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We investigate the time evolution of stochastic non-Markov processes as they occur 
in the coarse-grained description of open and closed systems. We show that semigroups 
of propagators exist for all multivariate probability distributions, the generators of which 
yield a set of time-convolutionless master equations. We discuss the calculation of averages 
and time-correlation functions. Further, linear response theory is developed for such 
a system. We find that the response function cannot be expressed as an ordinary time- 
correlation function. Some aspects of the theory are illustrated for the two-state process 
and the Gauss process. 

1. Introduction 

The stochastic behaviour of the coarse-grained vari- 
ables of a system is described in general as a stochastic 
process with memory (non-Markov process) [1-3]. 
The Markov approximation, obtained by a coarse- 
graining in time, has been extensively used in the 
theory of collective phenomena far from thermo- 
dynamic equilibrium (see e.g, [4]). The interest in 
non-Markov behaviour has been renewed because of 
its relevance to certain non-equilibrium phase-tran- 
sition phenomena [5, 6], and to transport problems 
in solids and fluids [7-9]. This question has been 
discussed in particular in context with the long-time 
behaviour of certain time-correlation functions in 
fluids [8-10]. 
The stochastic properties of the system are charac- 
terized by a probability distribution p (x t) in the space 
S of coarse-grained macrovariables x = (x 1, x2 ...) of 
the system. The microscopic degrees of freedom as 
well as the bath variables are eliminated by applying 
projector methods to the microscopic Liouville-von 
Neumann equation [1-3]. If the system is prepared 
at an initial time t=  t o with probability distribution 
po(X) without any correlations between the macro- 
variables x and the rest of the system, the rate of 
change of the probability distribution p(t) is found 
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to be given by the stochastic equation 

dp(t) t 
= ~ A(tls) p(s) ds. (1.1) 

dt to 

Here, the "retarded kernel" A(tls) is an operator acting 
on the space / /  of probability distributions*. It de- 
scribes the memory effect of the distribution at time s 
on the rate of change at time t, and may contain a 
Markov contribution AMark°v ( t [ s )=F( t )b ( t - - s - -O+) .  
This equation has the formal solution 

p(t)=G(t[to)Po (t>to) (1.2) 

where the Green's function G(t]to) is defined by the 
equation 

t 
dG(tl t°)= S A(tl t') G(t'lto) at' (1.3) 

dt to 

with the initial condition G(t3lto)=~. 

* Here and in the following, we use the following notation: p(t) 
denotes an element of function s p a c e / / w i t h  values p(xt). Elements 
like A(tls) are operators acting on H, with integral kernel A(xt{ys) 
which may contain &functions and their derivatives. Application 
of an operator to an element of function space, and operator multi- 
plication are written in the usual way as products A(t[s)p(s) and 
A(tls) A(slq), respectively: 

[A(t]s) p(s)] x = ~ A(x t]ys) p (ys)ay 

[A(tls) A(Sltl)] .... = S A(x tlys) A(yslxlq) dy 
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The Green's function G(t]to) contains the effects of 
the initial preparation of the system. In most cases, 
however, one is interested in the behaviour of an aged 
system, in which the effects of initial preparation have 
died out. Therefore, the following problem suggests 
itself: Can one construct a general evolution equation 

p(t)= G(tls ) p(s) (t>s) (1.4) 

for arbitrary times t, s? The existence of such an 
equation is not self-evident, because the corresponding 
equation for a Markov process is usually derived from 
the Chapman-Kolmogorov equation [11] which does 
not hold in the non-Markov case. In the present paper, 
this question is investigated in detail. We find that 
such an evolution equation always exists, independent 
of the validity of the Chapman-Kolmogorov equation. 
However, in contrast to the Markov case, the propaga- 
tor G(t]s) has in general not the significance of a 
conditional probability R(tls), with the exception of 
the solution G(t[to) of Equation (1.3) relating back 
to the time t o of preparation of the system, which is 
indeed identical to the conditional probability R(t)o ). 
But neither G(t[s) nor G(t[to) can be used to compute 
joint probabilities p(Z)(t, s) and time-correlation func- 
tions of an aged system. This restriction has not been 
observed in some recent work on non-Markov pro- 
cesses [12-15]. 
In Sections 2 and 3 we study the general problem of 
the time evolution of non-Markov systems. A set of 
stochastic equations for the rate of change of the single- 
event and the multivariate distributions is derived, 
the solutions of which can be expressed in terms of 
propagators forming semigroups. These propagators 
must not be identified with the corresponding con- 
ditional probabilities. We also discuss the calculation 
of mean values and of time-correlation functions. Fur- 
ther, we investigate the asymptotic behaviour for large 
times. In Section4, we present the linear-response 
theory for a Markovian perturbation. In contrast to 
the Markov case, the response tensor cannot be related 
by a generalized fluctuation theorem [16] to a sta- 
tionary time-correlation function. Some aspects of the 
theory are illustrated in the Appendix for the two- 
state process and for the Gauss process. 

2. Time-Evolution of Single-Event Probability 

In this section, we investigate the basis for the existence 
of time-evolution equations of the form (1.4). In the 
case of a Markov process, there exists a conditional 
probability R(xt tx lq  ) with t > t  I which may be used 
for two different purposes: It is the integral kernel of 
the propagator R(tlt 0 of the single-event probability 
p(t), such that 

p(t)=R(t[tl)p(t~) (t>t O, (2.1) 

and it allows to compute the two-event joint prob- 
ability 

p(2) (X t ;  x 1 t l)  ---- R (x t lx 1 tl) p (x 1 tl). (2.2) 

The simplicity of the Markov theory arises from the 
Chapman-Kolmogorov equation [11], 

R(tlq)=R(tls) R(slq) (t>s> q) (2.3) 

indicating that the elements R(tltl) form a semigroup 
which can be generated from the infinitesimal prop- 
agator R (t + dt[t) = 11 + F(t) dt where 

F(t)= d R(s[t)[~=t+. (2.4) 

In the non-Markov case, however, the conditional 
probability is a very complicated object, because it 
depends on previous history. The balance equation 
for the conditional probability 

R(tltl)= e(t[s, tl) e(slq) (2.5) 

relates the time evolution of R(tlh) to the higher- 
order conditional probability R(t[s, q), and one can 
construct an infinite hierarchy of coupled evolution 
equations. This "memory" of the conditional prob- 
ability, which is due to the fact that the sample func- 
tions passing through state y at time s remember which 
states they traversed at previous times, is illustrated 
in Figure I. For the special case of an initially sharp 
distribution po(Xo)=3(Xo-X'o), we find for instance 

R (x  2 t 2 l x  1 t l)  

_JR(x2 t2Ixl tl, Xo to)R(x I tl[x o to)Po(xo)dx o 
m 

.[ R(xl qlxo to) p(xo) dxo 
= R (x 2 t 2 lx 1 t l, x• to) (2:6) 

oT:• (° X1 i X2 
/ "~ R(x~t21 x~ t,;Xot o) 

'57';', R(Ntfl x,t, ;Xoto) 
Xo \ ...... 

• . . . . - "  

to L t2 t 

Fig. l. Sample functions of a non-Markov process passing through 
x 1 at time t 1 remember at time t 2 which point (x~ or x~) they started 
from at time t 0, For  a Markov process, the two conditional dis- 
tributions would be equal 
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which shows that R(tz[t 0 depends on the initial 
state x o. Note that R(t]to), on the other hand, is 
always independent of the initial distribution P0. 
Thus, the elements R(t]s) do not form a semigroup, 
and can therefore not be generated from an infinitesi- 
mal propagator. However, a significant simplification 
arises from the following theorem: Any stochastic 
process (Markov or non-Markov) satisfies 

p(t) = R(tls)R(s[t,) p(q). (2.7) 

Thus, although the Chapman-Kolmogorov Equation 
(2.3) does not hold for a non-Markov process, one 
obtains an equality if both sides are applied to the 
single-event probability p(q). The proof of Equation 
(2.7) is evident from the definition of the conditional 
probability. 
Using theorem (2.7) one may construct a whole class 
of semigroups of propagators G(tltl) for the single- 
event probability such that 

p (t) = G (tl tl) p (t 0 (2.8) 

with 

G(t+lt)=~ (2.9) 

and 

G(x tJxt tl) dx = 1. (2.10) 

The propagators G(tlt 0 of each semigroup are the 
conditional probabilities of a Markov process which 
has the same single-event probabilities p(t) (but dif- 
ferent multivariate probabilities p(")) as the non- 
Markov process under consideration. 
The semigroup G can be generated from the infinitesi- 
mal propagator G(t+dt[t)=ll+F(t)dt  with the gen- 
erator F(t)=dG(slt)/dsls=t+. The most obvious chOice 
consists in using the conditional probability R(t + dt[ t) 
itself as infinitesimal propagator, whence 

r(t) =d R(s[t)ls=,+. (2.11) 

However, this construction has the disadvantage that 
R (sit) depends on the initial distribution Po (see Fig. 1 
and Eq. (2.6)). Thus, to every initial preparation of 
the system there will correspond a different substitutive 
Markov process. A propagator independent of Po is 
obtained by going back to the initial time t o at each 
infinitesimal step: 

r(t)= d R(s[to) R(t[to)-l]s=t+. (2.12) 

The significance of the time instant t o lies in the fact 
that at this time the system is prepared without any 
correlations between the macrovariables x and the 

rest of the system, i.e. without any memory of previous 
times t < t o. 
The generator F(t) determines the rate of change of 
the single-event distribution by the time-convolution- 
less stochastic equation 

dp(t) 
- F( t )  p (t) (2.13) 

dt 
and of the propagator by the "forward equation" 

d 
G{~fft[ q) = F(t) G (t[t 1). (2.14) 

The formal solution of this differential equation can 
be written 

t 

G (t] tl) = 3 - e x p  j" F(s) ds (2.15) 
t l  

where Y is the time-ordering operator. Equation (2.15) 
guarantees the semigroup property 

G(t[t 1) = G(tls) G(s[q). (2.16) 

The propagator determined by the generator (2.12) 
has the simple properties 

G(tJto)=e(tlto) (2.17) 

and 

G(tltl)= R (tJto) R (tt lto) -1. (2.18) 

It can be obtained by Equation (1.3) in conjunction 
with the semigroup property (2.16) from the retarded 
kernel A(t]s) which is directly related to the micro- 
scopic dynamics of the system. 
The use of the reciprocal operator R(tLto)-* in (2.12) 
and (2.18) requires some comments. In the case of a 
finite number of states, the probability distributions 
are ordinary vectors and the operators are ordinary 
matrices, and there will be no problem to define G- t  
for a "connected" system. For a countable set of states, 
however, there is the possibility that the eigenvalues 
of G converge to zero, and for a continuous state space, 
G will in general have a continuous spectrum extending 
down to 0 +. In these cases, G -1 will not exist for all 
functions of function space H. However, G-l(t[q) will 
always exist for functions p(t) which have evolved 
out of a probability distribution p(q), and only to 
such functions will operators like (2.12) and (2.18) be 
applied.* 
With the help of the propagator G(t[t,), the statistical 
expectation of any state function 4) (t) can be calculated 
from the statistical distribution p(tl) at an arbitrary 
fixed time t I <= t, 

(q5 (x t)) = 5~ q5 (x, t) G(xtlxl t l)p(xl ,  ta) dxtdx.  (2.19) 

* The same remark applies to the use of the reciprocal propagator 
R(tJto) -1 of a Markov process in Reference 16 
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This includes all averages ( G  (t)) of the state variables, 
all moments (x"~(t)), and all equal-time correlations 
(x~" (t) x;  (t)). 
Up to this point, we have made no assumption about 
the behaviour against time-translations. We now 
assume time-translation invariance of the underlying 
microscopic process. It is important to note that even 
in this case the process is always nonstationary, in 
contrast to the Markov case. This is so because the 
effects of the preparation at time t o influence the 
evolution of the system for a finite time. Time-trans- 
lation symmetry requires invariance with respect to 
a shift of all times, including t o. Consequently, the 
single-event probability depends on t - t o ,  and equa- 
tions like (2.8) should be written more fully as 

p ( t -  to)= G( t -  to] q - to) p ( q -  to) (2.20) 

in order to show the dependence on t o explicitely.- 
This nonstationarity which is due to the breaking of 
time-translation symmetry by the initial preparation 
of the system, should be distinguished from an ex- 
plicitly nonstationary process controlled by time- 
dependent external parameters, such as has been dis- 
cussed for the Markov case in Reference 16. 
One expects that in systems of physical interest the 
effects of initial preparation die out after some time, 
and the distribution tends to a stationary distribution 

Pas= lim p(t--to) 
tO ~ - -  00 

independent of the initial distribution P0- This asymp- 
totic stability of the single-event distribution is a con- 
sequence of the general ergodicity requirement dis- 
cussed in Section 3. In the case of definition (2.11), 
there will exist a stationary asymptotic propagator 

Ga~(t-ta)= lim G ( t - t o l q - t o )  (2.22) 
t o ~  - (x3 

which has pa~ as eigenvector. In the case of definition 
(2.12), on the other hand, G(tl-oo) exists and repre- 
sents a time-independent singular operator with kernel 

G(xt[y, - ~)=n(x t ]y ,  - a~)=pa~(x). (2.23) 

However, no such statements can be made for G~(tlq) 
in case of (2.12) and for G ( t l - ~ )  in case of (2.11). 
We have thus obtained an understanding of the exis- 
tence of a propagator for the single-event probability 
in the non-Markov case. We stress again that the 
propagator G (t[q) is not identical with the conditional 
probability R(tlq) except for q = t  o in the case of 
definition (2.12). 

3. Multivariate Distributions 
and Time-Correlation Functions 

The considerations of Section 2 can be generalized 
easily to the multivariate case. The multivariate dis- 

tribution p(")(XT) for the sequence of states X -  
(x ~1) ... x (")) at the time sequence T - ( t  ~l) ... t (")) is an 
element ff")(T) of/ /" ,  and the conditional probability 
R(")(XTIXiT1) is the kernel of an operator R(")(T[T0 
acting on/7" such that 

p(") (T) = R (")(TI T0 p("~ (T0, (3.1) 

where the smallest tE T is assumed to be larger than 
or equal to the largest q ~ Tx, symbolically T > T 1 . 
For a non-Markov process, the balance equation 

R (") (TI T1) = R (") (TIS, T 0 R (") (S I T 0 (3.2) 

relates the time evolution of R(")(T[T1) to the higher- 
order conditional probability R(")(T[S, T O. Thus, the 
elements R~")(TITO do not form a semigroup and can 
therefore not be generated from an infinitesimal prop- 
agator. The simplification arises from the generaliza- 
tion of theorem (2.7): Any stochastic process satisfies 

p~"~ ( T) = R~"'( TIS) R~"' ( S] T 0 ff") ( T O. (3.3) 

This shows that n-parameter semigroups of propaga- 
tors G(")(TITi) for the multivariate distribution p(")(T) 
can be constructed such that 

p(")(T) = G(")(TIT~) p("~(T O, (3.4) 

The semigroup G (") can be generated from the vector 
generator 

F(")(T) = ~-~ G (") (S[ T) ls = T + 

~ - - -  ~ . . . . .  0 ' 
(3.5) 

and there is again a multitude of choices for F(")(T). 
One can generate the semigroup as in (2.11) by taking 
the conditional probability R(")(T+dTIT) itself as 
infinitesimal propagator, 

F(")( T) = ~--S R(")(SIT)Js= r+, (3.6) 

but this has the disadvantage that it depends on the 
initial distribution Po. In order to obtain a semigroup 
independent of the initial distribution, one has to 
relate back to the initial time t o as in (2.12), 

F ! " ) ( T ) = ~  R (")(SltoD) R ("~(Tlto D)-ll s (3.7) ~ 3  = T +  

where D=(1, 1...1) such that toD denotes the n-tupel 
of initial times (t o . . . .  to), 
The stochastic equation 

0 
0 T p~") (T) = F (") (T) p(") (T) (3.8) 
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can be integrated along a curve T = T(O) in the space 
of n times T=(¢~),... t ("~) passing through the points 
T 1 --T(Ox) and T z = T(Oz) to give a solution of the 
form (3.4) with 

o~ . dT(O) 
G~"I(T21T1) = ~-- exp ~ F C )(T(O)) .~f f -dO (3.9) 

01 

where the ordering operator Y- acts on the curve 
parameter 0. The semigroup property 

G(")(T] 7"1) = G (") (T[S) G (") (SI T~) (3.10) 

follows immediately from (3.9) by choosing a curve 
which passes through S. 
By adopting the definition (3.7) one obtains a propa- 
gator with the simple properties 

G(") ( T[toO)= R(n)( T[to D) (3.11) 

and 

G(")(TIT~)=R~")(Tlto D) R(")(T~ItoD) -~ . (3.12) 

The use of the reciprocal operator in (3.7) and (3.12) is 
subject to the same remarks as stated after Equa- 
tion(2.18). In contrast to the single-event case, no 
method has been worked out yet to compute the 
multivariate distribution from the microscopic dy- 
namics of the system. 
With the help of the n-event propagator G (") (TI T0 one 
can calculate the n-event joint probability p(")(T) and 
therefore any n-time correlation function from the 
single-event probability at an arbitrary fixed time 
t I --< T. Because of p(")(X1, tlD)=p(l~(xl q) 6(x] 2) - - X 1 ) . . .  

6(x~")-Xl) one finds 

pt")(XT)= ~ G(n) (XTIx I  D, t l D )  p ( 1 ) ( x  I tx) d x  1 (3.13) 

and 

( (~1  ( x(x ) t ( 1 ) ) ' ' '  ~bn (x(n) t(n))) 

= ~ qSl (X (a), t( 1 ))... ~b n (X ("), t (n)) 

x G(")(XTIxlD, qD) p(1)(x 1 t 0 d"X dxl. (3.14) 

If the n-event propagator G (") is known, all lower-order 
propagators can be calculated. It is not difficult to 
prove that the (n-1)-event propagator G ("-a) can be 
obtained from G (") by the same procedure as the ( n -  1)- 
event conditional probability R ("-~) is obtained from 
R~"): In order to eliminate the v-th event from G(XT] 
X 1 T1) , set t (~) = t  ("), t~ ~) = t],), ~v(~)_-v(.)~a , where ¢") and 
t~ ") are time instants adjacent to t (~) and t~ ~), respec- 
tively, and integrate over x (~). We illustrate this pro- 
cedure for the case n = 2: 

v(2)  f(1)lv(1 ) t(1) v(1) t(1)/r/~.(2) G ( 2 ) ( X  (1) t (1), A ~ I~1 ~1 , ~1  ~1 ] ~"" 

= G"~(x ~" ¢ ' lx~  ~ t~'). (3.15) 

It is also possible to keep all times of the sequence T 
except the latest time t (1) fixed, and study propagation 
with respect to this t ~1) alone. The corresponding prop- 
agator can be viewed as an operator acting on H ~ 
which depends parametrically on the other events. 
Time-translation symmetry of the underlying micro- 
scopic process requires invariance with respect to a 
shift of all times, including t o . Consequently, the 
multivariate distributions depend on T - t o D ,  and 
this dependence can be exhibited explicitly by writing 
equations like (3.4) in the form 

p(")(T- t o D) = G (")(T- t o D IT 1 - t o D) p(") (T 1 - t o D). 

(3.16) 

In systems of physical interest, the effects of initial 
preparation of the system are expected to die out 
after some time. We call the process ergodic if 

lim p(")(r-  toD)=p(a"](r) (3.17) 
to~ - o0 

exists for all n and is independent of the initial prepa- 
ration. Then, in the case of definition (3.7), G (") (T[ - oo D) 
exists and represents a singular operator 

G(")(XTIY, - ~)=p~'~)(XT). (3.18) 

In the case of (3.6), no statement can be made on 
G(")(TI-~D).  
Time-translation symmetry requires that the process 
is asymptotically stationary, i.e. that p~"~)(T) is in- 
variant under a shift of time 

(n) __ (n) Pas (T+zD)-Pas (T). (3.19) 

In the case of definition (3.6), there will exist an asymp- 
totic propagator G(,~)(TIT1) which is stationary in the 
sense 

G(~'~ ) (T + zDIT~ + zD) = G(~ )(TI T~), (3.20) 

and p(~l (T) will be eigenvector of G~'~ )(T + zD] T). In the 
(n) case of (3.7), no statement can be made on G~s (TIT1). 

4. Linear-Response Theory 

In this Section, we study the linear response of the 
system to an external perturbation. The perturbed 
single-event distribution ~(t) satisfies the stochastic 
equation 

t 
d~(t)_ ~ A(tls) ~b(s) ds (4.1) 

dt to 

with the kernel 

A(t Is) -- A (t - s) + A °xt (t I s). (4.2) 

Here, we assume that the unperturbed system is time- 
translation invariant, such that its Green's function 
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determined by Equation(1.3) depends only on the 
time difference t -  to, 

G (t ] t0) = R (t I t0) = G (t - to). (4.3) 

The stochastic equation (4.1) is equivalent to the inte- 
gral equation 

t S 
/3(t)=p(t)+ ~. G(t-s)~. AeXt(sls')/3(s')ds'ds. (4.4) 

tO tO 

From this equation, the perturbed distribution can be 
found by iteration. The first-order change is obtained 
by replacing 13 (s') by p (s') under the integral. 
For the further discussion we assume that the pertur- 
bation can be described by a Markov kernel, and 
write the perturbation in terms of time-dependent ex- 
ternal forces Fi(t), 

A e x t ( t ] s ) = E  f i ( t ) Q  i f ( t - s + ) =  F ( t )  • ~~ f ( t -  s + )  (4 .5 )  
i 

where the f2 i are linear operators acting on H. Then, 
the first-order change of the single-event distribution 
is given by 

t 

f/3(t)= ~ G ( t -  s) F(s) . f~p(s) ds. (4.6) 
to 

The linear-response tensor X(tis) is defined by the 
relation of the response of the state variables 

( f X ( t ) )  ~ ( x ( t ) )  perturbed - -  ( x ( t ) )  unperturbed 

= ~ x @(x t)dx (4.7) 

to the external forces, 

t 
(fix(t)) = ~ z(tls) • F(s) ds. (4.8) 

to 

We find 

Z (t Is) = 0 ( t -  s) ~ x ~(ys) G (x, y; t -  s) p (y s) dx dy (4.9) 

where we have introduced the vector-valued state 
function do as in Reference 16 

dO (x t) = l-rip (t)]~/p (x t). (4.10) 

Since the perturbation cannot change the normaliza- 
tion of the system, dO (x t) has zero average, 

(dO(xt)) = ~ [np(t)],dx=O, (4.11) 

and represents thus a fluctuation (in general non- 
linear) from the unperturbed state. Therefore, the 
state variable x may be replaced by its fluctuation 

: X - -  ( X )  unperturbed in Equation (4.9). 
It is important to note that in Equation (4.6) the per- 
turbation F (s)ds applied at time s is not, as one might 
have expected, propagated to time t by the propagator 

G(tls) corresponding to this time intervall, but rather 
by the propagator G ( t -  s) - G(t o + t -  S lto), i.e. in the 
same way as an initial distribution is propagated from 
t o to t o + t - s .  For the same reason, in contrast to the 
Markov case, the response tensor (4.9) is not given as 
a true two-time correlation function (generalized fluc- 
tuation theorem), but as a pseudo-correlation function 

l ( t  Is)= O(t- s)(( ~ (t) do (y s))) (4.12) 

calculated with a joint probability 

p~seud°(xt, ys)= G(x, y; e - s )  p(ys) (4.13) 

which is the joint probability p2(to+t-S, to) of a 
system which was started with initial distribution 
p(s). 
The result obtained is the response of a nonstationary 
process, because it still contains the effects of initial 
preparation of the system. In the case of an ergodic 
process, the response of an aged system is obtained by 
performing the limit t o ~ -  o0. Then, p(s) is replaced 
by Pas in Equations(4.6) and (4.9), do(xt)=[f~Pas]x/ 
p,s(X)--do(x(t)) does not depend explicitly on time, 
and the response becomes stationary 

•as ( t  - -  S) : 0 (~ - -  S) (( ~ ( t)  do (y (s))>>. (4.14) 

We stress again that it is important to distinguish the 
propagator G(t-s)  determining the linear response 
from the asymptotic conditional probability Ras(t-s) 
determining time-correlation functions of an aged 
system. 

5. Conclusions 

We have shown that semigroups of propagators G (") 
for the n-time multivariate distributions p<") exist for 
all n, which can be used to calculate averages and 
m-time correlation functions up to m=n from the 
single-event distribution at an arbitrary fixed time. By 
going to the continuum limit, one may define a propa- 
gator G(x(t)ly(s)) which expresses the probability for 
a path x(t) as a path integral over paths y(s). The 
propagators G <") of non-Markov processes are different 
from the conditional probabilities R ~") (except for 
conditions referring to the initial time to), and can 
therefore not be used to calculate m-time joint proba- 
bilities and correlation functions with m>n. The 
response to an external perturbation is given by the 
single-event propagator G(to+Zlto), and can there- 
fore not be expressed in the form of an ordinary 
generalized fluctuation theorem. 

Appendix A. Two-State-Process 

The single-event distribution and the conditional 
probability of a general two-state process can be 
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written in the form 

-a ( t ) / '  la(t)l< 1 (A.1) 

and 
[1 -~- p( t ,  t l ) - t -O~(t  , t l )  R(t[tl) =1 

- p(t, tl)-cz(t, tl) 

[p(t, tz)+-o~(t , tl) [ =< 1, 

respectively. The time evolution 
distribution is given by 

a (t) = ~ (t, tl) + p (t, t~) a (tl). (A.3) 

The conditional probabilities (A.2) do not form a 
semigroup except in the Markov case 

p(t, tl)= p(t, s) p(s, tl) 

e(t, t l )=a(t ,  s)+ p(t, s) e(s, t,). (A.4) 

The generator of any semigroup has the form 

( _  [5(t) + A(t) - O (t) + A(t)] 
F(t) ½ 

l~(t) - A(t) [5(t)- A(t)/ '  (A.5) 

and the propagator is given by 

G(t[tl)=½ (l + P(t' ta)+ A(t' t') 
- P(t, t l ) -  A(t, tl) 

1--p(t, tl)+~(t,t,)~ 
1 + p(t, tl)-- c~(t, tl)/ 

(1.2) 

of the single-event 

1 - P ( t ,  t l ) @  A(t, tl) t 
1 + P(t, q ) -  A(t, t~)/ 

(1.6) 
where 

P(t, tl) = exp [P( t ) -  P(tl) ] 
t 

A(t, t l )= ~ P(t, s) A(s)ds. (1.7) 
tl 

The semigroup property of a(tl tx) follows immediately 
from the fact that P(t, t,) and A(t, t~) satisfy the Markov 
conditions (A.4). 
In the case of definition (2.11) one has 

0(t)= o as (s, t)[~=,+ <0,  A(t)= d c~(s, t)[s=,+ (A.8) 

which depend on the initial distribution. 
In the case of definition (2.12) one finds 

ts(t) =/5(t, to)/p(t, to) 

A(t) = &(t, to ) -  P(t) ~(t, to) (A.9) 

whence 

P(t, tl) =p(t, to)/p(tl, to) 

A(t, t l )= ~(t, to ) -  P(t, tl) c~(tl, to), (A.10) 

independent of the initial distribution. It is easy to 
verify that in this case P(t, to)=p(t, to), A(t, to)= c~(t, to) 
as required by (2.17). 

The process is ergodic ifp(t, - ~ ) = 0  and c~as(t, - oo) = 
aas(t ) exist. Asymptotic stationarity requires that 
Pas(t, tl) and %~(t, tl) depend on t - q  only, and are 
related by 

[[1 --  Pas ( t -  t l )  ] 6/as = O~as (t - -  t l ) .  (A.11) 

In the case of definition (2.11) it follows that 

P.s(t, t~) = exp [ -  ? ( t -  tl) ] 

Aas (t, t,) = aas { 1 - exp [ -  ? (t - t,)] } (A. 12) 

with 7 = -/Sas(0)> 0, which shows the existence of a 
stationary asymptotic propagator (2.22). 
In the case of definition (2.12), on the other hand, 
G(tlto)=R(t[to) becomes singular for t 0 ~ - o o  be- 
cause of p(tlto)~O, as required by (2.23). 

Appendix B. Non-Markov-Gauss Process 

The single-event distribution of a general Gauss 
process is determined by the mean a(t) and the 
variance s (t) 

p(xt )=[2ns( t )] - l /2exp{-[x-a( t )]2/2s( t )}  (B.1) 

and the conditional probability has the form 

R(xtlytl)- exp { - [ x -  p(t, t l )  Y -- O~(t, tl)]Z/2a(t, q)} 

[2~r a(t, tt)] 1/2 (B.2) 

The time evolution of the single-event distribution is 
given by 

a(t)=c~(t, tl) + p(t, q) a(tl) 

s (t) = ,  (t, tt) + p2 (t, tl ) s (t,). (B. 3) 

The conditional probabilities (B.2) do not form a 
semigroup except in the Markov case 

p(t, t l ) = ; ( t ,  S) p(s, t l )  

~( t ,  t l ) : ~ ( t  , S)-}-p(t, S) O~(S, t , )  

a(t, tl)--~(t, s)+ pZ(t, s) a(s, tl). (B.4) 

The generator of the semigroup corresponding to 
Equation (2.11) is the "linear" Fokker-Planck operator 

] (B.5) 

where 

= d  p(s, OIs=,+ 

• d 
~(t)= d~ s c~(s, t)l~=,+ 

t)ls=,+. (B.6) 
a s  
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F(t) generates the general G a u s s - M a r k o v  semigroup 
(see Ref. 16) 

G(xt lyq)  = e x p {  - [ x -  P(t, t l ) y -  A(t, tl)]2/2S(t, tl) } 
[2~z S (t, tl)] 1/2 

(B.7) 
where  

P(t, q)  = exp [ p ( t ) -  ; ( q ) ]  

t 

A(t, t l ) =  ~ P(t, s) ~(s) ds 
II 

s(t,  t~) = i P2( t, s) ~(s) as. (B.8) 
t l  

Calculat ion of the po- independent  genera tor  according 
to Equat ion(2 .12)  would require the inverse of  
R(xt ly t l )  and is not  carried out  here. 
For  an ergodic process, p(t, - oo)=0,  e(t, - oo)= aas(t ) 
and a(t, - oo)= Sas(t) exist. Asympto t i c  s ta t ionar i ty  re- 
quires that  Pas(t, q), ~ ( t ,  q)  and aas(t , tl) depend on 
t - q  only, and satisfy 

[1 - p.~(t- q ) ]  a.~ = ~ . s ( t -  tl) 

[1 - p2a~(t- tl) ] s ~ =  a~s(t- tl). (B.9) 

As a consequence,  

P,s (t, tl) = exp [ -  7(t - tl) ] 

A,~(t, t l ) =  aas { 1 - exp [ -  7 ( t -  tx)]} 

Xas(t, tt)= Sa~ {1 -- exp [ - -  27(t-- tl)]} (B.10) 

where ~ = - f ias  (0)> 0, which shows the existence of a 
s ta t ionary  asympto t ic  p r o p a g a t o r  (2.22). 
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