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Abstract

We derive a master equation for the electron transport through molecular wires in the limit of strong Coulomb repulsion. This
approach is applied to two typical situations: First, we study transport through an open conduction channel for which we find that
the current exhibits an ohmic-like behaviour. Second, we explore the transport properties of a bridged molecular wire, where the current
decays exponentially as a function of the wire length. For both situations, we discuss the differences to the case of non-interacting
electrons.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, it became possible to adsorb organic
molecules via thiol groups to a metallic gold surface and,
thus, to establish a stable contact between the molecule
and the gold. This opened the way to reproducible mea-
surements of the current through single molecules. Such
molecular conductance can be achieved in essentially two
ways: One possible setup is an open break junction bridged
by a molecule [1–3]. There, the current measurement pro-
vides evidence for single molecule conductance because
asymmetries in the current–voltage characteristics reflect
asymmetries of the molecule [3,4]. Alternatively, one can
use a gold substrate as a contact and grow a self-assembled
monolayer of molecules on it. The other contact is pro-
vided by a gold cluster on top of a scanning tunnelling
microscope tip which contacts one or a few molecules on
the substrate [5,6].
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Naturally, the experimental effort with such molecular
wires is accompanied by a vivid theoretical interest [7–9].
Presently, the main theoretical focus lies on the ab initio
computation of the orbitals relevant for the motion of ex-
cess charges through the molecular wire [10–14].

Another line of research employs rather generic models
to gain a qualitative understanding of the transport mech-
anisms involved. The treatment of these models can be dis-
tinguished according to the level at which interaction is
taken into account. Here, we are in particular interested
in two situations in which the many-body problem can be
traced back to the dynamics of single electrons on the wire:
The first case premises non-interacting electrons for which
the current can be computed from a Landauer-like formula
[15–20]. The second case deals with the opposite limit in
which Coulomb repulsion is so strong that at most one ex-
cess electron can be located on the molecule. Such theories
have been developed in the context of conduction through
coupled quantum dots [21–23] and for the incoherent trans-
port through molecular wires [24–26].

In this work, we derive a master equation approach for
molecular conduction in the limit of strong Coulomb repul-
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sion which restricts the population of the molecular
orbitals to zero or one electron. Thereby, particular care
will be taken in order to avoid inconsistencies like spurious
non-vanishing transport in equilibrium situations. We pres-
ent in Section 2 our working model and derive in Section 3
a master equation which we evaluate for the two mentioned
limits, namely non-interacting electrons and strong Cou-
lomb repulsion. Subsequently, we study in Sections 4 and
5 transport through open conduction channels and across
bridged molecular wires, respectively. Explicit analytical
expressions for a wire that consists of only two sites are de-
rived in Appendix A.

2. Model

The setup at hand for studying coherent quantum trans-
port is depicted in Fig. 1. The corresponding Hamiltonian
reads

H ¼ Hwire þ H leads þ Hwire–lead; ð1Þ
where the individual terms describe the molecular wire, the
electron reservoirs of the leads and the coupling of the wire
to the leads. The wire itself is treated in a tight-binding
approximation consisting of N orbitals. Since we aim at
exploring blocking effects, the corresponding wire Hamilto-
nian, incorporating the Coulomb repulsion in the limit of a
large interaction strength U, assumes the form

Hwire ¼
X
n

Encyncn � D
XN�1

n¼1

ðcynþ1cn þH.c.Þ þ UNðN � 1Þ.

ð2Þ
The Fermion operators cynðcnÞ create (annihilate) an elec-
tron in the orbital jni and En constitutes the respective
on-site energy. Here, we neglect the influence of the voltage
profile on the on-site energies [27]. In the Coulomb interac-
tion term, N ¼

P
nc

y
ncn is the operator counting the excess

electrons on the wire. The inter-site coupling characterised
by the hopping matrix element D is assumed to be equal be-
tween all neighbouring sites. The leads attached to the
molecular wire are modelled by ideal Fermi gases,

H leads ¼
X
q

X
‘¼L;R

�qc
y
‘qc‘q; ð3Þ
Fig. 1. Tight-binding model for an open conduction channel with N = 5
sites. An external bias voltage V = (lR � lL)/e is applied to the molecular
wire.
where cy‘qðc‘qÞ creates (annihilates) an electron with energy
�q in lead ‘ = L, R. As an initial condition, we resort to the
grand-canonical ensemble of the electrons in the leads at
inverse temperature b = 1/kBT and with electrochemical
potentials lL/R. Therefore, the lead electrons are described
by the equilibrium Fermi function f‘(�q) = {1 + exp
[�b(�q � l‘)]}

�1. For the initial density matrix, we then
have

.leads;eq / exp½�bðH leads � lLNL � lRNRÞ�; ð4Þ

where N ‘ ¼
P

qc
y
‘qc‘q denotes the electron number in the

left and right lead, respectively. From this follows that
the expectation values of the lead operators can be traced
back to the expression

hcy
‘0q0c‘qi ¼ d‘‘0dqq0f‘ð�qÞ. ð5Þ

The terminating sites j1i and jNi, the so-called donor and
acceptor sites, couple via the tunnelling matrix element
V‘q to the state j‘qi in the respective lead. The Hamiltonian
describing this interaction has the form

Hwire–lead ¼
X
q

ðV Lqc
y
Lqc1 þ V Rqc

y
RqcN Þ þH.c. ð6Þ

It will turn out that the influence of the tunnelling matrix
elements is completely characterised by the spectral density

C‘ð�Þ ¼ 2p
X
q

jV ‘qj2dð�� �qÞ ð7Þ

which becomes a continuous function of � if the lead modes
are dense. If all relevant lead states are located in the centre
of the conduction band, the energy-dependence of the spec-
tral densities is not relevant and can be replaced by a con-
stant, C‘(�) = C‘. This defines the so-called wide-band limit.

3. Master equation approach

The computation of stationary currents can be achieved
by deriving a master equation for the dynamics of the wire
electrons. Thereby, the central idea is to consider the con-
tact Hamiltonian (6) as a perturbation. From the Liou-
ville–von Neumann equation i�h _. ¼ ½H ; .� for the total
density operator . one obtains by standard techniques
[28] the approximate equation of motion

_.ðtÞ ¼ � i

�h
½HwireðtÞ þ H leads; .ðtÞ�

� 1

�h2

Z 1

0

ds½Hwire–lead; ½ eH wire–leadð�sÞ; .ðtÞ��. ð8Þ

The tilde denotes operators in the interaction picture with
respect to the molecule and the lead Hamiltonian,eX ðtÞ ¼ U y

0ðtÞXU 0ðtÞ, where U0 is the propagator without
the coupling. For the evaluation of Eq. (8) it is essential
to use an exact expression for the zeroth-order time evolu-
tion operator U0(t). The use of any approximation bears
the danger of generating artifacts, which, for instance,
may lead to a violation of fundamental equilibrium proper-
ties [28,29].
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The stationary current defined as the net (incoming
minus outgoing) electrical current through contact ‘ is gi-
ven by minus the time-derivative of the electron number
in that lead multiplied by the electron charge �e such that
I‘(t) = e(d/dt)hN‘i. From the master equation (8) follows:

I ‘ðtÞ ¼ e tr½ _.ðtÞN ‘�

¼ � e

�h2

Z 1

0

ds eH wire–leadð�sÞ; ½Hwire–lead;N ‘�
h iD E

; ð9Þ

where we have used the relation trA[B,C] = tr [A,B]C.
Next, we insert the wire–lead Hamiltonian (6), the interac-
tion-picture operator ~c‘qð�sÞ ¼ c‘q expði�qsÞ and the expec-
tation values (5). By use of the spectral density (7), the
remaining sum over the lead states is transformed into an
integral which in the wide-band limit C‘(�) = C‘ can be
evaluated to read

I ‘ ¼
eC‘

�h
hcy1c1i � e

C‘

p�h2
Re

Z 1

0

ds
Z

d� eið�þl‘Þs=�hflð�Þ

� h½c1;~cy1ð�sÞ�þi. ð10Þ

In the following, we specify the master equation (8) and the
current formula (10) for studying two limiting cases: The
first limit describes non-interacting electrons, U = 0. For
this situation, we follow the approach of [30]. The second
limit is the one of strong Coulomb repulsion in which U

is much larger than any other energy scale of the problem.
Then, only states with at most one excess electron on the
wire are relevant.

In both cases, a diagonal representation of the first term
on the right-hand side of the master equation (8) is
achieved by a decomposition into the eigenbasis of the sin-
gle-particle wire Hamiltonian. In this basis, the Fermionic
interaction picture operators read

cnðtÞ ¼
X
a

hnj/aicae�i�at; ð11Þ

where j/ai denotes an eigenstate with energy �a. Below, we
will need in particular the creation and annihilation opera-
tors for the sites with direct contact to the leads, i.e. jn‘i
where nL = 1 and nR = N.

3.1. Non-interacting electrons

In the limit U = 0, the transport problem defined by the
Hamiltonian (1) possesses an exact solution which is conve-
niently derived within a scattering approach. However,
since one aim of the present work is the comparison of
two distinct master equations, we only sketch the exact
solution for the special case of a two-level system in the
Appendix A.1 and review here the corresponding master
equation approach [20,30].

In general, the relation between the states j/ai and the
many-particle Hamiltonian (1) is established via the Slater
determinant. Alternatively, one can resort to Green�s func-
tions. In the present case, knowledge of the Green�s
function at time t = 0 is already sufficient and, besides a
prefactor, equal to the expectation value

P ab ¼ hcybcai ¼ P �
ba. ð12Þ

Then, one obtains from (10) for the stationary current the
expression

I0 ¼
eC‘

�h

X
a

X
b

h/bjn‘ihn‘j/aiP ab � jhn‘j/aij
2f‘ð�aÞ

" #
;

ð13Þ

where the index 0 refers to U = 0. It can be shown that
the current is independent of the index ‘, i.e. independent
of the contact at which it is evaluated. This reflects for
a two-probe setting the validity of the continuity
equation.

In order to determine the expectation values Pab, we em-
ploy the master equation (8) and obtain for the stationary
state the condition

ið�a � �bÞP ab ¼
X
‘¼L;R

C‘

2

(
h/ajn‘ihn‘j/bi f‘ð�aÞ þ f‘ð�bÞ

� �
:

�
X
a0
h/ajn‘ihn‘j/a0 iP a0b

�
X
b0
h/b0 jn‘ihn‘j/biP ab0

)
. ð14Þ

In a non-equilibrium situation, the solution of this set of
equations generally possesses non-vanishing off-diagonal
elements.
3.2. Strong Coulomb repulsion

In the limit of strong Coulomb repulsion, U is assumed
to be so large that at most one excess electron resides on
the wire. Thus, the available Hilbert space is restricted to
the states fj0i; cyaj0iga¼1..N , which we use for the decompo-
sition of the density operator to obtain

q ¼ j0iq00h0j þ
X
a

cyaj0iqa0h0j þ j0iq0ah0jca
� �

þ
X
ab

cyaj0iqabh0jcb. ð15Þ

With this ansatz, the current expectation value (10) as-
sumes the form

I1 ¼ eC‘

�h

X
a

X
b

h/bjn‘ihn‘j/ai�f ‘ð�aÞqab

"

�jh/ajn‘ij
2f‘ð�aÞq00

#
; ð16Þ

where �f ¼ 1� f . The decomposition of the master equa-
tion (8) into the single-particle states cyaj0i provides for
the stationary state the set of equations
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ið�a � �bÞqab ¼
X
‘¼L;R

C‘

2

(
h/ajn‘ihn‘j/bi f‘ð�aÞ þ f‘ð�bÞ

� �
q00

�
X
a0
h/ajn‘ihn‘j/a0 i�f ‘ð�a0 Þqa0b

�
X
b0
h/b0 jn‘ihn‘j/bi�f ‘ð�b0 Þqab0

)
: ð17Þ

In order to fully determine the density operator, we need in
addition an expression for q00 which can also be derived
from the master equation. A more convenient alternative
is given by the normalisation condition trq ¼ q00þP

aqaa ¼ 1. For the sake of completeness, we remark that
from the master equation (8) follows qa0 = q0a = 0 for
the stationary state.

It can be shown that if the wire consists of just one site,
i.e. for N = 1, both the master equation for U = 0 and the
one for U = 1 provide identical expressions for the cur-
rent. The reason for this is that already the Pauli principle
inhibits the occupation of the molecule by more than one
electron.
3.3. Rotating-wave approximation

For very weak wire–lead coupling, the coherent time-
evolution dominates the dynamics of the wire electrons.
This means that the largest time-scale of the coherent evo-
lution, given by the smallest energy difference, and the dis-
sipative time-scale, determined by the coupling rates C‘(�),
are well-separated, i.e.,

C‘ � j�a � �bj ð18Þ

for all ‘ and a 5 b. Note that this condition is only satisfi-
able if the energy spectrum has no degeneracies. Then for
a 5 b, Eqs. (14) and (17), which determine the stationary
state, are dominated by their left-hand side. Consequently,
qab is of the order C/(�a � �b) such that it can be neglected
in the limit under consideration. This constitutes the es-
sence of a rotating-wave approximation (RWA). The
above reasoning is equivalent to the assumption that the
stationary state is diagonal in the basis of the eigenstates.
Within such a diagonal ansatz, it is possible to solve both
master equations analytically and, moreover, to provide a
closed expression for the respective stationary current.
3.3.1. RWA for non-interacting electrons

In the interaction-free case, the stationary state is found
by inserting the RWA ansatz Pab = Paadab into Eq. (8);
after some algebra, we find

P aa ¼
wL

a fLð�aÞ þ wR
a fRð�aÞ

wL
a þ wR

a

. ð19Þ

Thus, the populations are determined by an average over
the Fermi functions, where the weights

w‘
a ¼ C‘jhn‘j/aij

2 ð20Þ
are given by the overlap of the eigenstate j/ai with the site
coupled to lead ‘. Then the average current is readily eval-
uated to read [31]

I0;RWA ¼ e
�h

X
a

wL
aw

R
a

wL
a þ wR

a

fRð�aÞ � fLð�aÞ½ �. ð21Þ

This expression represents the limit C ! 0 of the corre-
sponding scattering theory [20].

3.3.2. RWA for strong Coulomb repulsion

The corresponding RWA ansatz for the strongly inter-
acting limit reads qab = qaadab. Inserting it into Eq. (17),
we find the solution

qaa ¼
1

N

wL
a fLð�aÞ þ wR

a fRð�aÞ
wL

a
�f Lð�aÞ þ wR

a
�f Rð�aÞ

; ð22Þ

with the weight factors w‘
a defined above and the normali-

sation constant

N ¼ 1þ
X
a0

wL
a0fLð�a0 Þ þ wR

a0fRð�a0 Þ
wL

a0
�f Lð�a0 Þ þ wR

a0
�f Rð�a0 Þ

. ð23Þ

The average current follows directly by inserting qaa into
(16) and reads

I1;RWA ¼ e
�hN

X
a

wL
aw

R
a

wL
a
�f Lð�aÞ þ wR

a
�f Rð�aÞ

½fRð�aÞ � fLð�aÞ�.

ð24Þ
This current formula differs from the one obtained within
RWA for non-interacting electrons, Eq. (21), by the
appearance of the normalisation factor N and by the Fer-
mi functions �f ¼ 1� f in the denominator.

4. Open transport channel

As a first application, we consider a wire for which all
on-site energies are at the level of the chemical potentials
and, moreover, all hopping matrix elements are equal, as
sketched in Fig. 1. Then, the molecular orbitals are deloca-
lised which provides ideal transport along the molecule.
For a voltage which is sufficiently large such that all molec-
ular orbitals lie within the voltage window, the current is in
the interaction-free case dominated by the total transmis-
sion. Under the assumption that all overlaps (20) between
molecule eigenstates and sites jni are identical, we find
w‘

a ¼ C=N . Then, the RWA current formula (21) becomes

I0 ¼
eC
2�h

. ð25Þ

In particular, we find that the current is independent of the
wire length which is characteristic for coherent transport of
non-interacting electrons [32].

This behaviour is significantly modified by the influence
of strong Coulomb repulsion: Then one finds that the nor-
malisation factor (23) reads N ¼ N þ 1 such that finally

I1 ¼ eC
�hðN þ 1Þ . ð26Þ



Fig. 2. Stationary current as a function of the wire length for the transport
through the open channel sketched in Fig. 1 with bias voltage V = 10D/�h.
The other parameters are C = 0.1D and kBT = 0.005D. The dashed lines
are a guide to the eye.
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For N = 1, this result coincides with Eq. (25), as expected.
For a long wire, we find that the current decreases /1/N
i.e. with the inverse of the wire length. This behaviour
resembles an ohmic resistor and has been observed in the
limit of strong Coulomb repulsion also for incoherent hop-
ping of the wire electron [26].

The numerically computed current beyond RWA is
shown in Fig. 2. It fully confirms the respective length
dependence and, moreover, demonstrates the applicability
of the rotating-wave approximation in the present case.

5. Bridged molecular wire

Next, we consider the bridged molecular wire model
sketched in Fig. 3. There, the energies of the donor and
the acceptor orbitals, j1i and jNi, are assumed to be close
to the chemical potentials of the attached leads,
lL [ E1 = EN [ lR. The bridge levels En, n = 2,. . .,
N � 1, lie EB � D above the chemical potential.

Let us first discuss the eigenstates of the molecule which
discern into two groups: One group of states is located on
the bridge. It consists of N � 2 levels with energies in the
range [EB � 2D,EB + 2D]. In the absence of the driving
field, these bridge states mediate the super-exchange be-
tween the donor and the acceptor. The other group consists
of the two remaining states. They form a doublet whose
Fig. 3. Level structure of the bridged molecular wire with N = 5 sites. The
bridge levels are separated by EB from the donor and acceptor levels j1i
and jNi.
states are approximately given by ðj1i � jNiÞ=
ffiffiffi
2

p
. Its split-

ting can be estimated in a perturbational approach [33] and
is approximately given by 2D(D/EB)

N � 2. Thus, the wire
can be reduced to a two-level system with the effective tun-
nel matrix element DDA = Dexp[�j(N � 2)], where
j = ln(EB/D). The explicit calculation for the two-level sys-
tem is given in Appendix A.

For non-interacting electrons, we find from (A.4) to
lowest order in DDA/C by replacing D ! DDA

I0 ¼
2ejDj2

�hC
e�2jðN�2Þ; ð27Þ

while in the case of strong Coulomb repulsion we employ
(A.13) to obtain

I1 ¼ 4ejDj2

�hC
e�2jðN�2Þ. ð28Þ

In particular, one finds in both cases an exponentially
decaying length dependence of the current [7,15]. Quite
remarkably, the current in the strongly interacting case is
larger by a factor 2.

In order to test the quality of the two-level approxima-
tion above, we compare the analytical result (28) against
the numerical solution of the respective master equation.
Fig. 4 demonstrates the almost perfect agreement between
the numerical and the analytical solution. Moreover, it
confirms the exponentially decaying length dependence
and the enhancement of the current by a factor 2 owing
to Coulomb interaction. For N = 3, the limit DDA � C is
not yet reached which explains the small deviation from
expression (28).

We close this section with the remark that for bridged
molecular wires, the rotating-wave approximation derived
in Section 3.3 results in I0 = eC/2�h and I1 = eC/3�h. Thus,
the RWA even fails to predict the observed length depen-
dence qualitatively. The reason for this is that DDA � C
and, thus, the condition (18) for the applicability of the
RWA is violated.
Fig. 4. Current for the bridged molecular wire model, cf. Fig. 3 comparing
the non-interacting case with strong Coulomb repulsion. The bias voltage
is V = 5D/�h, C = 0.1D, and kBT = 0.005D. The dashed lines mark the
analytical result (28) for U =1.
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6. Conclusions

We have derived a master equation approach for the
electron transport through tight-binding systems in the
presence of strong Coulomb repulsion. In contrast to prior
work, we treat the master equation beyond a rotating-wave
approximation which enlarges the range of validity of our
approach. In particular, we have presented an example for
which our approach provides reliable results while within a
rotating-wave approximation one obtains qualitatively
wrong results.

With this formalism, we have studied transport proper-
ties of two models for molecular wires. Thereby, we have
worked out the differences to the case of non-interacting
electrons. A model for which all on-site energies are identi-
cal, represents a tight-binding version of an open conduc-
tion channel. There, we find a significant influence of
Coulomb repulsion: While in the absence of interaction,
the current is length independent, it decreases due to Cou-
lomb repulsion proportional to the wire length. Thereby it
resembles an ohmic conductor even though the transport is
fully coherent.

For the bridged molecular wire model, only the first and
the last site have energies close to the chemical potentials of
the leads. Then, all the other levels merely mediate co-tun-
nelling. We have demonstrated that then the wire exhibits
the behaviour of a two-level system. In particular, we
found the surprising effect that Coulomb blocking en-
hances the current by a factor two.

Comparing the results for the open-channel model and
the bridge model, we can conclude that the influence of
Coulomb repulsion depends sensitively on the level struc-
ture of the molecule. In particular if many unoccupied
molecular orbitals have energies close to the chemical
potentials of the leads, electron-electron interaction re-
duces the current considerably.
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Appendix A. Two-level system

The bridged molecular wire discussed in Section 5 can be
described by a wire that consists of only a donor state j1i
and an acceptor state j2i, i.e. N = 2. These two sites are
coupled by an effective tunnel matrix element D. In this
appendix, we derive explicit results for the transport
through an unbiased two-level system (E1 = E2 = 0) for
CL = CR = C and chemical potentials such that effectively
fL = 0 and fR = 1. Diagonalising the wire Hamiltonian
(2) for vanishing Coulomb interaction (U = 0), we obtain
the bonding and anti-bonding eigenstates and
eigenenergies

j/þi ¼
1ffiffiffi
2

p ðj1i þ j2iÞ; �þ ¼ �D;

j/�i ¼
1ffiffiffi
2

p ðj1i � j2iÞ; �� ¼ D.
ðA:1Þ

For weak coupling between the donor and the acceptor,
D � C, the master equation approach, albeit perturba-
tional in C, still provides the correct behaviour owing to
the proper inclusion of off-diagonal elements of the density
matrix. Within rotating-wave approximation this is no
longer the case.
A.1. Landauer form

According to Landauer [34], the coherent transport for
non-interacting electrons can be interpreted as a quantum
mechanical scattering process. Thereby the in- and outgo-
ing electronic states scattered in the mesoscopic conductor
are considered as plane waves. As a consequence, the piv-
otal quantity which determines the system�s conductance
is the transmission probability T(E) and the corresponding
current can be written in the form

I0 ¼
e

2p�h

Z
dE½fRðEÞ � fLðEÞ�T ðEÞ. ðA:2Þ

The transmission can now be calculated via the relation
T(E) = CLCRjG12(E)j2, where G(E) = (E � Hwire � iC/2)�1

denotes the retarded Green�s function.
For an unbiased two-level system, we obtain

T ðEÞ ¼ C2D2

jðE � iC=2Þ � D2j2
. ðA:3Þ

Inserting this expression into Eq. (A.2), one arrives at

I0 ¼
eC
2�h

D2

D2 þ ðC=2Þ2
. ðA:4Þ

A more explicit calculation can be found, e.g., in [35].
A.2. Non-interacting electrons

For the eigenstates and eigenenergies (A.1), the current
formula (13), valid for U = 0, reads I0 = (eC/2�h)Ra,bPab

while the set of Eqs. (14) becomes:

0 ¼ C
2
ð1� 2PþþÞ; ðA:5Þ

0 ¼ C
2
ð1� 2P��Þ; ðA:6Þ

� 2iDPþ� ¼ C
2
ð1� 2Pþ�Þ. ðA:7Þ

This corresponds to P++ = P�� = 1/2 and P+� = C/
(2C � 4iD) = P*�+. Inserting this solution into Eq. (13),
we obtain the stationary current (A.4).
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The quality of the present master equation approach is
underlined by the fact that it here indeed reproduces even
for C � D the exact solution. We emphasise that this is
not the case for the RWA solution (21): Since for this
approximation by definition P+� = 0, one obtains the re-
sult I0,RWA = eC/2�h which is independent of the inter-site
coupling D.

A.3. Strong Coulomb repulsion

Using the eigenstates and eigenenergies (A.1), one finds
that the current with Coulomb blocking, Eq. (16), reads
I1 ¼ ðeC=2�hÞ

P
a;bqab. Formally, this is identical to the cor-

responding expression for the non-interacting case but with
the Pab replaced by the matrix elements of the density oper-
ator in the basis of the single particle states cþa j0i. The sta-
tionary solution of these matrix elements is determined by
Eq. (17) which for a two-level system becomes

0 ¼ C
2
ð1� 2qþþ � q�� �Reqþ�Þ; ðA:8Þ

0 ¼ C
2
ð1� 2q�� � qþþ �Reqþ�Þ; ðA:9Þ

� 2iDqþ� ¼ C
2
ð1� 1

2
qþþ � 1

2
q�� þ qþ�Þ. ðA:10Þ

This corresponds to the solution

qþþ ¼ q�� ¼ 8D2 þ C2

2ð12D2 þ C2Þ
; ðA:11Þ

qþ� ¼ q�
�þ ¼ � 4DiCþ C2

2ð12D2 þ C2Þ
. ðA:12Þ

Inserting into Eq. (16), we obtain the current

I1 ¼ eC
2�h

2D2

3D2 þ ðC=2Þ2
. ðA:13Þ
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