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In this paper we review some of the important concepts and theorems dealing with nonlinear
dissipative oscillators in the presence of random and deterministic periodic forces, with particular
reference to the Van der Pol oscillator. We display simple techniques such as the Krylov-
Bogoliubov averaging method and generalize this method to random oscillator systems exhibiting

new noise-induced phenomena

I. PREFACE

Presently there is a great deal of interest in properties of
nonlinear systems, since they have many applications in
various fields of science as, e.g., nonlinear mechanics,"?
radio physics,” biology,* and nonlinear optics.> There are
many examples of bizarre phenomena that can be modeled
by various forms of nonlinear dissipative oscillators. The
famous Van der Pol equation forms a canonical example of
such nonlinear oscillators having the general form

mx + xf(x) + glx})=0 (1.1}
studied by Levinson and Smith.5 In the above equation and
the following text, differentiation with respect to time will
be denoted by a dot. Typical examples of systems that can
be represented by this general type of equation are the onset
of coherent radiation in lasers and masers,>’ self-excita-
tions in electric circuits,’ self-organization in chemical re-
actions,** nonlinear mechanics, ">*° etc,

In this tutorial paper we shall present some useful theo-
rems and concepts applying to such systems. Throughout
the paper we shall elucidate the concepts and theorems in
the context of the Van der Pol oscillator® and derive a few
new results.

In Sec. II we shall present a pedagogical treatment of
limit cycles using the Krylov-Bogoliubov averaging meth-
od. In Sec. III we consider the effect of a periodic driving
force on the Van der Pol oscillator. In Sec. IV we supple-
ment the driven Van der Pol oscillator with a noise source,
reflecting the coupling of the system to the environment.
We introduce a generalization of the averaging method to
stochastic systems and discuss the effect of fluctuations
which generally may drastically alter the behavior of the
system.

Fig. 1. Limit eycle of the
Van der Pohl oscillator in
the phase space (x,x) cor-
responding to the param-
W e~ eters y =1, = 1.
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I1. LIMIT CYCLES AND FIRST APPROXIMATION
OF KRYLOV AND BOGOLIUABOV

The instantaneous state of a nonlinear oscillator, at a
particular time, can be described as a point in the phase
space consisting of velocity X and position x. In the evolu-
tion of time, the poirts map out a trajectory in this phase
space. As time increases, an arbitrary initial state will even-
tually settle into a stable pattern. One such stable pattern .
could be a point ¥ = 0, x = %, which corresponds to com-
pletely damped out oscillations. Another more interesting
possibility is the limit cycle: A limit cycle consists of a
closed stable trajectory in the phase space (see Fig. 1).

There exists a practical theorem by Levinson and Smith®
which gives the criteria for the existence of a stable limit
cycle for a system described in Eqg. (1.1) subject to the as-
sumptions:

(i) f(x) is even and g(x) is an odd function, with the sign of
g(x) being the same as that of x.

(ii) The function F (x) = (5 f( y)dy possesses a single zero
at a positive value of x = x,. The function F (x) is negative
between 0 < x < x, and increases monotonically for x > x,
(Fig. 2).

We shall illustrate the above concept of a limit cycle by
applying the useful first approximation of Krylov and Bogo-
liubov for the ¢ase of the Van der Pol oscillator’:

i+oix—pl—xx=0 y>0. (2.1)
For ¥ =0, Eq. (2.1) reduces to the simple linear oscillator
equation with the solution

x(t) = asinjoyt + @), (2.2a)

x(t) = aw, cosjwyt + ¢ ). (2.2b)
For the case that y is a small parameter, we look for a
solution of Eq. (2.1) retaining the form of Eq. (2.2) but con-
sidering the quantities a (amplitude) and ¢ (phase) to be
functions of time to be determined. In order for the ansatz
(2.2) to be consistent, we find a condition by differentiating
the coordinate x(t ) with respect to time
() = al¢) sinfwgt + ¢ (£)] + alf Jan cosfwot + ¢ {t)]

+alt)é (t) cos[wot + ¢ (r)] (2.3)

Fix

Fig. 2. Typical form of the func-
tion F{x) required to have a limit
cycle.
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Fig. 3. Limit cycle, given by
formulas (2.9) for the
y=0land w, = 1.

- X

and by using Eq. {2.2b). This condition is
a(t) sinfwot + ¢ {1 )] + alt ) (1) coslwt + ¢ (1)) = O.
(2.4)

We shall, in the following supress the time dependence in
the functions a and ¢. After differentiating Eq. (2.2b) and
substituting the values of x x, and ¥ into Eq. (2.1), using the
condition (2.4), we find the set of differential equations

a= —yla sin*(wyt + ¢ ) coslwo + &)

— a casjwyt + @ )] coslwyt + &), (2.5a)
¢ = (y/a)[@’ sin’{wot + ¢ ) coslwgt + &)
— a coslwyt + ¢ )Isinjewgt + & ). (2.5b)

If ¥ is a small parameter, one can assume that both the
amplitude a and phase ¢ are slowly varying quantities dur-
ing one period T = 2177/ wg. Thus by averaging over a period
(keeping @ and ¢ as constant in this time interval) we obtain
the approximation (first approximation of Krylov and Bo-
goliubov)

a = (ya/2){1 — a*/4), (2.62)

$=0. (2.6b)
Multiplying Eq. (2.6a) by 2a, we have

da® 2

7 ya“(1 — a*/4), (2.7)
which can be integrated to yield

a’(t) =&  exp yt /[1 + (@°/4)(exp yt — 1)} (2.8)
or

_ dexp iyt .
x(t)= sinfagt + @q).  (2.9)

[1+(@%/4) (expyt — 1)}'?

For any arbitrary initial state (i.x;), that defines an ampli-
tude

&= [# + (R/w,1'*> 0, (2.10)

the (approximate) trajectory of Eq. (2.1) spirals towards a
circle of radius 2 (see Fig. 3). The approximation in Eq. (2.9)
can be improved!® by taking into account higher-order har-
monics and calculating the fundamental frequency self-
consistently. For large ¥, the higher-order approximations
do not lead to rapidly converging solutions. In this case, the
method of adiabatic elimination of the velocity variable
(¥ = 0) can be used to effect.

III. FORCED OSCILLATIONS

Nonlinear oscillators that are driven by an external peri-
odic force can exhibit new phenomena such as generation
of subharmonic and superharmonic oscillations with a
transition to chaos,*'"'? frequency locking,'*'° jumps of

348 Am. J. Phys,, Val. 51, No. 4, April 1983

amplitude,">'® etc. the phenomenon of frequency locking

plays an important role in technology such as synchroniza-
tion of watches,' lasers, and electronic circuits.® Hence, we
shall in the following focus our attention only on this latter
phenomenon.

On general grounds, one would expect a forced nonlin- -
ear oscillator to exhibit (approximately) oscillations which
occur at the frequencies corresponding to the natural fre-
quency of the oscillator (w,) and the frequency of the driv-
ing force (). The two frequencies are not necessarily com-
mensurate. The resulting motion of the oscillator would
than have the appearance of beating. As the frequency of .
the driving force w approaches the natural frequency of the
oscillator the beating disappears suddenly at a certain value
of the detuning |w — @,), and it is found that the system
responds only at the frequency of the driving force w. This
phenomenon is called frequency locking, or entrainment of
frequency. It has been first observed by Lord Raleigh'’ in
connection with acoustic oscillations, and studied qualita-
tively by Vincent,'* Moller,'* Appleton'é and Van der
Pol.'” For a more rigorous mathematical discussion see
Ref. 18.

The Van der Po} oscillator in presence of a driving force
is governed by the equation

X+ wix —y(l — x*)x = yEsin wt. (3.1

Applying the first approximation of Bogoliubov and Kry-
lov, i.e.,

x = a(t) cos[wt + ¢ (t)],

we obtain the set of equations

a=Ye (12 L TE ,
a 2(1 4)+2msm¢, (3.2a)
éﬁ =wy— W — -2% cos ¢, (3.2b)

where o, is assumed to be close tow. Stationary oscillations
are obtained by setting d =0 and ¢ = 0 in Eq. (3.2). The
singular points of these equations give us a solution with
frequency w; the frequency locked solution. Eliminating
the phase ¢ yields the equation for the amplitudes:

a2[4(cu ;mo)2 +(1 _941)’] =£(;zi___kz (3.3)

for all given values of E, w, w,, and 7. These amplitudes are
plotted in Fig. 4 as a function of the detuning parameter
|@ — wy|/¥, for various values of x. Although there might
exist up to three solutions (see Fig. 4), it can be shown,"®
that there is at most only one stable solution which corre-
sponds to a physically realizable motion. The criteria for
linear stability of the solution are calculated to be

a’>2 (3.4)
and
(3/16)a* — @® + 1 + 4(w — o /P> 0. (3.5)

The regions of stability in the (a°, |@ — w|/7) plane are
depicted in Fig. 5. Solutions which lie above the dotted line
are stable and correspond to the frequency-locked solu-
tions, The solutions lying below the dotted line are unsta-
ble. In the latter case, one expects that the physical realiza-
ble solution is approximately described by a superposition
of the forced oscillation and the natural oscillation, giving
rise to a beating type of motion. The maximum amount of
detuning |w — @, for which a stable frequency locked so-
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Fig. 4. Plot of amplitude squnred versus the detuning for various strengths
of the driving force.

lution may exist, can be expressed in terms of the strength
of the driving force ¥ = E /w. For * > 32/27 the frequency
locked solution is stable for detuning parameters which lie
in the range

For «? < 1, the frequency locked solution is stable for all
values w vp to a threshold value w, which is given by

)12 2y 32 1.6
) > (3.6)

L 3)
Y J12

with 8, determined as the largest solution of the equation
6> 30, +4—(27/8)* =0 (3.8)

consistent with 82 < 1. The three solutions are given by

1/2
f.=1-2 cos[l tan—! (MZ;_KZ_)._)], (3.9a)
3 (16/27)

0( =1 + 2 COS[-—l-t (K(32/27 K2)1/2) ]
3 3

(16/27)
{3.9b)
8‘: =1 + 2 Qos[l. tan—l (M) _l]’
3 (16/27) —
(3.9¢)

Because of Eq. (3.7) we must have 82 <1, and since we
must also satisfy Eq. (38), the relevant solution is Eq.
(3.9a).

IV. DRIVEN NONLINEAR OSCILLATOR IN
PRESENCE OF NOISE

In reality, oscillator systems are always subject to the
action of environmental noise £ (¢ ). Thus despite the exter-
nally applied oscillation “locking in’’ the solution, the noise
is expected to bring about departures from completely
locked-in behavior, There can occur (generally small but
occasionally large] deviations of the phase from its
*“locked-in”" value. These phase fluctuations in turn cause
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Fig. 5. Regions of stability.

the average frequency of the oscillation to dlﬂ'er from the
locked-in value o.

In presence of noise, the driven Van der Pol system is
governed by the equation

i+wlx—nl—xx=yEsinwt + £(t). (4.1)

In what follows, we will assume the noise force £ (¢) to be
approximately independent of the state variables x, x (addi-
tive noise) and to obey Gaussian statistics with an infinitely
short correlation time (Gaussian white noise):

(£(£)E (s)) = 2C5(t — s). (4.2)

With the noise present, we have in Eq. (4.1) a “stochastic”
differential equation or Langevin equation.™’ This remark
implies that x(¢ ) is no longer a deterministic but a stochastic
trajectory. A most natural way to analyze Eq. (4.1) would
be describe x(t ) in terms of a stochastic phase ¢ (t ) and sto-
chastic amplitude a(t). Generally, however, this leads to
complications, because under the nonlinear transforma-
tion {x,x) — (a,4 ), into a polar coordinate description, the
noise £ (t )in Eq. {4.1) transforms into state-dependent (mul-
tiplicative) noise. An approach which avoids this difficulty
is the rotation of the phase plane (x%/w) with angular ve-
locity w:

¥y, =X cos of — (X/w) sin wt, (4.32)

Yy, =Xxsin ot + (x/w) cos wt, {4.3b)
with inverse

x =y, cos w! + y, sin wt, ' (4.4a)

x= —w[y sinwt — y,coswt]. (4.4%)

Differentiating Eq. (4.3) we obtain with Eqgs. (4.4), (4.1):

1= (l/o){ [0 — o@*](p, cos ot + y,sinwt)
+ wy[l = (y, coswr + y, sinwt )’}
X[y, sinwt — y, cos wt)

— vEsinwr — £(t)] sin o, (4.5a)
¥ = (Vo) — |w) —a*](y, cos ot + y,sinwt)

— wy[l — (y, cos wt 4 p, sin wt )]

X (y, sin wt — y, cos wt)

+ yEsinwt + £(t)]} cos wt. (4.5b)

With w close to w,, the variables ( y,, y,) corresponding to
the rotating phase plane will, with ¥ not too large a param-
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eter, be slowly varying over a period T = 27/w. Thus aver-
aging Eq. (4.5) over a period T we obtain the approximate
stochastic differential equations (@, + @ ~2w):

Nh=lwo—w)y, + %yl - %y.(yﬂ + %)
-2Z &) (4.6a)
V= —lwe—w)y, + ‘22/'}"2 - %J"z(}’zl +y22) + Ez(’ ).
(4.6b)

Sincethecorrelation timeof (£ (t ) (s)} is muchsmaller than
the time scale over which the variables ( y,, y,} change we
may replace the noise £ (¢ } by white noise:
(Eilt )€\ = (Eale )ls)) = (C /@Bl — 5)=2D5(t — ).
(4.7)
Instead of describing the system by stochastic trajectories,
a more useful approach is the description by the probability
Py yuE) = (8(y\(t) = 3)8(1ft) — »)) (4.8)
obtained by averaging over all trajectories and initial distri-
butionp, ., (", ¥{";E ) of starting values ( y", i"). Taking
into account the Gaussian nature of the white noise in Eq.
(4.7), the rate of change of the probability Eq. (4.8) is gov-
erned by the Fokker-Planck equation (a summation over
equal indices is implied)

. d
b= ——(AJPI)+D Py (4.93)

dy, 4 ayiayj
where

Ay, yuE) = (wy — @) y; + (¥/2) 3,

X(1 =4y +»2) ~{vE/w,  (4.9b)

Ay, puE) = —lwo — 0}y, +%y2<1 — Y+ 2
(4.9¢)
D, =D, (4.9d)

Next we transform the Fokker—Planck equation {4.9a), into
amplitude and phase variables,

ij=12

Yy = u, sin u,==asin ¢, {4.10a)
(4.10b)

In the new variables (u,,u,) = (a, ¢ ) the drift 4, is calculat-
ed to be

Y2 = U, COS U,==a cOs ¢.

_ u. _
A'. :Aj i + Dnm j—i‘.‘_—
' dy; 9,9y,

and the diffusion coefficients are

(4.11)

— du,\ { du,
D,=D,, —L, (4.12)
Y,/ \ Y,
which leads to
2
7 ( a ) E D
A, =%all ——)—y—sin =, 4.13
5 7)o ¢+ - (4.13a)
A, = (wy — w) — (YE /2wa) cos ¢, {4.13b)
D, =D, D, =D/d% D, =D, =0 (413

Obviously, up to a phase change ¢ — — ¢, the phase drift
A, coincides with the deterministic drift in Eq. (3.2b) and
the amplitude drift 4, coincides with Eq. (3.2a) supple-
mented by a noise-induced drift D /a.
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We have not been able to solve the Fokker—Planck equa-
tion (4.9) or Eq. (4.13) for the stationary ( p, = 0) distribu-
tion p,,

Psisu yuE)dy dy, = p.la,¢)adadp. (4.14)
However, if we assume the inequality
yay»yvE /wa, ie., E /oa* <1 (4.15)

the amplitude a changes much more rapidly than the
phase. Denoting the stable amplitude by a, and the phase
by &, respectively, the system will, in the limit of small
noise,

D<ya;, (4.16)

settle down on a fast time scale to a value near a,, with
small amplitude fluctutions [see Eq. (4.16)]

((a — ao)*) <aj. (4-17)

Therefore, we can to a good approximation replace a in Eq.
(4.13a,b} by a,, and by observing Eq. (4.15), neglect the
second term in Eq. (4.13a). Thus the Fokker-Planck equa-
tion (4.13) decouples with these approximations yielding
for the phase fluctuations the strongly simplified equation

pld)= —%ub‘ws cos 4 1,()]

D &
+=—pl@), 4.18a
2 a¢2p(¢) (4.18a)
where
b=w,—w, 8= —vyE/wa, (4.18b)

Thedriftterm A, = — dV(¢)/d¢, canbederived from the
potential
V(g)= —b¢— 6, sing. (4.19)

The Fokker—Planck equation (4.18) appears in many appli-
cations.>'>~?! It describes the motion of a “Brownian parti-
cle” in a tilted sinusoidal potential {Fig. 6). Equation (4.18)
has first been studied in detail by Stratonovich while de-
scribing current oscillations in vacuum tubes.”? Equation
{4.18) possesses a stationary and periodic phase distribu-

tion p,{ ¢ ) given by??
¢ + 2
p(g) =-;—exp[ - Y—%—)L exp%ldlp] (4.20a)
with

D=D/d. (4.20b)

This stationary phase distribution implies a frequency shift
determined by

($)=(w) —w=5+5g(cos §) (4.21)

in which the average is calculated by the use of Eq. {4.20)
{see Fig. 7).

Fig. 6. Potential in Eq. (4.19) governing phase Auctuations.
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<w>-w
25 8¢
— D=0
---D=18¢1/10
} /
....... D=18¢l/3
o : >§3_
| 2 E

Fig. 7. Frequency shift versus the detuning for various noise levels (after
Stratonovich).

From Fig. 6 we have many points of stability (local mini-
ma), separated by 27, where the phase of the oscillator is
locked to the external oscillation. In the limit of small
noise, the phase undergoes for most of the time only small
perturbations around the value at its local minimum. Occa-
sionally, there can occur fluctuation-induced large jumps
over the local barrier. These large phase jumps occur with
greater probability in the downbhill direction and with less
probability in the uphill direction. These give rise to a diffu-
sion of the number 7n(¢) of phase jumps

((n(t) = (neDP) =4, + 4.0, {4.22)
where 4 denote the rates for forward and backward
jumps, respectively. If we denote the activation energy for
forward and backward jumps by Q, and Q_, respectively
(Fig. 6), the rates A, are in the limit of small noise (long

lived locally stable states) approximately given by a
Kramers?-type formula

AT
27

where ¢, denotes the phase value at the locally stable po-
tential valley and ¢, the value at barrier top.
The case with

E/o~d (4.24)

cannot be treated by Eq. (4.18) and we must go back to Eq.
(4.9). From a practical point of view, the optimal situation
for a stable frequency locked regime is obtained for zero
detuning. With @, = @, the drift terms can be derived again
from a potential

'{i Xp(—Qi/ﬁ),

(4.23)

A; = _i‘¢(}’u}’z;E) i=1,2 (4.25)
3)’/
with
Py, yiE)

E
=—%(yf+y§)z+3—”2(yf+y§)2+—72;yl (4.26a)
= —102(1 —"—)+—7£as'm $. (4.26b)

4 8/ 2w

The stationary probability p, ( y,, y,;E ) is readily evaluated
to be given by

P yuyiE)=(1/Z) exp — P (ypyE)/D. (4.27)
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Cb(y'.yz)

Fig. 8. Potential @ corresponding to the probability distribution in Eq.
{4.26a).

Differentiating the potential @ with respect to y,, y,, we
observe that the extrema of p, coincide with the determinis-
tic steady state, and the deterministically stable frequency-
locked state (see Sec. III) corresponds to the global mini-
mum of p,. The steady states have coordinate y, = 0, and
for

i = EYa? <16/27, (4.28)

we have three real steady states with coordinates ( y\", 2,
). Then, the potential @ ( y,, y,;E ) is cup-shaped (see Fig.
8) with the lowest point corresponding to the frequency-
locked solution for amplitude and phase. The stationary
amplitude distribution is from Eq. (4.14) given by an inte-
gration over the phase ¢

_a yEa) y(a2 a‘)
=2 (B ) exp L (& - L.
ple)=7 O(Za)D A VY

with I; being the modified Bessel function of the first kind
and order zero.>* The phase fluctuations are obtained by
integrating over the amplitude

pior=3 [Loonl[2(1-2)

_YE idng ]/D }da,
2

(4.29)

(4.30)

which does not yield a simple closed expression.

In conclusion, the Krylov-Bogoliubov averaging meth-
od has proved to be rather fruitful in producing reliable
results for stochastic oscillator dynamics.
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