines
predominance of Markov effects, manifestation of long-range correlations and more significant velocity of
relaxation processes. The regularization of the initial time signal is observed with the increase of pathological
tremor velocity (when this or that treatment is stopped), i.e., its structure becomes more robust. This fact is
reflected in the behavior of the physical characteristics. The structure of phase clouds changes, the height of
the peak on the characteristic frequency in the initial TCF power spectra increases, characteristic oscillations
in the frequency spectra of the non-Markovity parameter appear, the value of the first point of the non-
Markovity parameter on zero frequency decreases to 1.

The use of the FNS confirms the conclusion about the resonant character of the amplitude of Parkinsonian
tremor velocity. It is necessary to note that the influence of the resonant tremor component decreases, and the
stochastic tremor component increases under treatment. At the same time the analysis of spectral dependences
and different moments of the second order, as well as the splitting of the signal into ‘‘high-frequency’’ and
‘‘low-frequency’’ components have allowed to make the timely estimate of the patient’s state (Figs. 8 and 10)
and the efficiency of different methods of treatment (Figs. 7 and 9). The estimates, which we have received, can
be used to choose the ‘‘treatment strategy’’ for the patient. It is necessary to note, that the high-frequency
component of pathological tremor velocity SF ðf Þ is most sensitive to the changes arising in the initial time
signal. On the whole, the method of the FNS allows to reveal the set of the eigenfrequencies and the resonant
or the stochastic components of the initial time signal in various physiological states of the patient. This
method elicits additional information about the effects of dynamic alternation and the nonstationary effects in
the initial time series.

The methods of the time series analysis which are submitted in this paper, give a simple quantitative method
or a graphic scheme for the analysis of various physiological states of a patient with PD. Each of these
methods is independent and reflects unique local information about the initial time signal structure.

The obtained results allow us to use the offered methods for the analysis of other complex systems of
biological nature. In particular, the offered methods have already made it possible to receive significant results
in the statistical analysis of the experimental data of epidemiology, cardiology, neurophysiology and of human
locomotion.
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