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Abstract
Transport in a one-dimensional symmetric device can be activated by the
combination of thermal noise and a bi-harmonic drive. The results of extensive
simulations allow us to distinguish between two apparently different bi-
harmonic regimes: (i) harmonic mixing, where the two drive frequencies are
commensurate but not too high; (ii) vibrational mixing, where one harmonic
drive component possesses a high frequency but finite amplitude-to-frequency
ratio. A comparison with the earlier theoretical predictions shows that at
present the analytical understanding of nonlinear frequency mixing is still not
satisfactory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We know from the literature of the 1970s [1] that a charged particle confined onto a nonlinear
substrate is capable of mixing two alternating input electric fields of angular frequencies �1

and �2; its response is expected to contain all possible harmonics of �1 and �2. As a result,
for commensurate input frequencies, i.e., m�1 = n�2, the time-dependent particle velocity
generally (i.e. if not forbidden by reasons of symmetry) would contain a dc component, too.
Such a phenomenon, termed in the later literature harmonic mixing (HM), is a rectification
effect induced by the asymmetry of the applied force [2]. In view of general perturbation
arguments, HM was predicted to be of the (n + m)th order in the dynamical parameters of
the system [3–5]. Recently, HM was re-interpreted as a manifestation of the Brownian motor
phenomenon [6], even if no spatial asymmetry of the substrate is required to generate an
HM signal [6–8]. The extension of HM to Hamiltonian systems also resulted in interesting
applications [9].

More recently, the HM mechanism has been investigated numerically as a tool to
control the transport of interacting particles in artificially engineered quasi-one-dimensional
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channels [10, 11]. An interesting variation of this problem has been proposed in the context
of soliton dynamics, where the combination of two ac driving forces was proven to rectify the
motion of a kink-bearing chain owing to the inherent nonlinearity of the travelling kinks [12].

Here, we study a Brownian particle moving on a one-dimensional substrate subjected to
an external bi-harmonic force F(t) and a zero-mean valued, delta-correlated Gaussian noise
ξ(t). Its coordinate x(t) obeys the Langevin equation (LE)

ẋ = −V ′(x) + F(t) + ξ(t), (1)

where 〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = 2Dδ(t),

F(t) = A1 cos(�1t + φ1) + A2 cos(�2t + φ2) (2)

with A1, A2 � 0, and V (x) being the periodic substrate potential with period L = 2π defined
by

V (x) =
∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx), (3)

for an appropriate choice of the Fourier coefficients {an} and {bn}.
In this report we compare the results of extensive numerical simulations with the

perturbation predictions for the rectification current 〈ẋ〉/2π induced by HM. We conclude
that, in spite of the abundance of numerical results, the analytical description of HM available
in the literature is still not complete, and is to some extent not even satisfactory. Additionally,
we explore a new nonlinear mixing regime. We assume that a weak input signal is tuned at
an optimal frequency �1 that maximizes the particle response, whereas a high-frequency
perturbation pumps energy into the system forcing free particle oscillations of amplitude
ψ0 = A2/�2 comparable with the system length-scale; the ratio �2/�1, not necessarily
a rational number, can be several orders of magnitude large. We demonstrate that the particle
response at the low frequency�1 is extremely sensitive to the high-frequency pump parameter
ψ0, thus suggesting a totally new frequency mixing mechanism, termed here vibrational mixing
(VM) [14].

2. Harmonic mixing

Let us start with the simplest case possible, namely the overdamped stochastic dynamics (1)
driven by the bi-harmonic force (2) with φ1 = φ2 and�2 = 2�1, on the substrate with potential

V (x) = d(1 − cos x). (4)

A truncated continued fraction expansion [3] led to the conclusion that in the regime of low
temperature, D � d , the non-vanishing dc component 〈ẋ〉 of the particle velocity would scale
like

〈ẋ〉
D

∝ −
(

A1

2D

)2 A2

2D
. (5)

This result suggests that for small drive amplitudes and high substrate barriers, A1, A2 �
D � d , the HM signal is negative and independent of d , at variance with the numerical results
reported in figure 1. Numerical simulation runs for increasing d-values reveal a resonant
〈ẋ(d)〉 curve. This is no surprise, as for d → 0 (flattening substrate) the unbiased, zero-mean
force (2), with 〈F(t)〉 = 0, cannot sustain a non-null drift current, whereas for d → ∞ (high
substrate barriers) the interwell activation mechanism gets exponentially suppressed and the
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Figure 1. Transport via HM in the cosine potential (4) for φ1 = φ2, A1 = A2, and (a) �2 = 2�1,
(b) �2 = 4�1: 〈ẋ〉 versus d. Simulation parameters: �1 = 0.01, D = 0.2, and A1 = 0.2
(triangles), A1 = 0.4 (squares), and A1 = 1.1 (circles).

relevant drift current drops to zero. (The conflicting sign in equation (5) is likely to be due to
an erroneous definition in [3].)

The numerical dependence of 〈ẋ〉 on the amplitude of F(t) is also more complicated than
expected from the perturbation estimate (5). In figure 2, the HM dc component of ẋ(t) is plotted
versus A1 = A2 ≡ A at different drive frequencies �2 = 2�1. For low drive amplitudes the
HM signal 〈ẋ〉 indeed grows proportionally to A3 as suggested by the scaling law (5), but only
for sufficiently high noise level D.

Moreover, figure 2 illustrates another interesting property of rectification by HM: at
relatively high ac frequencies (non-adiabatic regime), the curves 〈ẋ(A)〉 develop regular
oscillations for A > 1 with period and amplitude roughly proportional to �1. The details
of such a non-adiabatic mechanism are explained in [13]: on setting A at increasingly high
values above the depinning threshold of V (x), max{|V ′(x)|} = 1, it happens that the number of
substrate cells the driven particle drifts across during one half-cycle increases by one unit, first
to the right and then to the left, thus causing one full 〈ẋ〉 oscillation at regular A increments,
�A, proportional to �1. Of course, in the adiabatic limit, �1 → 0, these oscillations tend
to disappear with �A. Moreover, shortening the drive period or lowering the noise level
for A > 1 enhances the above modulation effect [13]. Finally, on further increasing A the
cancellation of the right and the left drifts becomes more and more efficient; as a result the
envelope of the 〈ẋ〉 oscillations decays slowly with A—seemingly, inversely proportionally to√

A (see figure 2).
An independent perturbation approach [4] led to the following scaling law for the

rectification velocity of a Brownian particle (1) in a cosine potential (4) subject to the harmonic
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Figure 2. Transport via HM in the cosine potential (4) for φ1 = φ2, A1 = A2, and (a) �2 = 2�1,
(b) �2 = 4�1: 〈ẋ〉 versus A1. Simulation parameters: (a) squares: �1 = 0.4, D = 0.2; empty
circles: �1 = 0.8, D = 0.2; triangles: �1 = 0.01, D = 0.2; solid circles: �1 = 0.05, D = 0.4;
(b) squares: �1 = 0.4, D = 0.2; circles: �1 = 0.1, D = 0.2; triangles: �1 = 0.01, D = 0.2. In
both panels d = 1.

force (2) with �2 = 2�1:

〈ẋ〉
�1

∝
(

d

D

)2( A1

2�1

)2 A2

2�2
. (6)

This prediction, that applies under the conditions d � �1 � D, reproduces qualitatively only
both the d → 0 branches of figure 1 (consistently with [3]) and the�1 → ∞ tails of the curves
〈ẋ(�1)〉 in figure 3. Note that for large commensurate drive frequencies, i.e., �1 = m�0 and
�2 = n�0 with �0 → ∞, the HM signal drops sharply to zero.

3. Vibrational mixing

In order to describe the VM mechanism in some detail, we now go back to equations (1)–(3)
and further assume that one sinusoid of F(t) is slow while the other one is fast, say,�1 � �2.
Then, following the approach of [15, 16], we can separate

x(t) −→ x(t) + ψ(t), (7)

where, in shorthand notation, from now on x(t) represents a slowly time-modulated stochastic
process and ψ(t) is the particle free spatial oscillation

ψ(t) = ψ0 sin(�2t + φ2) (8)
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Figure 3. Transport via HM in the cosine potential (4) for φ1 = φ2, A1 = A2, and (a) �2 = 2�1,
(b) �2 = 4�1: 〈ẋ〉 versus �1. Simulation parameters: solid symbols: D = 0.2; empty symbols:
D = 0.4; triangles: A1 = 0.4; squares: A1 = 0.6; circles: A1 = 1.1; in both panels d = 1.

with ψ0 = A2/�2. On averaging out ψ(t) over time, the LE for the slow reduced spatial
variable x(t) can be written as [17]

ẋ = −V
′
(x) + A1 cos(�1t + φ1) + ξ(t), (9)

where

V (x) =
∞∑

n=1

an J0(nψ0) cos(nx) +
∞∑

n=1

bn J0(nψ0) sin(nx). (10)

Here, we made use of the identities 〈sin[nψ(t)]〉 = 0 and 〈cos[nψ(t)]〉 = J0(nψ0), with
J0(x) denoting the Bessel function of 0-order [18]—see also inset of figure 4—and 〈(· · ·)〉
representing the time average of the argument (· · ·).

As a result of the adiabatic elimination [19] of ψ(t), the slow observable x(t) diffuses
on an effective or renormalized potential V (x) driven by the slow harmonic of equation (2),
alone. We remark that V (x) depends on the ratio ψ0 = A2/�2, the amplitude of its nth
Fourier component oscillating like |J0(nψ0)|. The adiabatic separation (7) for �1 � �2 is
tenable as long as the fast oscillation amplitudes are clearly distinguishable with respect to the
corresponding Brownian diffusion [19], that is to say when ψ2

0 
 2Dt2 with t2 = 2π/�2 or,
equivalently,

D � A2

8π

(
A2

�2

)
. (11)

In the limit �2 → ∞ at constant A2/�2, the approximate LE (9) is expected to be very
accurate, regardless of the value of D.
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Figure 4. Mobility versus A2/�2 in the dc case, �1 = 0 and φ1 = 0, for different D. The
simulation data (dots) have been obtained by integrating the LE (1) numerically with V (x) given
in equation (12) and parameter values A1 = 0.23, �2 = 0.1. The solid curves represent
the corresponding analytic prediction (11.51) of [20] for the reduced LE (9). Inset: amplitude
|J0(A2/�2)| of V (x) (solid curve) compared with the static force A1.

We now discuss two successful applications of our VM approximation scheme.
(a) dc bias,�1 = 0, φ1 = 0. We consider first the case when the slow varying modulation

embedded in F(t) can be assimilated to a constant A1—at least over the relevant experimental
observation times. The simplest choice for the substrate potential is

V (x) = − cos x, (12)

corresponding to setting a1 = −1 and all the remaining Fourier coefficients an, bn to zero.
The reduced problem (9), (10) describes the Brownian diffusion in a washboard potential with
variable tilt A1 [20].

The observable that best quantifies the response of such a system to the dc input A1 is the
mobilityµ ≡ 〈ẋ〉/A1. In figure 4 we compare the simulation data for the full dynamics (1)–(3)
against the analytic predictions for the static limit of the LE (9), (10) (i.e. when�1 = 0, φ1 = 0)
at increasing ratios A2/�2 of the ac component of F(t). The solid curves displayed have been
obtained by computing the analytic expression (11.51) of [20] for µ. The agreement between
simulation and theory is surprisingly close even for noise intensities above our threshold of
confidence (11).

(b) Vibrational ratchets. We consider now a more complicated example that falls under the
category of rocked ratchets [21]. The motion of a Brownian particle on an asymmetric substrate
gets rectified when driven by a time-correlated force, either of stochastic or of deterministic
time-periodic origin [6]. Let the Fourier coefficients of the expansion (3) all be zero but
b1 = −1 and b2 = − 1

4 , i.e.

V (x) = − sin x − 1
4 sin 2x . (13)

The corresponding LE (1) describes a doubly-rocked ratchet [10, 11]. For arbitrary
input frequencies �1, �2, the rectified current of the system is known to exhibit marked
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Figure 5. Mobility versus A2/�2 for the doubly-rocked ratchet (1) and (13) with A1 = 0.5,
�1 = 0.01, φ1 = φ2 = 0, and different values of the noise intensity D. All simulation data have
been obtained for �2 = 10, with the exception of the black crosses, where we set D = 0.12 and
�2 = 20. Bottom inset: simulation data for µ(A2/�2) as in the main panel with an additional
curve at D = 0.6. Top inset: µ versus D for A2 = 0, A1 = 0.5, and�1 = 0.01; circles: simulation
data; solid curve: adiabatic formula (11.44) of [20].

commensuration effects and a complicated dependence on the noise intensity and all forcing
parameters [11]. We claim here that an adiabatic limit exists for �1 → 0 and �2 → ∞ with
A2/�2 constant, that can be well interpreted in terms of the separation scheme (7). Following
the notation of [15, 16], we term a rocked ratchet operated under such conditions a vibrational
ratchet.

The results of our simulation work are summarized in figures 5 and 6. To explain the
persistent VM oscillations of the curvesµ(A2/�2), we write down the renormalized potential
explicitly, i.e.

V (x) = −J0(ψ0) sin x − 1
4 J0(2ψ0) sin 2x . (14)

As long as our adiabatic elimination procedure applies, the ratchet current j = 〈ẋ〉/L vanishes
in correspondence of the zeros of either Bessel function in equation (14), due to the restored
symmetry of the effective substrate. On denoting by jn the nth zero of J0(x), one predicts the
following sequence of mobility-zeros:

A2

�2
= 1

2
j1, j1,

1

2
j2,

1

2
j3, j2,

1

2
j4,

1

2
j5, j3, . . . (15)

with j1 = 2.405, j2 = 5.520, j3 = 8.654, j4 = 11.79, j5 = 14.93, etc [18].
As shown in figure 5, the sequence (15) reproduces very closely the zero-crossings of our

simulation curves for small noise intensities; for D = 0.06 we could locate correctly over 20
zeros of the curveµ(A2/�2). In our derivation of the effective potential (14) we cautioned that
discrepancies may occur for D above the confidence threshold (11); the deviations observed
in the bottom inset of figure 5 invalidate our approximation scheme only for D � 1. The
amplitudes of the largeµ(A2/�2) oscillations decay like (A2/�2)

− 1
2 as expected after noticing

that the modulus of J0(x) vanishes asymptotically like
√

2/πx for x → ∞ [18].
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Figure 6. The mobility is depicted versus A2/�2 for the doubly-rocked ratchet (1) and (13) with
D = 0.12, �1 = 0.01, �2 = 10, φ1 = φ2 = 0, and different values of A1. Top inset: µ versus A1
for A2 = 0, D = 0.12, and �1 = 0.01; circles: simulation; solid curves: adiabatic approximation
(11.44) of [20]. Bottom inset: µ versus A2/�2 for the doubly-rocked ratchet (1) and (13) with
A1 = 0.5, D = 0.12, �2 = 10, φ1 = φ2 = 0, and different �1.

In the low-frequency regime, �1 � 1, the reduced ratchet dynamics, (9) and (14), can
be treated adiabatically. Its mobility can be computed analytically by the time averaging
equation (11.44) of [20] over one forcing cycle t1 = 2π/�1. In figure 6 the analytic curves for
µ(A2/�2) fit our simulation data (grey dots) very closely at low noise, regardless of the value
of the amplitude A1 of the slow harmonic in (2). In the bottom inset of figure 6, deviations
from the low-frequency curve become visible for �1 � 0.1: this does not imply that the
projection scheme leading to the reduced LE (9), (10) fails on increasing �1 with �1 � �2,
but rather that the adiabatic treatment of the resulting LE becomes untenable. This conclusion
is corroborated by the fact that the mobility zeros (and signs) of the curves both in the main
panel and in the bottom inset of figure 6 are independent of either parameter A1 and�1 of the
low-frequency sinusoid.

4. Conclusions

In this preliminary report we numerically investigated the transport of an overdamped Brownian
particle driven by a bi-harmonic force in two different frequency regimes, termed harmonic
and vibrational mixing, respectively.

We compared the output of an extensive simulation project with the results of perturbation
studies available in the literature. The emerging picture is encouraging for the VM regime,
where a simple adiabatic scheme seems to reproduce our numerical data closely. Regarding the
HM regime, however, the current analytical predictions are not yet quantitatively dependable.

We confirm that bi-harmonic drives do indeed play a prominent role in the physics of
ratchets [10, 11]. In view of technological applications, we stress here a peculiar property of
vibrational ratchets. As depicted in figure 6, in the presence of the high-frequency harmonic,
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alone, A1 = 0 and �2 
 1, the simulated net current is vanishingly small (empty triangles in
the main panel); in the absence of fast oscillations, A2 = 0, however, the curve µ(0) versus
A1 is well reproduced by the adiabatic limit�1 � 1 [21] (figure 6, top inset). On comparison,
one notices that, for relatively small A1, the amplitude of the µ(A2/�2) oscillations can grow
notably larger than the correspondingµ(0). This means that energy pumped into the system at
too high frequency gets dissipated into the heat bath, if the system is operated at equilibrium; in
contrast VM induces a cooperative coupling between high-frequency disturbances and optimal
drives, thus enhancing the system response beyond the expectations of the linear response
theory.

On the other hand, the robustness of VM hints at the possibility of implementing this
concept in the design and operation of efficient electromagnetic wave sensors. In fact, the
present investigation has been inspired by a typical signal detection problem, namely how to
reveal a high-frequency signal by means of a sensor with optimal sensitivity in a relatively low-
frequency band. Our results suggest a simple recipe: although the unknown high-frequency
signal alone cannot be detected, adding a tunable control signal with parameters within the
device sensitivity range causes a nonlinear transfer of energy (information) from high to low
frequencies, thus enhancing/modulating the sensor response to the control signal. By analysing
the dependence of the device output on the tunable input signal, we can reveal the existence
of unknown (and otherwise not detectable) high-frequency signals.
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