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Abstract

We consider the problem of stochastic averaging of a quantum two-state dynamics driven by non-Markovian, discrete noises of the
continuous time random walk type (multistate renewal processes). The emphasis is put on the proper averaging over the stationary noise
realizations corresponding, e.g., to a stationary environment. A two-state non-Markovian process with an arbitrary non-exponential
distribution of residence times (RTDs) in its states with a finite mean residence time provides a paradigm. For the case of a two-state
quantum relaxation caused by such a classical stochastic field we obtain the explicit exact, analytical expression for the averaged
Laplace-transformed relaxation dynamics. In the limit of Markovian noise (implying an exponential RTD), all previously known results
are recovered. We exemplify new more general results for the case of non-Markovian noise with a biexponential RTD. The averaged,
real-time relaxation dynamics is obtained in this case by numerically exact solving of a resulting algebraic polynomial problem. More-
over, the case of manifest non-Markovian noise with an infinite range of temporal autocorrelation (which in principle is not accessible to
any kind of perturbative treatment) is studied, both analytically (asymptotic long-time dynamics) and numerically (by a precise numer-
ical inversion of the Laplace-transformed averaged quantum relaxation).
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The influence of a stochastic environment on relaxation
and charge transfer processes in condensed media [1–3] is
a longstanding problem of prime importance in chemical
and statistical physics [4–10]. In this context, exactly solv-
able models are rather rare. The method of a stochastic
Hamiltonian by Anderson and Kubo [11–13], known also
under the label of stochastic Liouville equation (SLE)
approach [14–22] presents a common methodology that
has been employed over decades [10,22,23]: It is based on
the simplifying representation of a stochastic environment
by a classical stochastic field that acts on the quantum sys-
tem of interest without a feedback mechanism. This set up
thus necessarily inherits some shortcomings. In particular,
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quantum states become asymptotically populated with
equal weight as if the environment temperature were infi-
nite. This shortcoming can be cured in an ad hoc manner
by adding an extra term to the stochastically averaged Liou-
ville equation to ensure a proper thermal equilibrium. What
‘‘proper’’ means, however, is specific to the problem under
consideration. Therefore, the mentioned shortcoming can
be overcome rigorously only within a full quantum-mechan-
ical treatment of the total, coupled system-environment
dynamics [24,25]. Notwithstanding this principal difficulty,
the SLE approach remains useful and popular over the
years. The method is particularly appealing because it
allows to extract exact results for a number of interesting
physical models [17,20,22,23,26–29].

In view of the central limit theorem, the use of classical
random forces with a Gaussian statistics is most frequently
employed for this sort of semiclassical modeling. The case
of Gaussian white noise serves frequently as a simple model
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1 This does not necessarily imply that the process is Markovian: If the
RTD of some state is non-exponential the process is clearly non-
Markovian and exhibits memory effects. This can be understood due to
the following reasoning which can be traced back to Ref. [56]. For a
memoryless, Markovian process the survival probability UjðsÞ :¼R1
s wjðs0Þds0 in any state j must obviously assume the following property:

Uj(s1 + s2) = Uj(s1)Uj(s2). The only non-trivial solution of this latter
functional equation reads Uj(s) = exp(�cjs), where cj > 0 is the rate to
leave the state j.
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for the corresponding classical stochastic bath; it formally
corresponds to a heat bath with an infinite spectrum of
excitations. For this noise model there exists a number of
exact results [17,20,22,23,26,29]. Realistic thermal baths
possess, however, a spectrum with cut-off at finite energies.
This circumstance then renders temporal autocorrelations
that decay on a finite time scale. The use of stationary
Gaussian–Markov noise with an exponentially decaying
temporal autocorrelations (Ornstein–Uhlenbeck process)
presents one of the simplest models for the corresponding
colored noise [20,30]. We remark, however, that even for
the archetype case of a two-state tunneling system this col-
ored noise model cannot be solved exactly, except for some
special situations, see, e.g., in Ref. [27] for a stochastic Lan-
dau–Zener model. In practice, one is forced to invoke addi-
tional approximations; such as in the case of a weakly
colored noise the method of cumulant expansions
[20,21,31]. It is equivalent to an expansion in a small
parameter (the Kubo number) which is the root mean
square (rms) of the fluctuations of the characteristic cou-
pling energy (in frequency units) times the autocorrelation
time of corresponding bath fluctuations [31]. Other pertur-
bation schemes can also be used [30]. In particular, the
opposite limit of large Kubo numbers (quasi-static fluctua-
tions) also allows for a consistent perturbative treatment
[30–32].

Non-perturbative approaches are, however, much more
appealing. Continuous state fluctuations can be approxi-
mated with jump-like stochastic processes possessing a
large number of discrete states. An example presents a dis-
cretization of the spatial degree of freedom of a continuous
diffusion process. The class of Markovian discrete state
noises provide a rather general framework for a formally
exact averaging without using any kind of perturbation
expansion [13,16,33,36–39]. The stochastic path integral
approach [34,35], adapted for such jump processes [16,33]
is particularly convenient. There exist yet other powerful
approaches, cf. in Refs. [36,40–43]. The two-state Markov-
ian noise (or dichotomous noise) presents the archetype
discrete state process which allows for an exact study of
stochastically driven two-level quantum systems [40,44–
50]. Furthermore, the multistate case of an exciton transfer
in molecular aggregates with many independent noise
sources modeled by independent two-state Markovian
noises is also solvable, in the sense that it can be reduced
to solving numerically an algebraic relation [51]. This
dichotomous noise can serve to model a pseudo-spin 1/2
stochastic bath degree of freedom. In the case of electron
transfer in molecular systems such pseudo-spin stochastic
variables can simulate, for example, the bistable fluctua-
tions of a charged molecular group nearby the donor, or
the acceptor site, or also the conformational fluctuations
of a bistable molecular bridge [52].

The method of a stochastic path averaging can readily
be generalized onto non-Markovian jump processes of
the renewal (or continuous time random walk) type [53–
55]. Such processes are then characterized by the set of res-
idence time distributions (RTDs) wj(s) in the noise states j

and the probabilities pij for undergoing a transition from
state j! i at the end of each residence time interval
(RTI) into another noise state i. The lengths of subsequent
RTIs are mutually independent.1 This constitutes the cru-
cial ingredient that allows for an exact averaging for such
non-Markovian processes [53]. Attention must be paid,
however, to the stationarity of the process, i.e., to the
proper averaging over the stationary noise realizations in
a stationary environment. This issue is not trivial and
requires special consideration: Such a stationary averaging
is possible only if the average residence times are finite for
all discrete noise states. The stationary noise averaging can
be performed exactly in the Laplace-domain for any non-
Markovian process of the considered type and arbitrary
quantum dynamics [54,57]. In particular, the Laplace-
transform of the corresponding quantum propagator can
be written in a general analytical form [57]. It yields a com-
plex expression which practically can be elaborated on
explicitly in some special cases only. In this work, we pres-
ent analytical expressions for averaged quantum two-state
dynamics driven by a symmetric two-state non-Markovian
noise with arbitrary RTD possessing a finite mean time.
Our results generalize the prior results of Refs. [40,44,50]
and reduce to the latter ones in the particular case of Mar-
kovian noise.

The paper is structured as follows. We first review the
general approach and present the main result for the
Laplace-transformed stationary-averaged quantum propa-
gator in Section 2. A specific application of this general
result to the Kubo oscillator is given in Section 3. Explicit
results for a quantum two-state dynamics driven by a two-
state non-Markovian noise are provided in Section 4. The
limit of Markovian noise and a special non-Markovian
case are studied for the two-state quantum dynamics in
Section 5. The case of manifest non-Markovian noise with
infinite mean autocorrelation time is considered in Section
6. In Section 7 we provide a resume of our results.

2. Stochastic Liouville–von-Neumann equation and

corresponding averaged quantum propagator

To start out, let us consider an arbitrary quantum sys-
tem with a Hamilton operator Ĥ ½nðtÞ� which depends on
a classical, noisy parameter n(t). This stochastic process
n(t) can take on either continuous or discrete values.
Accordingly, the Hamiltonian Ĥ randomly in time acquires
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different operator values Ĥ ½nðtÞ� which generally do not

commute, i.e., ½Ĥ ½nðtÞ�; Ĥ ½nðt0Þ�� 6¼ 0.
The prime objective is then to noise-average the corre-

sponding quantum dynamics which is characterized by
the Liouville–von-Neumann equation

d

dt
qðtÞ ¼ �iL½nðtÞ�qðtÞ ð1Þ

for the density operator q(t) over the realizations of the
noise n(t). L½nðtÞ� in Eq. (1) denotes the quantum Liouville
superoperator, L½nðtÞ�ð�Þ ¼ 1

�h ½Ĥ ½nðtÞ�; ð�Þ�. In other words,
the posed challenge consists in evaluating the noise-aver-
aged propagator

hSðt0 þ t; t0Þi ¼ T exp �i

Z t0þt

t0

L½nðsÞ�ds

� �� �
; ð2Þ

where T denotes the time-ordering operator.

2.1. Non-Markovian vs. Markovian discrete state

fluctuations

We next specify this task for noise assuming N discrete
states {ni}. The noise is generally assumed to present a
non-Markovian renewal process which is fully character-
ized by the set of transition probability densities wij(s) for
making random transitions within the time interval
[s,s + ds] from the state j to the state i. These probability
densities are necessarily positive and obey the normaliza-
tion conditions

XN

i¼1

Z 1

0

wijðsÞds ¼ 1 ð3Þ

for all j = 1,2, . . . ,N.
The subsequent residence time-intervals between jumps

are assumed to be mutually uncorrelated. The residence
time distribution (RTD) wj(s) in the state j reads

wjðsÞ ¼
X

i

wijðsÞ ¼ �
dUjðsÞ

dt
. ð4Þ

The survival probability Uj(s) of the state j follows then as

UjðsÞ ¼
Z 1

s
wjðsÞds. ð5Þ

This constitutes the general scheme for continuous time
random walk (CTRW) theory [58–61].

Several particular descriptions used for such non-Mar-
kovian processes of the renewal type are worth mentioning.
The approach in Ref. [53] in terms of time-dependent aging
rates kij(t) for the transitions from state j to state i corre-
sponds to a particular choice, reading

wijðsÞ :¼ kijðsÞ exp �
X

i

Z s

0

kijðtÞdt

" #
. ð6Þ

The Markovian case corresponds to time-independent tran-
sition rates kij(s) = constant. Any deviation of wij(s) from
this Markovian case then in turn yields a time-dependence
of the transition rates kij(s) which amounts to a non-Mar-
kovian behavior. Furthermore, the survival probability
Uj(s) in the state j is determined by

UjðsÞ ¼ exp �
XN

i¼1

Z s

0

kijðtÞdt

" #
ð7Þ

and Eq. (6) can be recast as

wijðsÞ :¼ kijðsÞUjðsÞ. ð8Þ

The introduction of such time-dependent ‘‘aging’’ rates
presents one possibility to describe non-Markovian mem-
ory effects; it is not unique though. A different scheme fol-
lows by defining [55]:

wijðsÞ :¼ pijðsÞwjðsÞ ð9Þ

with
P

ipijðsÞ ¼ 1. The physical interpretation is as follows:
The process remains in a state j for a random time interval
characterized by the probability density wj(s). At the end of
this time interval, it jumps into another state i with a gen-
erally time-dependent conditional probability pij(s). Such
an interpretation is frequently used in the continuous time
random walk theory. Evidently, any process of the consid-
ered type can be interpreted in this way. By equating Eqs.
(8) and (9) and taking into account that wj(s) := �dUj(s)/ds
one deduces that the approach in Ref. [53] can be related to
that in Ref. [55] with the time-dependent transition
probabilities

pijðsÞ ¼
kijðsÞP

ikijðsÞ
ð10Þ

and with the non-exponential probability densities wj(s),
i.e., wjðsÞ ¼ cjðsÞ exp½�

R s
0
cjðtÞdt� with cjðsÞ :¼

P
ikijðsÞ.

The description of non-Markovian effects with the time-
dependent transition probabilities pij(s) is rather difficult to
derive from the sample trajectories of an experimentally
observed random process n(t). The same holds true for
the concept of time-dependent rates. These rates cannot
be measured directly from the set of stochastic sample tra-
jectories. On the contrary, the RTD wj(s) and the time-inde-

pendent pij (with pii := 0) can routinely be deduced from
measured sample trajectories, say, in a single-molecular

experiment. The study of the statistics of the residence
time-intervals allows one to obtain the corresponding
probability densities wj(s) and, hence, the survival proba-
bilities Uj(s). Furthermore, the statistics of the transitions
from one state into all other states allows one to derive
the corresponding conditional probabilities pij. From this
primary information, a complementary interpretation of
experimental data in terms of time-dependent rates kij(s)
can readily be given as

kijðsÞ ¼ �pij

d ln½UjðsÞ�
ds

ð11Þ

if one prefers this particular ‘‘language’’ to describe the
non-Markovian effects. Moreover, the description with a
constant set pij provides a consistent approach to describe
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stationary realizations of n(t), and consequently to find the
corresponding averaged quantum evolution [57]. It is this
reasoning that we shall follow in the following.

2.2. Averaging the quantum propagator

The task of performing the noise-averaging of the quan-
tum dynamics in Eq. (2) can be solved exactly because we
can make use of the piecewise constant character of the
noise realizations n(t) [16,33,53]. Indeed, let us consider
the time-interval [t0,t] and let us take a frozen realization
of n(t) assuming k switching events within this time-interval
at the time-instants ti,

t0 < t1 < t2 < � � � < tk < t. ð12Þ
Correspondingly, the noise takes on the values
nj0
; nj1

; . . . ; njk
in the time sequel. Then, the propagator

S(t,t0) reads

Sðt; t0Þ ¼ e�iL½njk
�ðt�tkÞe�iL½njk�1

�ðtk�tk�1Þ � � � e�iL½nj0
�ðt1�t0Þ. ð13Þ

Let us further assume that the process n(t) has been pre-

pared in the state j0 at t0. Then, the corresponding k-times
probability density for this noise realization reads

P kðnjk
; tk; njk�1

; tk�1; . . . ; nj1
; t1jnj0

; t0Þ
¼ Ujk

ðt � tkÞwjk jk�1
ðtk � tk�1Þ � � �wj1j0

ðt1 � t0Þ ð14Þ

for k 5 0 and P 0ðnj0
; t0Þ ¼ Uj0

ðt � t0Þ for k = 0. In order to
obtain the noise-averaged propagator hS(t|t0,j0)i condi-
tioned on such a non-stationary initial noise preparation
in the state j0 one has to average (13) with the probability
measure in (14) (for k ¼ 0;1). This task can be readily be
performed by use of the Laplace-transform method [it will
be denoted in the following as ~AðsÞ :¼

R1
0

expð�ssÞAðsÞds
for any time-dependent quantity A(s)]. The result for
h~Sðsjt0; j0Þi ¼

R1
0

expð�ssÞhSðt0 þ sjt0; j0Þids thus reads
[53,57]

h~Sðsjt0; j0Þi ¼
X

i

ð~AðsÞ½I � ~BðsÞ��1Þij0
; ð15Þ

where the matrix-superoperators ~AðsÞ and ~BðsÞ read in
components:

~AklðsÞ :¼ dkl

Z 1

0

UlðsÞe�ðsþiL½nl�Þs ds; ð16Þ

~BklðsÞ :¼
Z 1

0

wklðsÞe�ðsþiL½nl�Þs ds; ð17Þ

correspondingly, and I denotes the unit matrix.
To obtain the stationary noise average of the propaga-

tor it necessary to average (15) over the stationary initial
probabilities pst

j0
. The averaging over the initial distribution

alone is, however, not sufficient to arrive at the stationary
noise-averaging in the case of non-Markovian processes
since the noise realizations constructed in the way still
are generally not stationary. This principal problem is
rooted in the following observation: By preparing the
quantum system at t0 = 0 in a non-equilibrium state q(0),
the noise is taken at random in some initial state nj0
with

the probability pst
j0

(stationary noise). However, every time
when we repeat the preparation of the quantum system in
its initial state, the noise will already occupy a (random)
state nj0

for some unknown, random time interval s�j0
(set-

ting a clock at t0 = 0 sets the initial time for the quantum
system, but not for the noise, which is assumed to start
in the infinite past). Therefore, in a stationary setting a
proper averaging over this unknown time s�j0

is necessary.
The corresponding procedure implies that the mean resi-
dence time hsji is finite, hsji51, and yields a different res-
idence time distribution for the initial noise state, wð0Þj ðsÞ;
namely, it is evaluated to read wð0Þj ðsÞ ¼ UjðsÞ=hsji [62].
Only for Markovian processes where Uj(s) is strictly expo-
nential, does wð0Þj ðsÞ coincide with wj(s). Using this wð0Þj ðsÞ
instead of wj(s) for the first sojourn in the corresponding
state and for the time-independent set pij, the noise realiza-
tions become stationary [54,57,62]. The corresponding
expression for the quantum propagator averaged over such
stationary noise realizations has been derived in Ref. [57],
cf. Eqs. (25), (29) therein. In a slightly more general form
it reads

h~SðsÞi ¼ h~SðsÞistatic �
X

ij

ð~CðsÞ � ~AðsÞ½I � P ~DðsÞ��1

� P ~AðsÞÞij
pst

j

hsji
; ð18Þ

where h~SðsÞistatic is the Laplace-transform of the statically
averaged Liouville propagator

hSðsÞistatic :¼
X

k

e�iL½nk �spst
k ; ð19Þ

pst
j ¼ limt!1pjðtÞ are the stationary probabilities of noise

states which are determined by a system of linear algebraic
equations [54,57],

pst
j

hsji
¼
X

n

pjn

pst
n

hsni
; ð20Þ

and P is the matrix of transition probabilities pij, i.e., the
‘‘scattering matrix’’ of the random process n(t). Further-
more, the auxiliary matrix operators ~CðsÞ and ~DðsÞ in
(18) read in components:

~CklðsÞ :¼ dkl

Z 1

0

e�ðsþiL½nl�Þs
Z s

0

Ulðs0Þds0 ds; ð21Þ

~DklðsÞ :¼ dkl

Z 1

0

wlðsÞe�ðsþiL½nl�Þs ds. ð22Þ

We remark here that this very same averaging procedure
can be applied to any system of linear stochastic differential
equations.
3. An archetype case: the Kubo oscillator

A simple but very instructive application of this general
procedure is the noise-averaging of the Kubo oscillator
[13,60]; reading
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_xðtÞ ¼ i�½nðtÞ�xðtÞ. ð23Þ
This particular equation emerges in various situations such
as in the theory of optical line shapes, nuclear magnetic res-
onance [11,13], and also for single molecule spectroscopy
[63]. In the context of the stochastic theory of spectral line
shapes [11,13,63], �[n(t)] in Eq. (23) corresponds to a sto-
chastically modulated frequency of quantum transitions
between the levels of a ‘‘two-state atom’’, or transitions be-
tween the eigenstates of a spin 1/2 system.

The spectral line shape is determined via the correspond-
ing stochastically averaged propagator of the Kubo oscilla-
tor as [13]

IðxÞ ¼ 1

p
lim

g!þ0
Re½~Sð�ixþ gÞ�. ð24Þ

Note that the limit g! +0 in Eq. (24) is necessary for the
regularization of the corresponding integral in the quasi-
static limit hsji !1. Upon identifying L½nk� with ��k in
Eq. (18) we end up with

h~SðsÞi ¼
X

k

pst
k

s� i�k
�
X

k

1� ~wkðs� i�kÞ
ðs� i�kÞ2

pst
k

hski

þ
X
n;l;m

1� ~wlðs� i�lÞ
s� i�l

1

I � P ~DðsÞ

� �
lm

� pmn

1� ~wnðs� i�nÞ
s� i�n

pst
n

hsni
ð25Þ

with ~DnmðsÞ ¼ dnm
~wmðs� i�mÞ.2 The corresponding line

shape follows from Eq. (25) by virtue of Eq. (24). This re-
sult presents a non-Markovian generalization of the pio-
neering result by Kubo [13] for arbitrary N-state discrete
Markovian processes. This generalization applies to arbi-
trary non-exponential RTDs wk(s), or, equivalently, in
accordance with Eq. (11) also for time-dependent transi-
tion rates kij(s). This generalization was put forward origi-
nally in Ref. [57] for a particular case, pst

j ¼ hsji=
P

khski,
which corresponds to an ergodic process with uniform mix-
ing (meaning that in a long-time limit each state j is visited
equally often).

Next we apply this result to the case of two-state non-
Markovian noise with p12 = p21 = 1 and pst

1;2 ¼ hs1;2i=
½hs1i þ hs2i�. Eq. (25) then yields

h~SðsÞi ¼
X
k¼1;2

1

s� i�k

hski
hs1i þ hs2i

þ ð�1 � �2Þ2

ðhs1i þ hs2iÞðs� i�1Þ2ðs� i�2Þ2

� ½1�
~w1ðs� i�1Þ�½1� ~w2ðs� i�2Þ�

1� ~w1ðs� i�1Þ~w2ðs� i�2Þ
. ð26Þ
2 Note that the formal solution of another important problem, namely
the (first order) relaxation kinetics with a fluctuating rate,
_pðtÞ ¼ �C½nðtÞ�pðtÞ follows immediately from (25) upon substitution
ej! iCj, see in Ref. [64] containing some non-trivial non-Markovian
examples.
With (26) substituted into (24) one finds the result for the
corresponding spectral line shape which matches that pre-
sented recently in Ref. [65] derived therein by use of a dif-
ferent method. Moreover, in the simplest case of
Markovian two-state fluctuations with ~w1;2ðsÞ ¼ 1=ð1þ
hs1;2isÞ and with zero mean, hn(t)i = hs1i�1 + hs2i�2 = 0,
this result simplifies further to read

h~SðsÞi ¼ sþ 2v
s2 þ 2vsþ r2

. ð27Þ

In (27), r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2ðtÞi

q
¼ j�2 � �1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs1ihs2i

p
=ðhs1i þ hs2iÞ

denotes the root mean squared (rms) amplitude of fluctua-
tions. Moreover, v = m/2 + ir sinh(b/2) denotes a complex
frequency parameter, where m = 1/hs1i + 1/hs2i is the in-
verse of the autocorrelation time of the considered process.
Its autocorrelation function reads hn(t)n(t 0)i = r2exp
(�m|t � t 0|). Furthermore, b = ln(hs1i/hs2i) = ln|�2/�1| is an
asymmetry parameter. The spectral line shape correspond-
ing to (27) has been obtained by Kubo, reading [13,66],

IðxÞ ¼ 1

p
r2m

ðxþ �1Þ2ðxþ �2Þ2 þ x2m2
. ð28Þ

Moreover, the expression (27) can readily be inverted into
its time domain. Note that the corresponding averaged
propagator hS(t)i of Kubo oscillator [67], i.e.,

hSðtÞi ¼ e�vt cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � v2

p
tÞ þ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � v2
p sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � v2

p
tÞ

" #

ð29Þ
is complex-valued when the process n(t) is asymmetric,
i.e., b 5 0. This is in accordance with the asymmetry of
the corresponding spectral line shape, I(�x) 5 I(x). De-
rived in a different context [68] for the case of a two-state
Markovian process with a non-vanishing mean and in
quite different notation an expression equivalent to (29)
is known in the theory of single-molecule spectroscopy
[68–70]. For a symmetric dichotomous process (with
b = 0) Eq. (29) reduces to the expression (6.10) (with
x0 = 0) in Ref. [31].
4. Averaged dynamics of a two-level quantum systems driven

by two-state noise

Our non-Markovian stochastic theory of quantum
relaxation can be further exemplified for the relevant case
of a two-state quantum system, reading

HðtÞ ¼ E1j1ih1j þ E2j2ih2j þ
1

2
�hnðtÞðj1ih2j þ j2ih1jÞ; ð30Þ

which is driven by a two-state non-Markovian stochastic
noise n(t) = {D+,D�} with corresponding RTDs w+(s),
w�(s) and the stationary state probabilities pst

� ¼ hs�i=
½hsþi þ hs�i�. This noise assumes the normalized stationary
autocorrelation function k(t) := hdn(t)dn(0)ist/h[dn]2ist

where dn(t) := n(t) � hnist is temporal fluctuation. Its
Laplace-transform reads [71–74]



3 This means that each and every stochastic trajectory runs on the Bloch
sphere. The stochastically averaged Bloch vector dynamics h~rðtÞi is,
however, ‘‘dissipative’’; i.e., jh~rðtÞij 6 1, because hriðtÞi2 6 hr2

i ðtÞi. Thus,
the averaged density matrix hq(t)i remains always positive in the
considered model, independently of the particular model used for the
stochastic force n(t).
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~kðsÞ ¼ 1

s
� 1

hsþi
þ 1

hs�i

� �
1

s2

ð1� ~wþðsÞÞð1� ~w�ðsÞÞ
1� ~wþðsÞ~w�ðsÞ

. ð31Þ

This dichotomic noise possesses the power spectrum
SN(x)

SN ðxÞ ¼
2ðDþ � D�Þ2

hsþi þ hs�i
1

x2
Re
ð1� ~wþðixÞÞð1� ~w�ðixÞÞ

1� ~wþðixÞ~w�ðixÞ

" #
.

ð32Þ
It causes (dipole) transitions between two states, |1i and |2i,
and is zero on average (a first interpretation). A different
interpretation of the considered dynamics can also be given
when n(t) does not vanish on average. Then, for
D+ > D� > 0, we are dealing with a quantum tunneling
dynamics with a fluctuating tunneling matrix element,
e.g., due to a fluctuating tunneling barrier.

For the considered case of a two state non-Markovian
process with p11 = p22 = 0, p12 = p21 = 1 the general result
in Eq. (18) can be simplified further. After some cumber-
some operator algebra we obtain

h~SðsÞi ¼ pst
þ

~SþðsÞ þ pst
�

~S�ðsÞ �
1

hsþi þ hs�i
f~CþðsÞ þ ~C�ðsÞ

� ½~AþðsÞ~B�ðsÞ þ ~A�ðsÞ�½I � ~BþðsÞ~B�ðsÞ��1~AþðsÞ
� ½~A�ðsÞ~BþðsÞ þ ~AþðsÞ�½I � ~B�ðsÞ~BþðsÞ��1~A�ðsÞg;

ð33Þ

where ~S�ðsÞ denotes the Laplace-transform of the propaga-
tor S�ðtÞ ¼ expð�iL�tÞ with L� :¼L½D�� corresponding
to the fixed noise value n = D+ and n = D�, correspond-
ingly. Furthermore, ~C�ðsÞ is given by Eq. (21),
~C�ðsÞ � ~C��ðsÞ and:

~A�ðsÞ :¼
Z 1

0

U�ðsÞ exp½�ðsþ iL�Þs�ds; ð34Þ

~B�ðsÞ :¼
Z 1

0

w�ðsÞ exp½�ðsþ iL�Þs�ds. ð35Þ

A quantum evolution characterized in Eqs. (33)–(35) by the
Liouville operators L� does belong to a rather broad class
(e.g., for quantum systems with a finite number of states)
and is not merely restricted to the case of two-state quan-
tum dynamics in Eq. (30).

The archetype model in Eq. (30) does exhibit a rich
behavior. In particular, it opens a doorway to study the
problem of quantum decoherence of a two-state atom
under the influence of two-state ‘‘1/xa’’ noise that exhibits
long range time-correlations with a power law decay (for
w(s) possessing a long-time algebraic tail, w(s) / 1/s3� a,
0 < a < 1) [72–74]. Therefore, this model constitutes a
prominent problem of general interest. Moreover, it relates
to recent activities that involve decoherence studies for
solid state quantum computing [75]. It is convenient to
express the Hamiltonian (30) in terms of Pauli matrices,
r̂z :¼ j1ih1j � j2ih2j, r̂x :¼ j1ih2j þ j2ih1j, r̂y :¼ iðj2ih1j�
j1ih2jÞ and the unit matrix Î ,
HðtÞ ¼ 1

2
�h�0r̂z þ

1

2
�hnðtÞr̂x þ

1

2
ðE1 þ E2ÞÎ ; ð36Þ

where �0 = (E1 � E2)/�h. The dynamics of the density matrix
of the quantum two-state quantum system is then obtained
as qðtÞ ¼ 1

2
½̂I þ

P
i¼x;y;zriðtÞr̂i� with components riðtÞ ¼

TrðqðtÞr̂iÞ. This latter dynamics evolves on a Bloch sphere
of unit radius (i.e., the corresponding (scaled) magnetic
moment is conserved, i.e.,3 j~rðtÞj ¼ 1). Its rate of change
obeys:

_rxðtÞ ¼ ��0ryðtÞ;
_ryðtÞ ¼ �0rxðtÞ � nðtÞrzðtÞ;
_rzðtÞ ¼ nðtÞryðtÞ;

ð37Þ

or _~rðtÞ ¼ F̂ ½nðtÞ�~rðtÞ in the vector form, where

F̂ ½nðtÞ� ¼
0 ��0 0

�0 0 �nðtÞ
0 nðtÞ 0

0
B@

1
CA. ð38Þ

The above theory can readily be applied to the noise aver-
aging of a 3-dimensional system of linear differential Eq.
(37) over arbitrary stationary realizations of n(t) with the
obvious formal substitution �iL½nðtÞ� ! F ½nðtÞ�. Towards
this goal, we represent the propagators Ŝ�ðtÞ ¼ expðF̂ ½D��tÞ
for the fixed static values of noise n = D+ and n = D� as
matrix expansions over the eigenmodes of evolution
expðikðkÞ� tÞ, with kð0Þ� ¼ 0, kð1Þ� ¼ X�, kð2Þ� ¼ �X�, where

X� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

0 þ D2
�

q
are the eigenfrequencies of coherent quan-

tum oscillations for constant n = D±. It reads,

Ŝ�ðtÞ ¼
X

k¼0;1;2

R̂
ðkÞ
� expðikðkÞ� tÞ; ð39Þ

where

R̂
ð0Þ
� ¼

1

X2
�

D2
� 0 �0D�

0 0 0

�0D� 0 �2
0

0
B@

1
CA;

R̂
ð1Þ
� ¼ ½R̂

ð2Þ
� �
� ¼ 1

2

�2
0

X2
�

i �0

X�
� �0D�

X2
�

�i �0
X�

1 i D�
X�

� �0D�
X2
�
�i D�

X�

D2
�

X2
�

0
BBBB@

1
CCCCA;

X
k¼0;1;2

R̂
ðkÞ
� ¼ Î . ð40Þ

The corresponding Laplace-transformed matrices entering
Eq. (33) are represented as:



4 This is the standard definition of the temperature of a spin subsystem
in nuclear magnetic resonance and similar research areas [76]. It is used
also to introduce the parlance of formally negative temperatures.

166 I. Goychuk, P. Hänggi / Chemical Physics 324 (2006) 160–171
~S�ðsÞ ¼
X

k¼0;1;2

R̂
ðkÞ
�

s� ikðkÞ�
;

~A�ðsÞ ¼
X

k¼0;1;2

R̂
ðkÞ
�

1� ~w�ðs� ikðkÞ� Þ
s� ikðkÞ�

;

~B�ðsÞ ¼
X

k¼0;1;2

R̂
ðkÞ
�

~w�ðs� ikðkÞ� Þ;

~C�ðsÞ ¼
X

k¼0;1;2

R̂
ðkÞ
�

1� ~w�ðs� ikðkÞ� Þ
ðs� ikðkÞ� Þ

2
.

ð41Þ

The results in Eqs. (33), (40), (41) form our basis for further
studies.

Let us evaluate it explicitly for the case of symmetric
process, w+(s) = w�(s) = w(s), hs+i = hs�i = hsi, with zero
mean value, D+ = �D� = D. We consider the situation
where the state ‘‘1’’ is populated initially with the probabil-
ity one: rz(0) = 1,rx,y(0) = 0. Then, the Laplace-transform
of the averaged difference of two populations, i.e.,
hrz(t)i = hq11(t)i � hq22(t)i is denoted as h~rzðsÞi ¼ h~SzzðsÞi.
After some cumbersome manipulations using a computer
algebra system (MAPLE) to perform multiple matrix oper-
ations, we end up with the following compact result:

h~rzðsÞi ¼
s2 þ �2

0

sðs2 þ X2Þ
� 2D2

hsis2ðs2 þ X2Þ2
~AzzðsÞ
~BzzðsÞ

; ð42Þ

where

~AzzðsÞ ¼�2
0½1� ~wðsÞ�fðX2 � s2Þð1� ~wðsþ iXÞ~wðs� iXÞÞ
� 2iXs½~wðsþ iXÞ � ~wðs� iXÞ�g
� D2s2½1þ ~wðsÞ�½1� ~wðsþ iXÞ�½1� ~wðs� iXÞ�;

~BzzðsÞ ¼�2
0½1� ~wðsÞ�½1þ ~wðsþ iXÞ�½1þ ~wðs� iXÞ�
þ D2½1þ ~wðsÞ�ð1� ~wðsþ iXÞ~wðs� iXÞÞ. ð43Þ

Note that for the considered initial condition, we find
hrx(t)i = hry(t)i = 0 for all times because h~SxzðsÞi ¼
h~SyzðsÞi ¼ 0. For �0 = 0 the result in (42) and (43) reduces
to one for Kubo oscillator (26) with identical w1,2(s). More-
over, for the Markovian case, ~wðsÞ ¼ 1=ð1þ ssÞ, Eq. (42)
reduces to

h~rzðsÞi ¼
s2 þ 2msþ m2 þ �2

0

s3 þ 2ms2 þ ðD2 þ �2
0 þ m2Þsþ D2m

; ð44Þ

where m = 2/hsi is the inverse autocorrelation time. This
latter result reproduces the result for the averaged popula-
tions h~q11ðsÞi ¼ ð1=sþ h~rzðsÞiÞ=2 and h~q22ðsÞi ¼
ð1=s� h~rzðsÞiÞ=2 in [40,44]. The same result (44) can also
be deduced from the known solution for the Markovian
case driven by asymmetric two-state noise [48] when spec-
ified to symmetric noise limit.

This population difference possesses several remarkable
features: The asymptotic difference between populations is
zero, hrzð1Þi ¼ lims!0ðsh~rzðsÞiÞ ¼ 0. In other words, the
steady-state populations of both energy levels equal 1/2,
independent of the energy difference �h�0. This result can
be elucidated best in terms of a ‘‘temperature’’ Tr of the
(pseudo-)spin system. This spin-temperature is formally
introduced by using for the asymptotic distribution an
Ansatz of the Boltzmann–Gibbs form, hqnnð1Þi ¼
exp½�En=kBT r�=

P
n exp½�En=kBT r�. Then,4

T r :¼ �h�0

kB ln hq22ð1Þi
hq11ð1Þi

	 
 ð45Þ

for two-level systems. In accordance with this definition,
the result of equal asymptotic populations,
hq22(1)i = hq11(1)i = 1/2 can be interpreted in terms of
an infinite temperature Tr =1. This constitutes a general
finding: a purely stochastic bath corresponds to an appar-
ently infinite temperature [22,23]. Thus, this stochastic ap-
proach modeling the relaxation process in open quantum
systems is suitable only for sufficiently high temperatures
kBT	 �h|�0| [22,23]. An asymmetry of unbiased stochastic
fluctuations does not impact this conclusion, see in Ref.
[48]. Moreover, the relaxation to the steady-state can be
either coherent, or incoherent, depending on the noise
strength and the value of autocorrelation time. In particu-
lar, an approximate analytical expression for the rate k of
incoherent relaxation, hq11(t)i = [1 + exp(�kt)]/2, has been
obtained in a limit of small Kubo numbers, K := D/m
 1,
which corresponds to a weakly colored noise [31,36]. This
analytic result reads [40,44,48]

k ¼ D2m
m2 þ �2

0

. ð46Þ

The rate exhibits a resonance feature vs. m at m = �0. A sim-
ilar resonance feature occurs also in the theory of nuclear
magnetic resonance for weakly colored Gaussian noise
[76]. Note that in Ref. [48] this notable result has been ob-
tained for asymmetric fluctuations of the tunneling cou-
pling possessing a non-vanishing mean value hn(t)i5 0.
This corresponds to a quantum particle transfer between
two sites of localization which are separated by a fluctuat-
ing tunneling barrier. A related problem with the inclusion
of quantum dissipation has been elaborated in [52] within a
stochastically driven spin-boson model.

Yet another interesting solution can be obtained for
h~rxðsÞi with the initial condition reading rx(0) = 1. The
Laplace transform of the solution reads

h~rxðsÞi ¼
s2 þ D2

sðs2 þ X2Þ
� 2D2�2

0X
2

hsis2ðs2 þ X2Þ2
~AxxðsÞ
~BxxðsÞ

; ð47Þ

where

~AxxðsÞ ¼½1� ~wðsÞ�½1� ~wðsþ iXÞ�½1� ~wðs� iXÞ�;
~BxxðsÞ ¼�2

0½1þ ~wðsÞ�½1� ~wðsþ iXÞ�½1� ~wðs� iXÞ�
þ D2½1� ~wðsÞ�ð1� ~wðsþ iXÞ~wðs� iXÞÞ.

ð48Þ
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The physical relevance of this solution (47) is as follows: In
the rotated pseudo-spin basis, r̂x ! r̂z, r̂z ! r̂x, r̂y ! r̂y ,
this problem becomes mathematically equivalent to the
problem of the delocalization of a quantum particle in a
symmetric dimer with a tunneling coupling �0 under the
influence of a dichotomously fluctuating energy bias n(t).
Therefore, it describes the corresponding delocalization
dynamics and, in particular, allows one to determine
whether this dynamics is coherent or incoherent, depending
on the noise characteristics.

For the Markovian case, Eq. (47) reduces to5

h~rxðsÞi ¼
s2 þ msþ D2

s3 þ ms2 þ ðD2 þ �2
0Þsþ �2

0m
. ð49Þ

Note that the denominators in Eqs. (44) and (49) are differ-
ent.6 In the more general case of asymmetric Markovian
noise, the corresponding denominator is a polynomial of
sixth order in s, see [48]. In the considered case of symmet-
ric noise it factorizes into the product of two polynomials
of third order, namely into those in the denominators of
Eqs. (44) and (49). Thus, for a general initial condition
the relaxation of a two-level quantum system exposed to
a two-state Markovian field involves six exponential terms.
As a matter of fact, this seemingly simple, exactly solvable
model can exhibit an unexpectedly complex behavior even
in the Markovian case of a colored two-state noise. How-
ever, for certain initial conditions, as exemplified above,
the general solution being a fraction of two polynomials
of s simplifies to the results in Eqs. (44) and (49).

In a general case of non-Markovian noise, the analytical
solutions in Eqs. (42) and (47) can be inverted numerically
to the time domain by use of a numerical Laplace inversion
procedure such as the one detailed in Ref. [77] using a com-
puter algebra implementation with arbitrary digital preci-
sion [78]. A quasi-analytical inversion is, however, still
possible in specific non-Markovian cases.

5. A simple non-Markovian case

We consider the following basic case of non-Markovian
noise described by a biexponential RTD

wðsÞ ¼ ha1 expð�a1sÞ þ ð1� hÞa2 expð�a2sÞ; ð50Þ
5 The corresponding dynamics also exhibits a resonance feature vs. the
inverse autocorrelation time m within certain limits [50].

6 A notable feature is, however, that both corresponding secular cubic
equations have the same discriminant, D(D,m,e0) = 0, separating the
domains of complex and real roots. Hence, the transition from a coherent
relaxation (i.e., complex roots are present) to an incoherent relaxation
(i.e., only real roots are obtained) occurs at the same values of noise
parameters, independently of the initial conditions. The corresponding
phase diagram separating regimes of coherent and incoherent relaxation
(judging from the above criterion) has been devised in [50]. It must be kept
in mind, however, that the weights of the corresponding exponentials are
also of importance for the characteristic relaxation dynamics. These
weights do depend on the initial conditions.
where a1,2 denote two transition rates which can be realized
with probabilities h and 1 � h, correspondingly. The con-
sidered noise possesses the mean residence time

hsi ¼ h=a1 þ ð1� hÞ=a2 ð51Þ
and the mean autocorrelation time scorr :¼

R1
0
jkðtÞjdt read-

ing with k(t) P 0,

scorr ¼ C2
V sðMÞcorr; ð52Þ

where CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2i � hsi2

q
=hsi is the coefficient of variation

of the RTD [73,74] and sðMÞcorr ¼ hsi=2 is the autocorrelation
time of Markovian process possessing the same mean resi-
dence time hsi. The ratio scorr=sðMÞcorr ¼ C2

V serves as a conve-
nient quantifier for non-Markovian effects. For this basic
non-Markovian case considered, we find that C2

V can be
large, see in Ref. [64] for details. For example, in the limit
f = a1/a2
 h
1, C2

V � 2=h	 1. Such a noise has distinct
bursting features [64].

For this noise, Eq. (42) reduces to a rational function of s,

h~rzðsÞi ¼
N zzðsÞ
DzzðsÞ

; ð53Þ

where Nzz(s) and Dzz(s) are specific polynomials of fifth and
sixth orders, correspondingly. The explicit form of these
polynomials is not given here since it does not provide
much physical insight.

The inversion of (53) to the time domain reads

hrzðtÞi ¼
X6

k¼1

NzzðrkÞ
D0zzðrkÞ

expðrktÞ; ð54Þ

where rk are the complex roots (Re rk < 0) of Dzz(s) = 0 and
D0zzðsÞ :¼ dDzzðsÞ=ds. Even if rk cannot be determined ana-
lytically (except for the case �0 = 0, where the considered ra-
tional function can be simplified to the ratio of two
polynomials of the third and fourth orders, correspond-
ingly), they can be found numerically for any set of
parameters entering the problem. The problem is thereby
quasi-analytically solvable. The same is valid for taking
more terms in the exponential expansion of w(s). The whole
scheme can be easily implemented using a computer algebra
system like MAPLE or MATHEMATICA. In this respect,
it is pertinent to note that a power law dependence can be
well approximated by an expansion of the type wðsÞ ¼P

iciai expð�aisÞ. Indeed, a power law extending over n dec-
ades can be satisfactory approximated already by an n-term
expansion with properly scaled {ai} and {ci} [79]; see also a
practical example of a 6-exponential fitting in [80]. More-
over, the numerical procedures of the Laplace-transform
inversion like one in [78] can be implemented. An analytical
inversion of Eq. (47) to the time-domain has the form sim-
ilar to Eq. (54), but with different polynomials Nxx(s) and
Dxx(s) of fifth and sixth order, correspondingly.

5.1. Numerical results

We consider first the situation with a small Kubo num-
ber K = Dscorr
 1 where an approximate analytical result,
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Fig. 2. Quantum relaxation in the non-perturbative regime of a large
Kubo number, K = 10. The influence of Markovian and non-Markovian
noises with the same rms and mean autocorrelation time are distinctly
different. Coherent features are more pronounced for the non-Markovian
noise case. Note that in the latter case the overall relaxation time is
shorter.
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hrz(t)i = exp(�kt), is available with the rate k in Eq. (46)
[44,48]. This result can also be obtained using the cumulant
expansion method [31]. It does not depend on whether is
the stochastic process under consideration is Markovian
or not. This is illustrated with Fig. 1. The following param-
eters are used in calculations presented in Fig. 1 (units are
arbitrary): energy difference between levels �0 = 1, noise
amplitude D = 0.5. Furthermore, for the Markovian two-
state noise we have chosen: a1 = 100 (here h = 1) and for
the non-Markovian one: a1 = 100, a2 = 2000,
h � 0.05263157894. Both noises possess the same autocor-
relation time scorr = 0.005 while the average residence times
differ by an order of magnitude; the non-Markovian
parameter is C2

V ¼ 10. On the characteristic time scale of
quantum relaxation the relaxation process in both cases
is excellently described by the approximate analytical result
given above. All three lines practically coincide in Fig. 1. In
this case, the perturbation theory in the small Kubo num-
ber K works very well.

It is interesting to note that the initial decay of popula-
tions is (beyond the discussed exponential approximation)
always Gaussian, i.e., lnhrz(t)i / �t2 at t! 0. This
‘‘Gaussian’’ regime can be, however, very short and, there-
fore, it is not readily visible on the characteristic time scale
of the relaxation like in Fig. 1.

In the opposite limit, K	 1, the distinction between the
influence of Markovian and non-Markovian noises pos-
sessing the same (mean) autocorrelation time becomes
rather distinct, cf. Fig. 2. Here, the following noise param-
eters are used: D = 0.5, a1 = 0.05, h = 1 (for the Markovian
noise); a1 = 0.05, a2 = 1, h � 0.05263157894 (for the non-
Markovian noise). In both cases, the autocorrelation time
is the same scorr = 10, while the mean residence times are
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Fig. 1. Quantum relaxation in the perturbative regime. All three curves
practically coincide on the considered time scale, see text for details.
quite different: hsi = 20 for the Markovian case and
hsi = 2 for the non-Markovian case.

6. The manifest non-Markovian case

For a situation in which the autocorrelation time of
noise scorr diverges, the corresponding Kubo number
K = Dscorr is infinite and any perturbation theory is
doomed to fail. The theory developed herein, however,
allows to obtain convergent numerical results by perform-
ing the inverse Laplace transformation numerically. We
illustrate the strength of our theory with the following
example of manifest non-Markovian noise with an RTD
given by

~wðsÞ ¼ 1

1þ shsigaðssdÞ
; ð55Þ

where

gaðzÞ ¼
tanhðza=2Þ

za=2
ð56Þ

with 0 < a < 1. Here, hsi in Eq. (55) is the mean residence
time and sd is a time constant presenting an additional
parameter of the distribution. For sd = 0, an exponential
distribution is restored. The properties of the RTD deter-
mined by Eqs. (55) and (56) are discussed in detail in
[81]. This RTD thus possesses three parameters only, but
it exhibits an interesting repertoire of effects. In particular,
it can encompass up to three different interchanging power
law regimes with the asymptotic power law assuming the
form w(s) / 1/s2 + a, s!1 [81].
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Fig. 3. (a) Quantum relaxation under the influence of non-Markovian two
state noise with extreme long-time correlations. The parameters of this
manifest non-Markovian two-state noise are: D = 0.5, a = 0.5, hsi = 0.01,
sd = 1. (b) The same data presented on log-linear scales.

I. Goychuk, P. Hänggi / Chemical Physics 324 (2006) 160–171 169
The corresponding noise has 1/x1� a feature in its power
spectrum at x! 0. Its mean autocorrelation time scorr

diverges, scorr =1. Therefore, the Kubo number K is for-
mally infinite and a corresponding perturbation theory is
questionable. Our theory delivers, however, exact result
for the Laplace-transformed noise-averaged quantum
relaxation of the excited level population. Moreover, the
mean relaxation time can be formally defined as
srel :¼

R1
0
hrzðtÞidt. With Eq. (42), this time follows as

srel ¼ lims!0h~rzðsÞi for any function ~wðsÞ. Moreover, the
asymptotic character of relaxation dynamics as t!1
can be found by using the Tauberian theorems of the
Laplace-transform method and small-s expansion of ~wðsÞ
reading (in leading terms)

~wðsÞ � 1� hsisþ As1þa ð57Þ
for any w(s) possessing the finite mean value hsi and the
long-time algebraic tail w(s) / 1/s2+a. For the particular
case in Eq. (55), A ¼ hsisa

d=3.
Using (57) in Eq. (42), after some algebra we obtained in

the leading order:

h~rzðsÞi �
A�2

0

X2hsi
sa�1; s! 0. ð58Þ

Several remarkable results follow readily. First,
hrzð1Þi ¼ lims!0½sh~rzðsÞ� ¼ 0, i.e., the general drawback
of the stochastic Liouville approach is preserved. Second,
the use of a Tauberian theorem [56] in the above equation
yields

hrzðtÞi �
A�2

0

X2Cð1� aÞhsi
1

ta
; t!1. ð59Þ

For the case in (55), this latter equation is modified as

hrzðtÞi �
�2

0

3X2Cð1� aÞ
sd

t

	 
a
; t!1. ð60Þ

Remarkably, this result does not depend on the mean res-
idence time hsi. The tail of the relaxation curve clearly
exhibits a power law, hrz(t)i / 1/ta.

The exact result for the Laplace-transformed relaxation
in Eq. (42) can be reliably inverted numerically due a gen-
eralization of the well-known Stehfest method [77] in Ref.
[78] which requires implementing this method, for example,
with a computer algebra system like MAPLE (done here)
using a sufficiently high digital precision. As a ‘‘rule of
thumb’’ the number of digits N used in our calculations
should correspond to the number of terms taken in the
Stehfest asymptotical series expansion [77]. N must be
increased until the numerical results converge with the
required accuracy. For example, to obtain numerical data
for Fig. 3 we used N = 256. In this figure, the results are
numerically precise within the corresponding line width.
Note that the standard choice N = 16 [77] is inadequate
to obtain the correct numerical results for the averaged
relaxation in Fig. 3. Following the reasoning in [78] we
checked and confirmed these numerical considerations for
some test functions with known results for the ‘‘function’’
– and its known Laplace-transform. Such an improved
Stehfest method presents one of the best numerical Laplace
transform inversion methods available nowadays (the core
of the MAPLE code contains just a few lines, by the way).

For the results in Fig. 3 the following parameters have
been used: �0 and D are the same as in Figs. 1 and 2, i.e.,
�0 = 1 and D = 0.5; s = 0.01 (like for the Markovian case
in Fig. 1), a = 0.5 (‘‘1/x0.5’’ noise) and sd = 1. It is interest-
ing to compare this case with those in Figs. 1 and 2. Sur-
prisingly, the relaxation dynamics turns out to be initially
practically a single exponential with small-amplitude quan-
tum coherent oscillations superimposed. About 90% of the
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Fig. 4. Quantum relaxation under the influence of non-Markovian two-
state noise with a 1/x0.9 feature for its power spectrum. a = 0.1, the
remaining parameters are the same as in Fig. 3.
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initial population difference decays exponentially. The long
time tail of the relaxation process is, however, clearly non-
exponential, and the approach to the steady-state occurs
much slowly than the initial exponential decay. The emer-
gence of such a slow non-exponential asymptotic decay is
rather intriguing. It is due to a manifest non-Markovian
character of the noise as detailed analytically above. The
same reasoning holds true is valid for a = 0.1; the corre-
sponding noise obeys an 1/x0.9 feature in its power spec-
trum which is close to 1/f noise. In this case, the tail of
relaxation curve becomes, however, more flat, being in
accordance with Eq. (60), and the approach to the
steady-state hrz(1)i = 0 occurs extremely slow: This might
create an incorrect impression that hrz(1)i5 0, see Fig. 4.
We remark that for this particular case the digital precision
N = 32 was sufficient to obtain convergent results within
the improved Stehfest method.

7. Resume

With this work we have presented general results for the
averaged quantum relaxation that is driven by discrete
state non-Markovian noise of the renewal, or CTRW type.
The noise sources present non-Markovian generalization
of discrete state Markovian noise sources. Our focus has
been on the averaged time-evolution in presence of station-
ary noise realizations (i.e., the noise does not relax to, but
is in its steady-state while the noise-averaged quantum
dynamics undergoes a relaxation process). The practical
feasibility of our approach has been elucidated with sev-
eral applications of general interest, namely (i) the averag-
ing of the Kubo oscillator (for arbitrary noises) and (ii) the
averaged relaxation dynamics of a quantum two state sys-
tem that is driven by two state non-Markovian noise. For
this latter case and for a symmetric process, tractable ana-
lytical expressions have been obtained in Eqs. (42) and
(47). The previously known results for the case of Markov-
ian noise are recovered from our more general expressions.
These new analytical results have been verified by corre-
sponding numerical studies. In particular, the case of a
manifest non-Markovian noise possessing an infinite vari-
ance of the residence time distribution, an infinite mean
autocorrelation time and an 1/xa feature in its power spec-
trum has been studied. This latter situation cannot be
tackled within perturbation theory. However, our theory
allows for a definite non-perturbative treatment. The
authors share the confident belief that this new theory will
prove useful for this and similar future investigations of
quantum relaxation processes that are exposed to one or
several noisy environments exhibiting characteristic long-
time memory.
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