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A theory for �1+3�-dimensional relativistic Brownian motion under the influence of external force fields is
put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we
describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck
equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription—
i.e., the discretization rule dilemma—is elucidated �prepoint discretization rule versus midpoint discretization
rule versus postpoint discretization rule�. Remarkably, within our relativistic scheme we find that the postpoint
rule �or the transport form� yields the only Fokker-Planck dynamics from which the relativistic Maxwell-
Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly
more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for
the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions.

DOI: 10.1103/PhysRevE.72.036106 PACS number�s�: 02.50.Ey, 05.40.�a, 05.40.Jc, 47.75.�f

I. INTRODUCTION

The problem of formulating a consistent theory of Brown-
ian motions �1–6� in the framework of special relativity �7,8�
represents a long-standing issue in mathematical and statis-
tical physics �classical references are �9–11�; more recent
contributions include �12–20�; for a kinetic theory approach,
see �21,22��. In a preceding paper �23�—referred to as paper
I hereafter—we have discussed in detail how one can con-
struct Langevin equations for �1+1�-dimensional relativistic
Brownian motions. In particular, it was demonstrated that
from the relativistic Langevin equation per se one cannot
uniquely determine the corresponding Fokker-Planck equa-
tion �FPE�. This ambiguity arises due to the fact that the
relativistic Langevin equations, when, e.g., written in labora-
tory coordinates, exhibit a multiplicative coupling between a
function of the momentum coordinate and a Gaussian white
noise process �laboratory frame� rest frame of the heat
bath�. Thus, depending on the choice of the discretization
rule, different forms of relativistic FPE are obtained �24,25�.

In paper I, we have analyzed the three most popular dis-
cretization rules for Langevin equations with multiplicative
noise, which can be traced back to the proposals pioneered
by Ito �prepoint discretization rule �26,27��, by Fisk and Stra-
tonovich �midpoint rule �25,28–31��, and by Hänggi and Kli-
montovich �postpoint rule �32–35��. In this context it could
be shown that only the Hänggi-Klimontovich �HK� interpre-
tation of the Langevin equation yields the transport form of
the Fokker-Planck equation with state-dependent diffusion,
whose stationary solution coincides with the one-
dimensional relativistic Maxwell distribution. The latter is
known from Jüttner’s early work on the relativistic gas
�36,37� and also from the relativistic kinetic theory �22�.

In paper I, we have focused exclusively on the simplest
situation, corresponding to free �1+1�-dimensional relativis-

tic Brownian motions. Therefore, the present paper aims to
extend the analysis to the physically relevant
�1+3�-dimensional case. In particular, we wish to include as
well the effects of additional, external force fields. To this
end the paper is structured as follows: In Sec. II the relativ-
istic Langevin equations are given in covariant 4-vector no-
tation and also in laboratory frame coordinates. The corre-
sponding Fokker-Planck equations and their stationary
solutions are considered in Sec. III. Section IV contains a
discussion of numerical results for the mean-square displace-
ment of free Brownian particles. The paper concludes with a
resume of the main results in Sec. V.

II. RELATIVISTIC LANGEVIN DYNAMICS

Let us first discuss the manifestly Lorentz-covariant
4-vector form of the relativistic Langevin equations �Sec.
II A�. For that purpose, we shall use of the results derived in
Sec. II of paper I, which can readily be generalized to 1+3
dimensions. Subsequently, the relativistic Langevin equa-
tions will be written in laboratory coordinates �Sec. II B�.
The latter form provides the basis for the numerical results of
Sec. IV.

With regard to notation, the following conventions will be
used throughout the paper: Uppercase and lowercase Greek
indices � ,� , . . . can take values 0,1,2,3, where “0” refers to
the time component. Uppercase and lowercase Latin indices
i , j , . . . take values 1,2,3 and are used to label the components
of spatial 3-vectors, denoted by bold symbols. For example,
we write �x��= �x0 ,x�= �ct ,xi� and �p��= �p0 ,p�= �E /c , pi�
with t denoting the coordinate time, E the energy, c the
vacuum speed of light, and xi and pi the spatial coordinates
and relativistic momenta, respectively. Moreover, Einstein’s
summation convention is applied throughout. The
�1+3�-dimensional Minkowski metric tensor with respect to
Cartesian coordinates is taken as

����� = ����� = diag�− 1,1,1,1� ,*Electronic address: dunkel@mpa-garching.mpg.de
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���
�� = ���

�� = diag�1,1,1,1� .

As commonly known, covariant vector components x� can
be calculated from the contravariant components x� by virtue
of x�=���x�, which, in particular, means that for Cartesian
coordinates x0=−x0 and xi=xi hold. Further, if in a certain
inertial coordinate system � a Brownian particle has the
3-velocity v�t��dx�t� /dt, then the differential d� of its
proper time is defined by

d� � dt�1 −
viv

i

c2 . �1�

A. Langevin equations in 4-vector notation

Consider a Brownian particle with rest mass m, proper
time �, and 4-velocity u����; i.e., the 4-momentum of the
particle is given by p�=mu�, where u�u��−c2. Assume that
the particle is surrounded by an isotropic, homogeneous heat
bath with constant 4-velocity U� and, additionally, subject to
an external 4-force K��x� , p	� such as, e.g., the Lorentz
force. Then, according to the results in Sec. II of paper I, the
relativistic Langevin equations of motion read

dx���� =
p�

m
d� , �2a�

dp���� = �K� − ��
��p� − mU���d� + w���� . �2b�

For an isotropic homogeneous heat bath, the friction tensor
��

� in Eq. �2b� is given by

��
� = �	��

� +
u�u�

c2 
 , �2c�

with � denoting the scalar viscous friction coefficient mea-
sured in the rest frame of the particle. Furthermore, the rela-
tivistic Wiener increments w�����dW���� are distributed ac-
cording to the probability density

P1+3�w����� =
c

�4
Dd��3/2 exp�−
w����w����

4Dd�
��„u�w����… ,

�2d�

where D is the scalar noise amplitude parameter measured in
the rest frame of the particle. Some useful comments con-
cerning Eq. �2� are appropriate.

�i� The covariant friction tensor in Eq. �2c� carries the
same structure as the covariant pressure tensor for an ideal
fluid. In particular, this means that in each instantaneous rest
frame �* of the particle, where temporarily �u*

��= �c ,0�
holds, the tensor form, Eq. �2c�, reduces to the diagonal form

��*
�

�� =
0 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �
� . �3�

This form of the friction tensor reflects the simplifying as-
sumptions that the heat bath can, in good approximation, be
considered as isotropic and homogeneous.

�ii� Note that the probability density of the increments in
Eq. �2d� can equivalently be written as

P1+3�w�� =
c

�4
Dd��3/2 exp�−
1

2d�
D̂��w�w����u�w�� ,

�4a�

where the tensor

D̂�
� =

1

2D
	��

� +
u�u�

c2 
 �4b�

carries the same isotropic structure as the friction tensor from
Eq. �2c�. The � function in Eq. �4a� accounts for the fact that
the Minkowski scalar product of the 4-force and 4-velocity
must identically vanish.

�iii� The increment density in Eq. �2d� is normalized so
that

1 = ��
�=0

3 �
−�

�

d�w������P1+3�w����� �5a�

holds. For the first two moments one finds

�w����� = 0, �5b�

�w����w������ = �0, � � ��,

D��d� , � = ��,
� �5c�

where

D�
� = 2D	��

� +
u�u�

c2 
 . �5d�

The easiest way to validate this is to perform the calculations
leading to Eqs. �5� in a comoving Lorentz frame �*, where,
at a given instant of time t*���, the particle is at rest. In such
a comoving frame �* the marginal distribution of the spatial
momentum increments, defined by

P3�w*�t*�� = �
−�

�

dw*
0P1+3�w*

�� , �6�

reduces to a Gaussian. One thus recovers, as it should hold
true, from Eqs. �2� the nonrelativistic Brownian motion in
the Newtonian limit case v2c2. In the relativistic limit v2

�c2, however, the increment distribution �6� will signifi-
cantly deviate from the nonrelativistic increment distribution.
The reason for this is the explicit velocity-dependence of the

tensor D̂�
� from Eq. �4b�.

B. Langevin dynamics in the laboratory frame

In this section the covariant Langevin equations �2� will
be rewritten in laboratory coordinates. A laboratory frame �0
is, by definition, an inertial system, in which the heat bath is
at rest. That is, in �0 the 4-velocity of the heat bath is given
by �U��= �c ,0� for all times t, where t is the coordinate time
of �0.

From Eq. �2a�, we obtain three differential equations for
the position coordinates
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dxi�t� = vidt , �7a�

where

vi =
cpi

�m2c2 + pip
i
. �7b�

Furthermore, since we have �U��= �c ,0� in �0, the four sto-
chastic differential Eqs. �2b� can be rewritten as �23,38�

dpi = ��−1Ki − �pi�dt + wi, �7c�

dE = ��−1Ki − �pi�vidt + cw0, �7d�

where the relativistic �kinetic� energy is here defined by E
�cp0 and

� � 	1 −
viv

i

c2 
−1/2

= 	1 +
pip

i

m2c2
1/2

. �7e�

Before discussing the stochastic increments w�, let us briefly
consider the deterministic force components Ki. If F= �Fi� is
the nonrelativistic �Newtonian� force, then the corresponding
relativistic force 3-vector K= �Ki� is given by �see Chap. 2 of
�38��

K = F + �� − 1�
�v · F�

v2 v . �8�

If the dynamics is confined to one spatial dimension only,
then Eq. �8� simplifies to K=�F.

Next, let us turn to the stochastic force components, ap-
pearing on the right-hand side �RHS� of Eqs. �7c� and �7d�.
According to Eq. �2d�, the distribution of the stochastic mo-
mentum increments, w�, also depends on the particle’s ve-
locity v. By virtue of the relation

�u�� = �− �c,�vi�, �w�� = �w0,wi� , �9�

we can rewrite the increment density �2d� in laboratory co-
ordinates as follows:

P1+3�w�� = c	 �

4
Ddt

3/2

exp�−
wiw

i − �w0�2

4Ddt/�
�

���c�w0 − �viw
i� . �10�

As we already pointed out above, the � function in Eq. �10�
reflects the fact that the energy increment w0 is coupled to
the spatial momentum increments wi via

0 = u�w� = − c�w0 + �viw
i ⇒ w0 =

viw
i

c
. �11�

This is just the stochastic analogue of the well-known deter-
ministic identity

u�K� � 0.

Hence, similar to K0, also w0 can be eliminated from the
Langevin equation �7d�, yielding

dE = ��−1Ki − �pi�vidt + viw
i�t� = vidpi. �12�

Using the identity �7b�, we can further rewrite Eq. �12� as

dE =
cpi

�m2c2 + p2c2
dpi, �13�

where p2� pip
i. From the preceding equation we regain the

well-known energy momentum law

E�t� = �m2c4 + p�t�2c2. �14�

It might be worthwhile to remark that in the presence of
force fields the relativistic energy E=cp0 is generally differ-
ent from the relativistic Hamiltonian �39�. Note that Eq. �14�
remains valid also for our stochastic model.

The relativistic Brownian motion is therefore completely
described by the three Langevin equations �7c�. The statistics
of the increments wi in Eq. �7c� is determined by the mar-
ginal distribution P3�w�, defined in Eq. �6�. Performing the
integration over the � function in Eq. �10�, we find

P3�w� = �
−�

�

dw0P1+3�w�� = c�
−�

�

dw0	 �

4
Ddt

3/2

�exp�−
wiw

i − �w0�2

4Ddt/�
���c�w0 − �viw

i�

=
1

�
	 �

4
Ddt

3/2

exp�−
�

4Ddt
	�ij −

viv j

c2 
wiwj� ,

�15�

where �ij denotes the Kronecker delta symbol �defined by
�ij =1 if i= j, and �ij =0 otherwise�. As already stated above,
in agreement with the nonrelativistic theory the marginal dis-
tribution �15� reduces to an ordinary Gaussian in the nonrel-
ativistic limit case v2c2.

In principle, it is straightforward to perform computer
simulations on the basis of Eqs. �7c� and �15�. In Sec. IV we
will discuss several numerical findings. Before doing so,
however, it is worthwhile to consider in greater detail the
Fokker-Planck equations of the relativistic Brownian motion
in the laboratory frame �0. By doing so it will become clear
that the choice vi=vi�t� in Eq. �15� is consistent with an Ito
interpretation �24,26,27� of the stochastic differential equa-
tions �7c�. However, we shall also see that alternative
interpretations—such as, e.g., the postpoint discretization
rule vi=vi�t+dt�—lead to physically reliable results as well.

III. RELATIVISTIC FOKKER-PLANCK EQUATIONS

The objective here is to discuss relativistic Fokker-Planck
equations for the one-particle momentum density f�t ,p� and,
as well, for the phase-space density f�t ,p ,x�. In the remain-
der, we will exclusively refer to the coordinates of the labo-
ratory frame �0. Before turning to the relativistic FPE in
Secs. III B and III C, it is useful to briefly recall the nonrel-
ativistic case.

A. Nonrelativistic case

Consider the nonrelativistic Langevin equations

dxi = vidt , �16a�
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dpi = �Ki − �pi�dt + wi, �16b�

where pi�t�=mvi�t� denotes the nonrelativistic momentum
components, Ki=−�iU represents the vector components of a
conservative force with time-independent potential U�x�, and
the increments wi�dWi are distributed according to

P�w� = 	 1

4
Ddt

3/2

exp�−
wiw

i

4Ddt
� . �16c�

Equations �16� govern the nonrelativistic motions of a
Brownian particle in the rest frame of the heat bath. As one
readily observes, in the case of conservative force fields, Eqs.
�16� can be obtained from the relativistic equations �7a�,
�7c�, and �15� by formally taking the limit c→� �Newtonian
limit case�. It is well known that the phase-space density
f�t ,p ,x�, associated with the stochastic process �16�, is gov-
erned by the FPE �24,25,40�

�

�t
f +

pi

m

�

�xi f +
�

�pi �K
if� =

�

�pi	�pif + D�ij �

�pj f
 . �17�

The stationary solution of Eq. �17� is the �nonrelativistic�
Maxwell-Boltzmann distribution—i.e.,

f�p,x� = C exp�−
p2 + 2mU�x�

2mkBT
� , �18a�

where C is a normalization constant. The temperature T of
the bath is defined by the Einstein relation �kB denotes the
Boltzmann constant�

kBT �
D

m�
. �18b�

The related marginal momentum distribution is the usual
Maxwellian probability density

f�p� = 	 �

2
D

3/2

exp	−
�p2

2D

 . �19�

B. Relativistic FPE for free Brownian particles

We next deduce three different types of relativistic
Fokker-Planck equations for the momentum density f�t ,p� of
a free Brownian particle, whose dynamics is governed by the
stochastic process given by Eqs. �7c� and �15�. The corre-
sponding equations for the phase-space density f�t ,p ,x� will
be considered separately in Sec. III C, where we will also
include the influence of an external force field.

As our starting point serves the relativistic Langevin
equation �7c�, which holds in the laboratory frame �0 �i.e., in
the rest frame of the heat bath�. In the absence of external
force fields the stochastic differential equation �7c� reduces
to

dpi = − �pidt + wi, �20a�

where pi=�mvi is now the relativistic momentum and � has
been defined in Eq. �7e�. According to Eq. �15�—and in dis-
tinct contrast to Eq. �16c�—the distribution of the relativistic
increments reads

P3�w� =
1

�
	 �

4
Ddt

3/2

exp�−
wiA

i
jw

j

4Ddt
� , �20b�

with matrix elements given by

Ai
j � 	�i

j −
viv j

c2 
� = 	�i
j −

pipj

�2m2c2
� . �20c�

Following the reasoning of paper I, the next aim is to rewrite
the Langevin equations �20� in such a form that the resulting
equations exhibit multiplicative Gaussian white noise, gov-
erned by a velocity-independent normal distribution of the
form �16c�. In order to achieve this objective we first note
that the matrix A�p�= �Ai

j� is symmetric. Its eigenvalues and
determinant are given by

spec�A� = ��,�,�−1�, det�A� = � . �21�

Thus, the matrix A is positive definite for velocities v2�c2,
and the elements of the inverse matrix A−1 read

�A−1� j
k = 	� j

k

�2 +
v jvk

c2 
� = 	� j
k +

pjpk

m2c2
 1

�
. �22�

Furthermore, there exists a unique Cholesky decomposition
�41�

A = LTL = L1
1 0 0

L2
1 L2

2 0

L3
1 L3

2 L3
3
�L1

1 L2
1 L3

1

0 L2
2 L3

2

0 0 L3
3
� , �23�

where the matrix L�p� is nonsingular with elements given by

L1
1 = �A1

1,

L2
1 = A2

1/L1
1,

L2
2 = �A2

2 − �L2
1�2,

L3
1 = A3

1/L1
1,

L3
2 = �A3

2 − L3
1L2

1�/L2
2,

L3
3 = �A3

3 − �L3
1�2 − �L3

2�2. �24�

The inverse matrix L�p�−1 reads

L−1 =
1

det�L�L2
2L3

3 − L2
1L3

3 L2
1L3

2 − L3
1L2

2

0 L3
3L1

1 − L3
2L1

1

0 0 L1
1L2

2
� ,

�25a�

where

det�L� = L1
1L2

2L3
3. �25b�

Let us next introduce a stochastic vector variable y�t�=yi�t�
by

yi � Li
jw

j . �26�

Then, by taking into account that for wT��wi� and yT

��yi� the relation
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wTAw = wTLTLw = �Lw�TLw = yTy �27�

holds, we can rewrite the Langevin equations �20� in the
form

dp = − �pdt + L�p�−1y , �28a�

where y�t� is distributed according to the momentum-
independent Gaussian probability density

Py
3�y� = 	 1

4
Ddt

3/2

exp�−
yiy

i

4Ddt
� . �28b�

Put differently, because the inverse matrix L�p�−1 depends on
the momentum coordinate p, the random vector y�t� enters in
relativistic Langevin equation �28a� as an ordinary “multipli-
cative” Gaussian white-noise process with noise strength D.

As is well known, for multiplicative stochastic processes
of the type �28� the Langevin equation per se does not
uniquely determine a corresponding Fokker-Planck equation
�24,25�. In the following subsections, we shall discuss the
three most popular choices of resulting Fokker-Planck equa-
tions for a Langevin equation of the form �28�. These choices
are rooted in the different proposals put forward by Ito
�24–27�, by Stratonovich and Fisk �25,28–31�, and by
Hänggi �32–34� and Klimontovich �35�, respectively. All
three approaches have in common that the related Fokker-
Planck equation can be written as a continuity equation �con-
servation of probability� of the form �34�

�

�t
f�t,p� +

�

�pi ji�t,p� = 0, �29�

but with distinctly different expressions for the probability
current j�t ,p�. It is worthwhile to anticipate here that only the
Hänggi-Klimontovich approach �see Sec. III B 3� yields a
stationary distribution, which can be identified with Jüttner’s
relativistic Maxwell distribution �36�.

1. Ito approach

According to Ito’s interpretation of the Langevin equation
�28a�, the coefficient matrix before y�t� is to be evaluated at
the lower boundary of the interval �t , t+dt�—i.e.,

L�p�−1 = L„p�t�…−1. �30�

Ito’s choice is also known as the prepoint discretization rule
�24–27� and leads to the following explicit expression for the
current:

jI
i�t,p� = − ��pif + D

�

�pj
�L−1�L−1�T�i

j f� . �31�

In view of the identity

L−1�L−1�T = L−1�LT�−1 = �LTL�−1 = A−1, �32�

Eq. �31� can be rewritten more conveniently as

jI
i�t,p� = − ��pif + D

�

�pj
�A−1�i

j f� , �33�

where the matrix A�p�−1 is given in Eq. �22�. The related
relativistic Fokker-Planck equation is obtained by inserting

this current into the conservation law �29�. As elucidated in
the Appendix, the stationary solution of the resulting Fokker-
Planck equation reads

f I�p� = CI	1 +
p2

m2c2
−3/2

exp	− ��1 +
p2

m2c2
 , �34�

which contains in the prefactor an explicit �non-Maxwell-
like� dependence on velocity and where CI is a normalization
constant. In the solution �34�, the dimensionless parameter

� �
�m2c2

D
�35�

is related to the scalar temperature T of the heat bath via the
Einstein relation

kBT �
mc2

�
=

D

m�
. �36�

Thus, the quantity �=mc2 / �kBT� gives the ratio between the
rest energy and thermal energy of the Brownian particle. It
should be mentioned that we used in paper I the notation �
instead of �. However, in order to avoid a possible confusion
with the commonly used abbreviation �= �kBT�−1 we opted
here for this slight change of notation.

2. Stratonovich-Fisk approach

According to the Stratonovich-Fisk prescription, the coef-
ficient matrix before y�t� in Eq. �28a� is to be evaluated with
the midpoint discretization rule—i.e.,

L�p�−1 = L	p�t� + p�t + dt�
2


−1

. �37�

This choice �25,28–30� leads to a different expression for the
current �25,28–30�:

jSF
i �t,p� = − ��pif + D�L−1�i

k

�

�pj
��L−1�T�k

j f� . �38�

The explicit stationary solution of Stratonovich’s Fokker-
Planck equation reads �see the Appendix, subsection 2�

fSF�p� = CSF	1 +
p2

m2c2
−3/4

exp	− ��1 +
p2

m2c2
 �39�

and thus differs from Eq. �34� in the power of the velocity-
dependent prefactor.

3. Hänggi-Klimontovich approach

Ultimately, let us next consider the Hänggi-Klimontovich
stochastic integral interpretation, sometimes referred to as
the transport form �32–34� or also as the kinetic form �35�.
According to this interpretation, the coefficient matrix in
front of y�t� in Eq. �28a� is to be evaluated at the upper
boundary of the interval �t , t+dt�; i.e., within the post-point
discretization we set

L�p�−1 = L„p�t + dt�…−1. �40�

This choice leads to the following expression for the current
�33–35�:
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jHK
i �t,p� = − ��pif + D�A−1�i

j

�

�pj
f� , �41�

and the stationary solution of the related FPE reads �see the
Appendix, Eq. �A3��

fHK�p� = CHK exp	− ��1 +
p2

m2c2
 . �42a�

Note that this solution contains no velocity dependence in
the prefactor. Using the temperature definition in Eq. �36�
and the relativistic kinetic energy formula E=�m2c4+p2c2,
we can recast Eq. �42a� as

fHK�p� = CHK exp	−
E

kBT

 . �42b�

The normalization constant is given by �11�

CHK
−1 =� d3p exp	− ��1 +

p2

m2c2

= 4
�

0

�

dpp2 exp	− ��1 +
p2

m2c2

= 4
�mc�3K2���

�
, �42c�

where K2��� denotes the modified Bessel function of the sec-
ond kind. The distribution function �42� is known as the
relativistic Maxwell distribution. It was first derived by Jütt-
ner �36� in 1911 when he investigated the velocity distribu-
tion of noninteracting relativistic gas particles �see also �37��.
By comparing Eqs. �34�, �39�, and �42a� one readily observes
that the stationary solutions f I/SF differ from the Jüttner func-
tion fHK through additional p-dependent prefactors. The
quantitative difference between these three stationary solu-
tions becomes significant in the relativistic limit, correspond-
ing to a low rest energy-to-temperature ratio �.

As already mentioned in paper I, for the one-dimensional
case the relativistic Maxwell distribution has also been ob-
tained by Schay �see Eqs. �3.63� and �3.64� in Ref. �9��, who
studied relativistic diffusions employing a transfer probabil-
ity method. Moreover, the distribution �42� can also be de-
rived in the framework of the relativistic kinetic theory �22�.
This suggests that the HK discretization rule is physically
preferable if one wishes to use the above Langevin equations
for numerical simulations of relativistic kinetic processes. In
general, however, additional information about the micro-
scopic structure of the heat bath is required in order to decide
which discretization rule is physically reasonable �see, e.g.,
the discussion of Ito-Stratonovich dilemma in the context of
“internal-external” noise as given in Chap. IX.5 of van Ka-
mpen’s textbook �24��.

Finally, we still note that the related velocity probability
density functions �I/SF/HK�v� are obtained by applying the
general transformation law

��v� � f„p�v�…� �p

�v
� , �43�

where, as usual,

p�v� =
mv

�1 − v2/c2
.

The determinant factor

� �p

�v
� = m3	1 −

v2

c2 
−5/2

, �44�

appearing on the RHS of Eq. �43�, ensures that the velocity
density functions �I/SF/HK�v� drop to zero for v2→c2. For
example, in the case of the Jüttner function �42� one explic-
itly obtains

�HK�v� =
�

4
c3K2���
exp	−

�

�1 − v2/c2
	1 −
v2

c2
−5/2

.

�45�

C. Inclusion of external force fields

The preceding section concentrated on Fokker-Planck
equations for the momentum density f�t ,p�. In this part we
shall discuss the corresponding resulting equations for the
one-particle phase space density f�t ,p ,x�. As before, we re-
fer to the coordinates of the laboratory frame �0, in which
the heat bath is at rest.

If an external force field is present, then Eq. �28a� gener-
alizes to

dp = ��−1K − �p�dt + L�p�−1y , �46�

where y is distributed according to the momentum-
independent Gaussian density from Eq. �28b�. The related
relativistic Fokker-Planck equation for the full phase space
density f�t ,p ,x� thus reads

�

�t
f +

pi

m�

�

�xi f +
�

�pi	Ki

�
f
 = −

�

�pi jI/SF/HK
i , �47�

where the current densities jI/SF/HK�t ,p ,x� are obtained by
replacing f�t ,p� with f�t ,p ,x� in the above expressions for
jI/SF/HK�t ,p�, respectively. In the limiting case that �→0,
D→0, the RHS of Eq. �47� becomes equal to zero and one
regains the relativistic Liousville equation or, equivalently,
the collision-less Boltzmann-Vlasov equation �22,42�.

As a particular example, let us consider a relativistic
Brownian particle with rest charge q being subject to a static
electromagnetic field �E ,B� measured with respect to �0.
Then, in addition to the stochastic interaction with the heat
bath, the deterministic Lorentz force �43�

K�p,x�
�

= q�E�x� +
p

m�c
� B�x�� �48�

is acting on the particle, where “�” denotes the exterior
vector product. For simplicity, let us confine ourselves to the
HK form of the FPE and let E�x�=���x� and B�x��0 in
the laboratory system. In this case, the stationary solution of
Eq. �47� emerges as

fHK�p,x� = CHK exp�− ����p� −
q��x�
mc2 �� �49a�
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=CHK exp�−
E�p� − q��x�

kBT
� , �49b�

where CHK is a normalization constant and E�p�= �m2c4

+p2c2�1/2 denotes the relativistic �kinetic� energy. It is reas-
suring to see that the solution �49� just represents the relativ-
istic generalization of the nonrelativistic Maxwell-
Boltzmann distribution from Eq. �18a�.

IV. NUMERICAL INVESTIGATIONS

The numerical results presented in this section were ob-
tained on the basis of the relativistic Langevin equations
�28�, which hold in the laboratory frame �0. For simplicity,
we confined ourselves to considering free Brownian particles
�i.e., K=0� and employed the Ito discretization scheme with
fixed time step dt; see Sec. III B 1. In all simulation we have
used an ensemble size of N=1000 particles. A characteristic
unit system was fixed by setting m=c=�=1. Formally, this
corresponds to considering rescaled dimensionless quanti-
ties, such as p̃i= pi / �mc�, x̃i=xi� /c, t̃= t�, ṽi=vi /c, etc. The
simulation time step was always chosen as dt=0.001�−1, and
the Gaussian random variables yi�t� were generated with the
pseudo-random-number generator of MATHEMATICA �44�.

A. Distribution functions

In the simulations we have numerically measured the sta-
tionary cumulative distribution function F of the absolute
velocity values v��vivi in the laboratory frame �0. Given,
e.g., a spherically symmetric probability density ��v�
� �̃�v� with normalization

1 =� d3v��v� = 4
�
0

1

dvv2�̃�v� , �50�

the respective cumulative distribution function is defined by

F�v� = 4
�
0

v

duu2�̃�u� . �51�

In order to obtain F�v� from numerical simulations, one sim-
ply measures the relative fraction of particles with absolute
velocities in the interval �0,v�. Figure 1 depicts the numeri-
cally determined stationary distribution functions taken at
time t=100�−1 and also the corresponding analytical curves
FI/SF/HK�v�. The latter were obtained by numerically integrat-
ing the formula �51� using the three different stationary den-
sity functions �I/SF/HK�v�= �̃I/SF/HK�v� found in Sec. III.

As one can see in diagram 1�a�, for low temperature val-
ues, corresponding to ��1, the three stationary distribution
functions approach each other, since they all converge to the
nonrelativistic Maxwell distribution in the limit �→�. For
high temperatures, corresponding to ��1, the stationary so-
lutions exhibit significant quantitative differences; cf. Fig.
1�b�. Since our simulations are based on an Ito discretization
scheme, the numerical data points agree best with the Ito
solution �solid line�. Similar to the �1+1�-dimensional case
�23�, the quality of the fit remains satisfactory over several

orders of magnitudes of the parameter �. One may therefore
conclude that the numerical simulations of Langevin equa-
tions provide a useful tool for studying relativistic Brownian
motions in 1+3 dimensions. It should, however, be stressed
again, that the appropriate choice of the discretization rule is
particularly important with regard to potential applications to
physical situations.

Furthermore, Fig. 2 illustrates the influence of the number
of spatial dimensions on the occurrence of relativistic effects.
In the two diagrams we depicted the ratio FHK�v� /FM�v� for
three different values of the characteristic parameter �, with
FHK/M�v� denoting the cumulative velocity distribution func-
tion of the relativistic and nonrelativistic Maxwell distribu-
tion, respectively. Figure 2�a� corresponds to the case of �1
+3�-dimensional free Brownian motions, while Fig. 2�b� re-
fers to the �1+1�-dimensional case, discussed in paper I. The
comparison of the two diagrams reveals that relativistic ef-
fects become significantly enhanced at lower temperatures
�or larger values of �, respectively�, if the Brownian particle
moves in 1+3 dimensions.

B. Mean-square displacement

Next, the spatial mean-square displacement of the free
relativistic Brownian motion is investigated. Since this quan-

FIG. 1. These diagrams depict a comparison among the numeri-
cal Ito prrescription and the three analytical results for the corre-
sponding stationary cumulative distribution function F�v� in the
laboratory frame �0. �a� In the nonrelativistic limit ��1 the sta-
tionary solutions of the three different FPE’s are nearly indistin-
guishable. �b� In the strong relativistic limit case ��1, however,
the stationary solutions exhibit deviations from each other. Because
our simulations are based on an Ito discretization scheme, the nu-
merical data points do agree with the Ito solution �solid line�.
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tity is easily accessible in experiments, it has played an im-
portant role in the verification of the nonrelativistic theory.

As before, we consider an ensemble of N independent,
free Brownian particles with coordinates x�i��t� in �0 and
initial conditions x�i��0�=0, v�i��0�=0 for i=1,2 , . . . ,N. The
position mean value is obtained as

x̄�t� �
1

N
�
i=1

N

x�i��t� , �52�

and the related second moment is given by

x2�t� �
1

N
�
i=1

N

�x�i��t��2. �53�

The empirical mean-square displacement can then be defined
as follows:

�2�t� � x2�t� − �x̄�t��2. �54�

Important results of the nonrelativistic theory of the three-
dimensional Brownian motion read

lim
t→+�

x̄�t� → 0 , �55a�

lim
t→+�

�2�t�
t

→ 3 � 2Dx, �55b�

where the constant

Dx =
kBT

m�
=

D

m2�2 �56�

is the nonrelativistic coefficient of diffusion in coordinate
space �not to be confused with noise strength D=kT / �m���.

It is therefore interesting to consider the asymptotic be-
havior of the quantity �2�t� / t for relativistic Brownian mo-
tions. In Fig. 3�a� one can see the corresponding numerical
results for different values of �, evaluated on the basis of the
Ito scheme from Sec. III B 1. As evident from this diagram,
for each value of �, the quantity �2�t� / t converges to a con-
stant value. This means that �with respect to the laboratory
frame �0� the asymptotic mean-square displacement of the
free relativistic Brownian motions is again normal; i.e., it
increases linearly with t. For completeness, we mention that

FIG. 2. The diagrams show the ratio FHK�v� /FM�v� for three
different values of the characteristic parameter �=mc2 / �kBT�,
where FM and FHK denote the cumulative distribution functions of
absolute velocity for the nonrelativistic and relativistic Maxwell
distributions, respectively. Note that the deviations between the
nonrelativistic and corresponding relativistic distribution functions
are more pronounced �at fixed value of �� for the
�1+3�-dimensional situation—i.e., in �a�. Therefore, compared with
the �1+1�-dimensional case in �b�, relativistic effects become de-
tectable best at finite, lower temperatures, if the Brownian dynamics
proceeds in 1+3 dimensions.

FIG. 3. �a� Mean-square displacement, divided by elapsed time
t, as numerically calculated for different � values in the laboratory
frame �0 �rest frame of the heat bath�. As evident from this dia-
gram, for the relativistic Brownian motion the related asymptotic
mean-square displacement grows linearly with t. �b� The
coordinate-space diffusion constant D50

x ��� was numerically deter-
mined at time t=50�−1. The solid line corresponds to the empirical
fitting formula Dx���=c2�−1��+6�−1, which reduces to the classical
nonrelativistic result Dx�c2 / ����=kT / �m�� for ��6.
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according to our simulations the asymptotic relation �55a�
holds in the relativistic case, too.

In spite of these similarities between nonrelativistic and
relativistic theory, an essential difference consists in the ex-
plicit temperature dependence of the limit value 6Dx. As il-
lustrated in Fig. 3�b�, the numerical limit values 6D50

x , mea-
sured at time t=50�−1, are reasonably well fitted by the
formula

Dx =
c2

��� + 6�
, �57�

which reduces to the nonrelativistic result �56� in the limit
case ��6 �low-temperature limit case�. It remains as an
open problem for the future to find an analytic expression for
the relativistic diffusion constant Dx. Note also that, with the
position being the integral over the velocity degree of free-
dom, the different discretization rules do not impact the
asymptotic �long-time� result for the position diffusion coef-
ficient.

V. SUMMARY

The challenge of this work has been to extend our previ-
ous work �23� on �1+1�-dimensional relativistic Brownian
motions to the �1+3�-dimensional case. To this end, we have
introduced in Sec. II a �1+3�-dimensional relativistic gener-
alization of the nonrelativistic Langevin equations �LE’s�.
Analogous to the nonrelativistic Ornstein-Uhlenbeck theory
of Brownian motion �3,24,25,45�, it is implicitly assumed
that the heat bath �which causes the stochastic motions of the
particle� can be regarded as an isotropic, homogeneous fluid.
Based on this assumption, the relativistic equations of mo-
tions are constructed such that they reduce to the well-known
nonrelativistic LE in the limit case c→�.

In our relativistic version of the LE’s, the viscous friction
between Brownian particle and heat bath is modeled by a
friction tensor ���, exhibiting the same formal structure as
the pressure tensor of a perfect fluid �38�. In particular, this
means that the friction tensor is uniquely determined by the
value of the �scalar� viscous friction coefficient �, as mea-
sured in the instantaneous rest frame of the particle. Simi-
larly, the amplitude of the stochastic force is also governed
by a single parameter D, specifying the Gaussian fluctuations
of the heat bath, as seen in the instantaneous rest frame of the
particle.

In Sec. II B we have rewritten the relativistic LE’s in
laboratory coordinates, corresponding to a specific class of
Lorentz frames, in which the heat bath is assumed to be at
rest at all times. Further, it was shown that the relativistic
equations can be recast such that they contain ordinary “mul-
tiplicative” Gaussian white noise. Analogous to nonrelativis-
tic stochastic processes with multiplicative noise, this leads
to an ambiguity regarding the interpretation of the stochastic
differential equation; i.e., different discretization rules yield
different Fokker-Planck equations �Sec. III�. Similar to the
previous paper �23�, we concentrated here on the three most
popular discretization schemes, corresponding to the pre-
point rule proposed by Ito �26,27�, the midpoint rule by Stra-

tonovich and Fisk �28–31�, and the postpoint rule of Klim-
ontovich and Hänggi �32–35�. It was then shown in Sec.
III C that only the latter prescription—i.e., the postpoint dis-
cretization scheme—yields a Fokker-Planck equation, whose
stationary solution coincides with the relativistic Maxwell-
Boltzmann distribution, as, e.g., known from the work of
Jüttner �36�, Schay �9�, and de Groot et al. �22�.

In Sec. IV we presented several numerical results �based
on the Ito scheme�, including numerically obtained velocity
distribution functions and, furthermore, the mean-square dis-
placement of free Brownian particles. According to our find-
ings, the relativistic mean-square displacement grows lin-
early with the laboratory coordinate time; compared with
nonrelativistic diffusions, however, the temperature depen-
dence of the spatial diffusion constant becomes more intri-
cate.

Finally, we would like to emphasize that, so far, our ap-
proach of constructing a relativistic Brownian motion dy-
namics is merely based on the condition that—given the �a
priori prescribed� stochastic force of the heat bath—the rela-
tivistic LE has to converge to the well-known nonrelativistic
dynamical equation if the Brownian particle moves suffi-
ciently slow. In particular, there presently remains the open
�and seemingly very difficult� problem of how to tackle in a
relativistically consistent manner the dynamics of all those
particles that constitute the heat bath �including their cou-
pling to the relativistic Brownian particle�.
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APPENDIX: STATIONARY SOLUTIONS OF
RELATIVISTIC FOKKER-PLANCK EQUATIONS

We seek the stationary solutions f�p� of the FPE �29�,
which lead to vanishing currents

jI/SF/HK
i �p� � 0. �A1�

We use the ansatz

f�p� = C�−� exp�− ��� , �A2�

where C�0 is a normalization constant and

� = 	1 +
pip

i

m2c2
1/2

. �A3�

The parameters � and � have to be determined from the
condition �A1�. Therefore we have the following partial de-
rivatives

��

�pj =
pj

�m2c2 , �A4a�

�f

�pj =
− pj

�m2c2	�

�
+ �
 f , �A4b�

and furthermore the divergence
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�

�pj �A
−1�ij =

�

�pj�	�ij +
pipj

m2c2
 1

�
� =

3pi

�m2c2 . �A4c�

1. Ito current

For the Ito current jI from Eq. �33�, the condition �A1�
yields

0 � − jI
i�p� = �pif + Df

�

�pj �A
−1�ij + D�A−1�ij �f

�pj

= �pif + Df
3pi

�m2c2 + D	�ij +
pipj

m2c2
 − pj

�2m2c2	�

�
+ �
 f

= pif�� +
3D

�m2c2 −
D

m2c2	�

�
+ �
� , �A5�

which is fulfilled for �=3 and �=�m2c2 /D.

2. Stratonovich-Fisk current

For the Stratonovich-Fisk current jSF from Eq. �38�, the
condition �A1� becomes

0 � − jSF
i �p� = �pif + D�L−1�i

k

�

�pj
��L−1�T�k

j f

= �pif + D�L−1�i
kf

�

�pj
��L−1�T�k

j + D�A−1�i
j

�f

�pj
, �A6�

where L�p�−1 has been given in Eq. �25�. A lengthy, though
straightforward calculation shows that

�L−1�i
k

�

�pj
��L−1�T�k

j =
3pi

2�m2c2 . �A7�

Inserting this into Eq. �A6�, one finds

0 = �pif + Df
3pi

2�m2c2 + D	�ij +
pipj

m2c2
 − pj

�2m2c2	�

�
+ �
 f

= pif�� +
3D

2�m2c2 −
D

m2c2	�

�
+ �
� , �A8�

which is fulfilled for �=3/2 and �=�m2c2 /D.

3. HK current

For the HK current jK from Eq. �41�, the condition �A1�
yields

0 � − jHK
i �p� = �pif + D�A−1�ij �f

�pj

= �pif + D	�ij +
pipj

m2c2
 − pj

�2m2c2	�

�
+ �
 f

= pif�� −
D

m2c2	�

�
+ �
� , �A9�

which is fulfilled for �=0 and �=�m2c2 /D.
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