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In this manuscript, we present a theoretical analysis of the Mossbauer spectrum of a particle
diffusing on surfaces of finite size. The spectrum exhibits a broadening of the linewidth, which has
a characteristic size dependence associated with it. We present explicit results for spherical surfaces
and discs with various types of boundary conditions. The spectrum is sensitive to the type of
boundary condition. The Mossbauer spectrum can be used as an independent technique for surface
diffusion studies, and can be compared with the results obtained from field ion microscopy
investigations. Field ion microscopy studies focus on the mean squared displacement of the
particles. Using the same formalism, we present results for the mean squared displacement of
particles on small domains subject to varying boundary conditions.

1. Introduction

Diffusion of atoms on a surface of a solid has long been the subject of
scientific interest [1,2]. It has an important role in many technologicl processes,
such as crystal and thin film growth, the formation of epitaxial layers, surface
oxidization, heterogeneous catalysis, etc. However, very few good probes of the
rate of diffusion of the adsorbed atoms exist. Field ion microscopy [3] is a
technique that allows one to investigate diffusion on smooth surfaces. In such
studies successive images are formed of adsorbed atoms on surfaces that are
typically smaller than 100 A in diameter. From a knowledge of the displace-
ment r(t) — r(0) of the atom and the time elapse between successive imagings
one can deduce a diffusion coefficient D. Field ion microscopy studies have
shown that single adatoms on the (111) and (100) planes of rhodium and the
(110) plane of tungsten can be described by simple diffusion.

Despite these successful results there are some experimental difficulties
associated with the technique. The first is that of measuring the absolute
distances between the position of the adatoms [2]. Only surfaces with lattice
spacings of at least 3 A can be resolved directly. The second difficulty is
associted with the size of the surface used in field ion microscopy. Since the
surfaces are less than 100 A in diameter [1,2], the motion of an adatom wil be
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strongly effected by the surface after only a few jumps. The adatoms may be
preferentially bound by either the interior of the plane or the edge of the plane.
This will strongly effect the result for the mean square displacement, for
example if one assumes reflecting boundaries one obtains

o0

— 2 _a2(1_ exP(_anDt/az)
() =rO)) =4a’| g =2 B = sty

s

where B, are the solutions of
3
EJ ‘(Z ) =0,

In which J,(z) is the Bessel function of order 1. Clearly, a clever deconvolution
of the diffusion coefficient and the boundary conditions must be made.
Another experimental probe of the motion could be extremely useful, to aid
such a deconvolution.

In this paper, Mossbauer measurements [4,5] are proposed to provide
independent information on the diffusion coefficients of atoms on single
surfaces as well as on the size and boundaries of the surface. Alternatively, the
Maossbauer effect could be used in the study of surface migration of ligands to
active sites on sphere like proteins or enzymes [6,7], or energy transfer [8].

The experiment that we propose, consists of Mdssbauer atoms absorbed, in
dilute concentrations, on small surfaces. These atoms, which we assume to
diffuse, act as a source for y-rays. The detector would consist of a bulk slab
containing a high concentration of Mssbauer atoms which are assumed to
have negligible diffusion. The resulting signal is then expected to have a shape
that is characteristic of an atom diffusing on a surface of finite area. The
spectrum is expected to be composed of an unbroadened quasi-elastic peak
superimposed on a broad background. The strength of the quasi-elastic peak
and the width of the wings is expected to be determined by the size of the
surface area, the nature of the perimeter of the surface and the diffusion
coefficient. As a specific example, we consider a surface that has islands or
terraces which have sizes in the range of tens to hundreds of angstroms. A
finite concentration of Mossbauer atoms on such a surface should give a signal
intensity strong enough to be observed. At helium temperatures, the signal is
expected to be in the form of the natural spectrum as the diffusion processes
are usually thermally activated [1]. As the temperature increases we expect that
the line will be broadened due to the diffusion and that the unbroadened
component can be used to provide an estimate of the characteristic size of the
islands or terraces. .

In section 2, we shall discuss the Méssbauer spectrum of particles diffusing
on surfaces of finite size; first on spheres and then on discs.
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2. The Mossbauer cross-section

We shall assume that our Mdssbauer atoms are sufficiently dilute that the
diffusion is unaffected by the presence of other atoms. The atoms are free to
diffuse over the surface. The probability P(r, ry|t) that an atom, initially at r,
(¢ = 0), is at position r at time ¢ is governed by the diffusion equation

P
E—(r, rlt) =DV P(r, ryt), (2.1)

together with the constraint that the particle lies on the surface [10]. If the
initial distribution of atoms is given by p(r,), the Mdssbauer cross-section [9] is
given by

I(w, q) =fw%exp(—1“t/2) cos wt fdrop(ro)fdrP(r, rlt)
0

 xexplig(r—n)], (22)
in which g is the y-ray momentum, and I'/2 the natural linewidth. (For Fe®’:
g=727x10"m""and I'=0.71 X 107 s7'))

- We shall, for simplicity, first consider the motion to be confined to the
surface of a sphere of radius a. It is most convenient to transform to polar
coordinates r= (a, 8, ¥). The solution for the probability P(r, ry|¢) is then
found by expanding in terms of the spherical harmonics,
o0 {
Plronlt)=3 X A7(6, %lt) ¥,7(6, ). (2.3)
[=0 m=—/
On using the orthonomality properties of Y,”(8, ¢) we find that the coeffi-
cients A7'(8,, Y,|t) satisfy the equation

Dl(l+ 1)

a
?9;{4;"(00,¢0|t)= - A7 (65, Yolt). (2.4)

Solving this equation and then using the completeness relations to specify the
mmal amphtudes A”'(00, Y,|0) we find the solution

Plrni =5 T ¥(0,9) 7(0,40) e (—D’—(—’i’) (29)

FO m= —1
We shall define the polar axis to be in the direction of the emitted y-ray. Thus
we have
q(r(t) —r(0)) = ga(cos 8(t) — cos 6(0)). (2.6)
Substituting this in eq. (2.2) and utilizing the expansion of a plane wave in
terms of spherical Bessel functions,

exp(iga cos §) = E: 27+ 1) j,(ga)i ™' P(cos @), (2.7)
1=0
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we find that for a uniform initial distribution p(r)=1/4x the spectrum is
given by
N - , DI(I+1)/a*+T/2
o, q) =1 T @1+ 1) j2(qa) 222D
=0

W2 +[ DI+ 1) /a*+ T2

(2.8)

Thus the Mossbauer spectrum for particles diffusing on the surface of a sphere
consists of a superposition of Lorentzians of weight (2/ + 1) j?(ga), centered at
w=0, each with width DI(/+ 1)/a®>+ T /2. The total integrated strength
remaining a constant. Note that the spectrum contains a sharp inelastic line,
1= 0, with weight sin’qa/q%a>.

The size dependence occurs in the weights of the Lorentzians only, i.e. via
the dimensionless parameter ga. In the limit of vanishing size (ag — 0) we
recover the Mossbauer spectrum corresponding to a single particle unable to

diffuse,
lim I(w, q) =~ — 22—
qa—0 T W+ (I/2)

On increasing the size of the sphere the overall linewidth of the spectrum
increases, the higher angular momentum eigenstates becoming increasingly
important. Contributions from angular momentum eigenstates such that

(1+1)> q%a?

are negligible. For the size of the sphere approaching infinity, we recover the
spectrum for an infinite plane

. 1 Dg*+T/2
lim [(w,q)=— ; 9 / 5
ga— 0 T w +(Dq2+F/2)

In figs. 1a and 1b we have plotted the Mdssbauer spectrum calculated for two
different values of the diffusion coefficient. In these calculations we have used
ga = 180 which corresponds to a radius of roughly 25 A for Fe”. In fig. la,
T'a?/2D=02,ie. D=10"1""m? s7!, and in fig. 1b, I'a?/2D = 2000. Fig. la
-corresponds roughly to the diffusion of O on W(110) at temperatures of
1200 K. In the spectrum one can clearly observe the unbroadened quasi-elastic
contribution, which has intensity proportional to a2,

We shall now investigate the Méssbauer spectrum expected for an atom
diffusing on a disc of radius a, in order to make direct comparison with the
field ion microscopy data. The boundary conditions we use are

P(r, rplt) +xr-vrP(r, ryt) =0 = 0. (2.9)

These conditions include the special limits of completely reflecting (x — o)
and absorbing perimeter (x — 0). The condition probability P(r, ry|t) for a
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particle remaining inside the boundary is given by (see appendix A)
1
P('7'0|’)=m Z Z exp[ —im(y — )]
2 J J,
mn m(anr/a) m(anrO/a) exp(—D,Bj,,t/az), (2.10)
[1 + k2 Ban = m*)] T2 Bun)
where the B, are the solutions of
J(z)+x2J(2)=0.

The probability Q(r, r,|t) that a particle initially at r,, ends up absorbed on
the boundary at r, up to time ¢, is given by

o(r, plt) == Z Zexp[—lmw o)l

m=—o00 n=1
o Baro/a) 1 = exp(—DB,1/a?)

JoBun)  1+k3(B2,—m?)
We note that as the boundary becomes purely reflecting (x = o0) the probabil-
ity of absorption Q vanishes. In the opposite limit of completely absorbing
boundaries (x = 0), Q remains finite since J_(8,,,) also vanishes.

The Mossbauer spectrum is calculated, in appendix A, as
I( q) 4 Z Z J (q||a)+"q||a-lr:z(qua)

w, ==

T me o nmt (Bin—aia? )1+ (B2, — m?)]

{J (9)9) q“a +,B,,,,,xq,, al,(qa)  DP2,/a*+T/2

XK r|=a. (2.11)

= 413° W+ (DBZ,/a*+T/2)
r/2
ny VR 2.12
m(q||a) N (F/2)2 } ( )

in which we have used a uniform initial distribution and g, is the component of
the y-ray momentum parallel to the surface.

In (2.12) there are two contributions, one from the particles which remain
within the perimeter of the disc, and a second contribution from the particles
absorbed on the boundary. The last term in the curly brackets represents the
time independent part of the spectrum from the absorbed particles. Since these
are stationary, the contribution is unbroadened and has only the natural
Maossbauer line width I'/2.

In general, it is the finite size of the system that allows for a finite stationary
probability distribution of the particles, in the asymptotic long-time limit. It is
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this fact that leads to an unbroadened quasi-elastic contribution to the
Mossbauer spectrum.

The field ion microscopy studies have focused on the mean squared dis-
placement o(¢) of the diffusing particle. This quantity also depends on the
boundary conditions. We shall calculate o(¢) in appendix B,

o(1) = {(r(2) = r(0))*), (2.13)

for comparison with the Méssbauer formula (2.12);

= [ B2,(1+x)—2] + (xB2, - 2) exp(—DBZ,1/a?)

o(t)= SaZ{ hy

n=1 B(?n(l + KZBOZ")
_ @ (x+])+x(x+l) eXp(_DBIZnt/az)
n=1 Blzn[l + KZ(BIZ"— 1)] . (214)

In the limit of reflecting boundaries, xk = o0,

-]

1 2
o(t)=4az{z—n§lmexp(—Dﬂlznt/az)}, (2.15)
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Fig. 1. (a) The Mossbauer spectrum for a particle diffusing on a sphere, plotted in dimensionless

units, A separation between the quasi-elastic and inelastic part is possible (Fe’”, D =10~ '®m?s ™!,
a=125 A) The dotted line corresponds to the result expected from an mﬁmte plane. (b) The

Mossbauer spectrum for diffusion on the surface of a sphere (Fe’, D =10~ m? s~} .a = 25 A)
The dotted line corresponds to the infinite plane limit ga — oo. - E

where

‘I{(Bln)=0 ) . s . :
This result is plotted in fig. 2 as a function of the dimensionless quantity
7=Dt/a* and y(1)=0(t)/a’. In contrast to the result for the infinite plane,
the mean square displacement is bounded by a? in the limit r > . For short
times 1 — 0, o(?) vanishes, since

o

Yy 2 -
n‘lﬂfn(ﬂfn—l) )
as shown in appendix C. The initial slope, however, yields the infinite plane
result .

=
-

<

lim o) 11m4p): —=—exp(—DB},t/a*)=4D, (2.16)
t—o0 Ot =0 7 1" -1

as also shown in appendix C.
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ig. 2. The mean square displacement o(¢) (eq. (2.15)) for a particle diffusing on a disc with a

F
completely reflecting perimeter. The axes are in the dimensionless units y = 0/a? and 7 = Dt /a2,
The dashed line represents the asymptotic infinite plane resuit.

This has the following consequences for field ion microscopy: that marked
deviations of o(2) occur from the infinite plane result. For O on the W(110)
plane at T=1100 K, the deviation is 10% for times ¢ = 10" s for a typical
plane of diameter 30 A. Ir on the W(211) plane, at room temperature, yields a

10% error after ¢t = 10% s or a 2.5% error at t = 102 s,
On the other hand for completely absorbing boundaries we find

1 = 2
o(t)=8az{ﬁ—"-1 B—&lexp(—Dﬁg,,t/az)}, (2.17)
where
Jo(Bo,) =0, (2.18)
which has the same initial behavior,
limo(z) =0,
t—0

tim ) _imap v .%exp(—Dﬁénf/a2) =4D,

1—0 ot 1—0 n=1 Pon
as that for the reflecting boundaries. The full behavior is plotted in fig. 3.
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Fig. 3. The mean square displacement o(?) (eq. (2.17)) for a particle on a disc with an absorbing
boundary. The dashed line corresponds to the asymptotic infinite plane result.

3. Discussion

Mossbauer measurements of an atom diffusing on a surface should exhibit a
broadening. The broadening is dependent on the size of the surface, and on the
boundary conditions in a characteristic way. In principle, one should be able to
determine the diffusion coefficient D, the average radius of the surface a, as
well as the nature of the boundary k. These quantities may then be compared
with the diffusion coefficients obtained from field ion microscopy techniques.

We also propose that Mossbauer measurements be performed on single
simple metal surfaces that have islands or terraces [11]. Such experiments
would be difficult to perform. The present state of the art Mdssbauer measure-
ments can be performed on single surfaces with areas of 10~ m?, with only
milli-monolayers of Co coverage. However, the data collection time is of the
order of half a day [12], and the data analysis must take into account the finite
beam width. At helium temperatures, we expect that only the unbroadened
natural line will be observed since the diffusion on surfaces usually involves a
considerable activation energy [1]. As the temperature is increased towards
room temperature, the spectrum will change its shape. The spectrum will then
be composed of an un-broadened line of reduced strength superimposed on a
broad background. Even though there is a distribution in the geometries and
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the sizes of the islands or terraces, it can be argued that the Mossbauer
spectrum can be used to provide an estimate of the average inverse area of the
size of the islands. Thus, if the Mossbauer technique that we have outlined is

successful, the technique could be applied to the problem of surface characteri-
zation.
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Appendix A
The Green function and Méssbauer spectrum for a particle diffusing on a disc

The conditional probability satisfying the diffusion equation

d
EP(r, rit) = DV*P(r, nt), (A.0)
can be expressed uniquely in terms of a complete set of states
o0 o0
P(r.nlt)= Y X a,,(t) J(Ba.r/a) exp(—imp), (A.1)
m=—o0 n=1

where B, are determined by the boundary condition

Jm(ﬁmn) +Kﬁanr:1(an) =0 (A'z)
On Laplace transforming (A.0) and using Bessels equation

l i
Tn(x) + 2 (x) + (1 - m?/x?) ], (x) =0, (A.3)
and using the initial condition
P(r,n0)=8(r—r,), (A.4)
we find

Y (0+DB2,/a*) 4, @) L (B,,r/a) exp(—imy)

—La(r =) 84~ ¥o), L - (A3)

in which 4,,,(w) is the Laplace transform of a,,,(¢). The time dependence of
a,,(t) is thus found to be ' S

(1) = @ (0) exp(— DBZ,1/a?). (A
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The initial value a,,,(0) is found from (A.5) by using the completeness relation
(A.7) and then projecting out on the m, n eigenfunction of (A.0),

,iosu—ro)sw—%)

_ L i i exp —im(¥ = %o)] Jo(Bua?/@) T BmnTo/@)
Wa m=—o0 n=1 (1—mz/Bjn)Jj(an)‘*‘J'i(an)

(A7)

The projection of eq. (A.5) on the eigenfunction is achieved by using Lommels
second integral,

x 2
IRZAC) dy=x7[1'2(ax) + (
0
The result for a,,,(0) is then found to be
2 rinJm(anrO/a) exp(im\PO)
ma’[1+ 2B, = m*)] JH(Bon)

On using (A.9), (A.6) and (A.1) we find the result quoted in the text for P(r,
ry]t) (eq. (2.10)). The result for Q(r, r|t) follows directly from (2.10) by
considering the net flux of particles on the boundary. Our results (2.10) and
(2.11) satisfy the condition

Jar[dnp(n) P(r, i) + Q(r, nlt)] = [dr,p(ny),

for any arbitrary p(r,). The Mdssbauer spectrum is calculated from

2 )it | (A8)

a,,,(0) = (A.9)

f"dr dr[ P(r, rolt) + Q(r, rp|t)] p(ry) exp(ig,r cos ¢ —igyry cos §,). (A.10)

We shall assume a uniform initial probability p(r,) = 1/ma”. The contribution
of P(r, ry|t) to the spectrum is found by rewriting (A.10) as

L(t)=Y exp(—DB2,t/a?)

«f rdrdyd,(B,,r/a) exp(—imy) exp(igr cos ¢) kB,
nal (B, )1 +«2(82, - m?)]"”

X {...}*.

(A.11)

On using the generating function expansion

exp(ig,r cos y) = i J.(q,r) exp(imy}), (A.12)

m=—c0o
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and integrating over the area, we find
4 oxp(~ DBZ.1/0*) ] u(mpa) + i (gya)]”
(gta® - m,.)[1+'€( = m?)]
The radial integrals involved are given by Lommels first integral
[ (@) In(By) y & =l R (ax) J3(8) = o B) ()]
(A14)

The Mossbauer spectrum from the particles bound to the perimeter I,(7) is
found from

L()=Y (A.13)

I(1)=- y f[l—exp(—DBjnt/az)]

m=—o0 n=1
ro dry Ay T (Brunro/@) *Bun €Xp(ims) exp( —igyro cos ¥)
Xf ma’ J(B...) 2 g2 _ ,2Y]1/2
m\ Fmn [1 + K (an m )]
ffli Jr:t(an) k exp(_im‘)b) exP(iq"a (@0 ) 4/)
m Jm(an) [l+x ( — 2)]‘/2
which yields
I(t)= - X X [1 - CXP(—DBj"t/aZ)]

% (‘Iua)[ (‘I||a)+'“1|| r:t(q”a)]
(gfa*— B2 N1 +x*(B2,—m?)]

Combining (A.13) and (A.16), multiplying by } exp(—1I|?]) and Fourier
transforming yields (2.12).

, (A.15)

(A.16)

Appendix B

The mean square displacement of a particle diffusing on a disc with mixed
boundary conditions

o(1)= [dr [dr,p(r)] P(r, nlt) +O(r, i)} (r— )" (B.0)

We shall use the uniform initial probability p(r,) = 1/(wa?). Separating the P
and Q contributions of o(?), such as

o(1)=0,(1) +ay(1),
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the contribution o,(1) is evaluated first by integrating over the angles

4
o(t)-—; Z /rdr/rodro r +r0)8m0 rro( 8, ',+8m,_,)]

m=—o0

X f: 2 nzm‘,m(annr/a) Jm(anrO/a)
n=1 [1 +x (Brfm_m2)] Jrz(ﬁmn) ’

The radial integrals are evaluated by using the relation
X
/ r'J,(Ar) dr
0
r"
)\
Thus we obtain

o = 842 - KZ[IBOnJI(BOn)_z‘IZ(BOn)] J1(Bo,)
p(t) 8 {"E:l BOn(l + K2B02n) an(BOn)

exp| - DBZ,t/a?. (B.1)

(m+1

”)/ n=1y (Ar)dr. (B.2)

(w0

X exp( —D,Bg',,t/az)

y K*J7(B1n) I
z=: [1+x (:Bln 1)] J2(B1a) eXp( DBint/a ) : (B.3)
* Similarly,
¢1(1‘)=i2 > fdroro a +r0)8m0 ary(8,, ',l+8'm,—l)]

it

" 3 Sn(Baro/a) 1 - exp(— DB 1/a%)

n=1 Jm(ﬂmn) 1 +K2(B,3,,,_m2)
which on integrating becomes
s [BOnJ(BOn) J(BOn
t)=8
o1) =8 {nzl Jo( Bon) B3,(1+ xB3,)
— E KJ2(B1n)
n=1 Jl(Bln) Bln[1 + Kz(Bl?.n -1

Using the recursion relations

Tmar(2) =2 0(2) = J(2),

(B.4)

[1 - exp( D,Bg,,t/a2)]

) [1-exp(—DB2,1/a%)] } (B.5)
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and
Gpoi()= I gy 4 (1= 2 ) o)
we find

=10 § L2212

as1 Bo,(1+x63,)

_ d (k+ 1)2
El BZ[1+x*(B2, - 1)]

exp( —DBOZ,,t/aZ)

exp(-Dﬂfnt/az)},

and

- an(l + K) —2
Gq(t) = 8(12{ ngl M[l - exp(_DB(?,,t/az )]
00 (x + 1) ) .
— . _D |
ngl B]z,.[l +x2(ﬂl2n_ 1)] [ exp( Bi.t/a )]}
which combine to yield eq. (2.14) of the text.

Appendix C

Some useful properties of the zeros of Bessel functions

(B.6)

(B.7)

(B.8)

This appendix is concerned with an extension of Rayleigh’s formulae for the

zeros of J (x),

J(a,, )=0.

Rayleigh [12] has shown
e L __ 1
n=1 arznn 4(m+1)’

= 1 . 1
Y — =

0 16(m+ 1) (m+2)
etc. We shall derive similar formulae, for the z\c_yrbs .Qf J(x),
JI:I(BMII) = 0'
Consider the expansion [13]
m—1 oo 2
, z/2 z
Ji(z)= (/27 I1 (1 - —2)

2(m_ 1) u=1

mn

(C.0)

(C.1)

(C.2)

(C.3)

(C.4)
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Forming the logarithmic derivative, we find

(=1 Y (=2 +“'"). (c.5)

n=1 mn Z z

On substituting Bessels equation in (C.5) and substituting z = m, we find our
first result,

-]

1= 3 —2m (C6)

n=1 r?m —m 2
Our second result follows from inserting the series expansion for J,,(z) in both
sides of (C.5). Collecting like powers of z, produces the equality
_m+2 _y L
am(m+1) 2 B2,

and similar equalities for

- 1

: | ()

= 1

Z 2r
n=1 Pmn
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