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Non-Markovian stochastic resonance: Three-state model of ion channel gating
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Stochastic resonance in single voltage-dependent ion channels is investigated within a three-state non-
Markovian modeling of the ion channel conformational dynamics. In contrast to a two-state description one
assumes the presence of an additional closed state for the ion channel which mimics the manifold of voltage-
independent closed subconformatiditsactivated “state). The conformational transition into the open state
occurs through a domain of voltage-dependent closed subconformétiosed “statef. At distinct variance
with the standard two-state and also the three-state Markovian approach, the inactivated state is characterized
by a broad, nonexponential probability distribution of corresponding residence times. The linear response to a
periodic voltage signal is determined for arbitrary distributions of the channel’'s recovery times. Analytical
results are obtained for the spectral amplification of the applied signal and the corresponding signal-to-noise
ratio. Alternatively, these results are also derived by use of a corresponding two-state non-Markovian theory
which is based on driven integral renewal equatifin§soychuk and P. Hanggi, Phys. Rev. &, 021104
(2004]. The non-Markovian features of stochastic resonance are studied for a power law distribution of the
residence time intervals in the inactivated state which exhibits a large variance. A comparison with the case of
biexponentially distributed residence times possessing the same mean value, i.e., the simplest non-Markovian
two-state description, is also presented.
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I. INTRODUCTION simple, driven bistable dynami¢%,2,16. The occurrence of
Stochastic resonancéSR) [1,2] is by now a well- SR in single ion channels thus seems very likely. In reality,

established phenomenon with wide spread applications iff' Situation is, however, more complex, becaliséhe de-
physics, chemistry, engineering sciences, and the life scP€ndence of the opening and closing rates on the voltage and
ences. It refers to the fact that in nonlinear stochastic Systen{gmp.e‘rgtu{e IS gen?‘r'alrlly r;ot Arrhen|us-ll|[<ET—2fq, ahchar-

an optimal level of applied or intrinsic noise can dramatically@cteristic feature which plays a central role for the occur-

boost the responger, more generally, the transppto typi-  '€nce; or nonoccurrence of the $&, and(ii) detailed stud-
cally weak, time-dependent input signals. This fact plays es of the statistics of the ion current switching events reveal

prominent role in biology with its abundance of a variety of hat the probability distributions of the residence time inter-

thresholdlike systems that are subjected to noise influenc yals in different conductance states are normally not single
K€ Sy ubjec eé(ponential. This implies that thebserveddynamics of “on-
[1-4]. SR is often also characterized in terms of an underl

. . o ; GErY5ff conductance fluctuations is generically non-Markovian
ing stochastic synchronization between an applied stimulu§;iihin a two-state stochastic descriptif2,27. In the sim-

and an intrinsically stochastic dynami¢$,2,5. From the  pjest nontrivial case of a biexponential distribution of the
viewpoint of physical biology, the phenomenon of SR in resjdence time intervals dwelling in the nonconducting con-
biological sensory systems is commonly assumed to beyrmation, the emerging non-Markovian dynamics can be
rooted in the properties of excitable membranes. This beingmbedded into a three-state Markovian dynanics] with
so, it ultimately can be explained in terms of a driven sto-an extra(unobservableclosed state. The presence of such a
chastic dynamics of assemblies of ion chanrnéls13. Al-  third state(or, more generally, a number of additional sub-
though biologically relevant SR is generally a property of astate$ can, however, be inferred from the bursting character
cooperative coupling among ion channgl§—-13, the study of the observed dynamics when the ion channel dynamics
of stochastic resonance in single ion channels carries meritfter switching between its open and closed states for a num-
on its own: (1) SR has not yet been convincingly demon- ber of times suddenly stops, and then revives again later after
strated on the level adingle molecules, with biological ion a notably longer time span has elap$asl compared with the
channels being such proper candiddiés (2) ion channels typical sojourn length in the open or closed staféhe pres-
can serve as suitable single-molecular sensors to be utilizezhce of such a third state can be considered as a closed
in nanodevices. inactivated state. This “third” state in fact does not constitute
All these facts in turn have stimulated a vivid interest ona single state, but rather a manifold of many substates. As a
this subject matter. The recordings of ion current flowingconsequence, the recovery of the ion channel from its inac-
through a single ion channel, as obtained from a typicative state does not present an exponential rate process, but
patch clamp experimeifit4,15, bears close similarity with a  will be governed by a nonexponential distribution of corre-
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1 (o) c k(0 o This chosen distribution of rates accounts for the fact that
o o > o for several types of ion channels the recovery process does
- - not have a well-defined time scdl23]. This circumstance in
K in ke turn implies that the gating process is non-Markovian within

FIG. 1. Sketch of the three-state model setup with generally®"" three-state description. The standard Markovian three-

time-dependent opening and closing rates and with a nonexponeﬁ'—tate descrlp_tit).n is recovered Wheﬁ(T)?!" exp(—k;7),
tial residence time statistics in the inactivated state. wherek;:=(7)"" is the rate of thd — C transition.

sponding residence times. This feature, i.e., the absence of . NON-MARKOV THEORY OF THREE-STATE GATING
well-defined time scale for recovery from inactivation, can . . -
y The time evolution for the probabilities to occupy the

be observed in various ion channgks]. . )
Our main objective here is to investigate the basic fealPeN: closed, or inactivated sta(t), pc(t), andp(t), re-

tures of SR occurring in single ion channels within the SPECtively, is governed by the following generalized master
framework of a three-state non-Markovian dynamics. In ad.quations:

dition, we contrast this approach with the two-state non- - _ _

Markovian theory of stochastic resonance developed in prior Po(t) = Ko(D)Pe(D) = ke(DPo D),

works[24,25. t

Pe(t) = = [Kin + Ko() Ipc(t) + k() po(t) + f [(t-t)p(t")dt’,
Il. MODEL SETUP to

Following the reasoning put forward in Ref4.9,20 we t
consider a discrete state model of ion channel gating, whose P (1) = KinP(t) -J [(t-t)p,(t")dt. (1)
essentials are depicted in Fig. 1. It consists of three “states” t
an open on€0), a closed ongC), and an inactivated state
(I. The inactivated staté is assumed to correspond to the
manifold of voltage-insensitive conformations of the ion ~
channel protein and the openirig— O and closing0—C 1~“(s) - ﬂ (2)
transitions are associated with the motion of a voltage sensor 1 -4
and the opening or closing of the channel's gate. The sto-

chastic transitions between the open and closed states afgin ;2,(5) denoting the Laplace transform gi{7) (the tilde
characterized by generally time-dependent opening and clogrenotes throughout the Laplace transform of the correspond-
ing rates,ky(t) and k(t), respectively. Th.ese rates are as-jng function. The solution depends also on the initial condi-
sumed to depend on an externally applied, time-dependefpn, chosen for example to reaui(ty)=1, at initial timet
voltage signal. =t,.

In the spirit of the modeling put forward i19,20,26-29 This set of equations can formally be derived following
we assume that inactivation occurs from the closed state gf,o approaches in Reff25,30-33. Alternatively, this very
the ion channel. In doing so, we are dealing with an archeget of non-Markovian evolution equations can be obtained
type model of gating with opening, closing, and inactivationmore directly as well. The terms not expected from naive
dynamics{14]. Furthermore, unlike in the standard Markov- grounds in Eq(1) are the ones that involve memory. Let us
ian modeling[14,15, we assume that the transition from the josume that the ion channel is prepared in the $t1g0)
inactivated, voltage-independent state to the closed state is; 4t =0 and imposd, — 0, i.e., no returns are possible.
not rate limited, but rather is characterized by a broad distripop, (t)he ieakage of prlcr;babiiim(t’) is due to the transition
bution of rates. Put differently, we model the step from inac—imO the stateC, i.e., py(t) must equalwith such an absorbing

tivation toward the closing statef. Fig. 1) by a nonexpo- o . o
nential distributionys ) of the residence time intervals spent boundary condition the  survival probgblhty M

_ [ . . . _ t
in the inactivated state. This distribution will be assumed to‘f,t *”(T),df-, With this leakage given byd(t)=—[ol'(t
pendent but arbitrary otherwise. Furthermore, it is assume@éthod the relation in Eq(2). The description in Eq(1)
that the channel's inactivation occurs from the closed stat®0rtrays a driver(i.e., inhomogeneous in timehree-state,
with a voltage-independentate k,,. The voltage indepen- non-Maykowan rgnewal process with th_e corresponding resi-
dence ofl - C transitions follows from the underlying char- dence time densitie€RTDs)[25,34, reading
acter of the conformational dynamics: namely, one assumes ter
that thel — C transitions occur in a direction transverse to Yot + 7,0 =Kt + T)GXp(-f kc(t’)dt’>,
the direction ofC«+ O transitions[20]. These latter transi- t
tions are bound to the relocation of the gating charge across
the membrane, while the former transitions are not related to ter

p(-f [kin+ko(t’)]dt’>,
t

The Laplace-transformed kernE(t) reads

a charge redistribution; for further details we refer the reader y(t + r,t) = [k;, + ko(t + 7 Jex
to the discussion in Ref20].
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(D) = Y(7). ) Koc(t) = vo eXH— AG, V(1)) ks T] =~ K21 - B, Ve(D)],

Note in particular that/,(t+7,t) and ¢ (t+7,t) depend not (8)
only on the length of residence time intervaisbut also on
the entrance time poirit We refer the reader to RR5] for
a detailed trajectory description of such driven renewal pro- kgog: vo eXfl— AG, o(Vo)/kgT], (9)
cesses. These conditioned, nonstationary two-time RTDs ' ] _ )

o ()= 4;(t+7,1)(j=0,c) are given as the negative time de- wnh_AGovc(VO) _denotlng Fhe correspondmg static free energy
rivatives of the corresponding survival probabilities Parriers,Vo being a static voltage in (tor;e absence of signal,
D;(7]t):=D;(t+7,1); i.e., ¢(7]t):=—dd;(7[t)/d7. Le., V(D) =Vo+Vy(b), and B, .=~ [(dInk, ) /dV]|y-y,.

The averaged, time-dependent conductagt of the The substitution of Eq(6) into Eq.(1) and taking Eqs(4)
considered ion channel reads(g(t))=py(t)ge+[pe(t) and_(8) into account yields forty— —oo (this pr(_)cedure is
+pi(t)]g., whereg, andg, are the conductances of the open equivalent .to takingg=0 andt— ) the following recur-
and closed conformations, respectively. In the absence of %NCe relations:
time-dependent  signal, (g(t))=(9)s=P3go+ (PZ+P})de, - 1
wherep® with @=0,c,| is the stationary solution of Eq1) [—ikQ + (= ikQ)](re+ a) = = Kinlk + 7— 0
in the absence of driving. For the following we assume a {7
periodic voltage signal given by

V4(t) = A cogOt). (4)

The mean deviation of the channel conductance
(59(1)):==(g(t))—(g); from its stationary value thus reads at w
asymptotic times within a linear response approximagin

(39(1)) = Alx(Q)|cod Ot - ()], 5

where ¢(Q) is the corresponding phase sHitt.29). In Eq.  In Eq. (10), we used that lig_ol'(s)=1/(r,) which follows
(5), x(Q) denptes the'linear response function in the fre-om the expansion}(
guency domain. The linear response result for the spectr
amplification (SPA) of the signal »(Q)) is given by 7({})
=[x()|? [1].

where in the absence of driving

(= ik + k) + kP (et + Grn) = KT+ KD (s + 1),
(10)
here

1
00 =~ ;AKseBoc: (11)

s)=1-s(7;)+0(s), whereo(s) stands
4br the terms such that limg[o(s)/s]=0. From the first
equation in(10) we obtain

Go=1- (1 +kin{T))ro (12)
A. Linear response theory for k=0 and

In order to evaluate the linear response function we ex-
pand the solution of Eq(1) as p(t) ==, _.r(t)exp(—ikQt) Q= - (1 + k—i~n>rk (13)
and p,(t) =2,__.q(t)exp(-ikQt). The solution forp(t) fol- -ikQ +I'(-ikQ)
lows by virtue of probability conservation, i.ep(t)=1 i . ,
—py(H) - pe(t). In the limit t— the solutions become time otherwise. Theref_ore,_elthq or ry can be determlned_ from
periodic[1,16] with time-independent coefficientg and g, the second equation in I_quO) which thus uncouples info a
which depend on the amplitude strendttand frequency). recurrence relation for eithey, or ry. To the lowest order in

: : i : ) 2 ) 2 © (0
The asymptotic, nonlinear periodic solution thus reads A %=ty +O(A%) andro=r,"+O(A%) where{q,",ry } are.
the values when the perturbation is absent. A term lineér in

a ” ) . is absent because a change fraro —-A (which is equivalent
PR = 2 reexp(-ikQb), ry=ry, to a phase shift byr) cannot result in a shift of steady state

ke populationsgy andr,. Moreover,q; = A andr,«A to leading
B order inA. Likewise, the expansions af, andr, in A start

as _ . s out from A,
pos(t)_g_:m G eXp(— ik, G- = G ©®) Then, by taking into accounty=k”qe/k”+0(A?) in

Egs.(10), (12), and(13) we obtain after some algebraic ma-
The linear response functiog((2) is encoded in the first nipulations

Fourier term[29]. It reads

0 2
ro= +O(A?),
Q) = 2Aglim 2| 7) O K+ KO + k(1))
A—-0A
where Ag:=g,—g. is the difference of ion channel conduc- B kgo) )
tances in the open and closed states, respectively. Qo= KO 4 k(CO)(l +k (7)) +O(AY), (14)
To start out, we assume the following small-signal expan- © e
sion of the time-dependent reaction rates: and
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1 B-Bo 1 forward in[24,25. Upon combining with Eq(7), Eg. (22)
i = 2N (70 + (70 KO~ 10+ 10KV~ k[ 1 _H- 0] yields the linear response result
2 - - B)AgG(-iQ)
+0(A?), (15) £(Q) = (<ﬁc>+ﬁ<o) >9 — 23
where To) T\ Te! :
()= 1/k(C0) (16) which in fact coincides with Eq61) in Ref.[25].

The just outlined procedure can as well be extended into
is the mean residence time in the open state. Furthermore,the nonlinear response regime to obtain nonlinear response
_ © functions of required order in the signal amplitude. This,
(7e1) = (L +kin(7))/Ko (17 however, is beyond the scope of this work. This central result

is the mean residence time within the set of closed state!? Eq. (23) is alternatively derived in the Appendix by !’”ak'.
¢'=(C,1) in the absence of time-dependent driving. ng use of the two-state non-Markovian theory detailed in

This latter quantity is defined aér.):= [§ i (7)dr, Ref. [25].
where ¢/(7) is the stationary RTD in the set of compound
closed states, when no time-dependent signal acts, i.e.,B. Explicit results in terms of thermodynamic free energies
Vy(t)=0. This auxiliary quantity is obtained as follows. The  \ye next introducdormally the effective free energy bias
channel is prepared in the closed st@tatt;=0, i.e.,p.(0)  T), e,
=1, and the back transitioD — C is set to zero by imposing
k.— 0. Then, the solution of the first two equations(in in (10} _ &(T)
the absence of driving yields the stationary survival probabil- (7e1) =exn - keT /)
ity of the compound closed states &g (t) =p.(t) +p,(t) and
W (1) follows asy (1) =-dd(7)/dr. Using this scheme we In accordance with the relatiori&6) and(17) we obtain

(24)

find €(T) = AG,(Vo) = AG(Vo) + kgT In(1 +kin(7)). (25
() = 1+k/[s+ (9] 18) Using thatAG, (Vo) =G*-G, and AG.(V,)=G*-G,, where
ey s+kg°)+k- J[s+T(9)] G" is the (Gibbs free energy of the transition state, and
in Goc=Hoc— TS, is the free energy of the opénlosed con-
and in virtue ofjﬂc,(s)zl_sajd(s) formation, Eq.(25) can be recast as
5 kgo) e(T)=AH = TAS+KkgT In(1 + ki {7,)), (26)
Yo (s) = (19

© 1 T whereAH:=H,—H_ is the difference of thermodynamic en-
STy +hinsl[Ss + ()] thalpies of the open and closed conformati¢misof the in-
By use of Eq.(2) in Eq. (19) this stationary distribution of ternal energies, if no volume change of the macromolecule

the residence times can be recast as occurs at the conformational transitjoand AS:=S,-S; is
© the corresponding entropy difference.
:,, (s)= Ko (20) Assuming that the free energy barriers in E8) have
c’ -

s+ kf,O) +k[1 —~l/f(5)]. linear d_ependence of voItagA,GO(V)=_AGO—q(1—5)V and
AG(V)=AG.+qdV, whereq is the gating charge and<05
Furthermore (7./) in Eq. (17) follows from Eq. (18) as <1 is a constan{tl4,20, we find that8,— B,=—q/ (kgT). For

<TC,>:§>C,(0)_ the spectral amplification of the conductance response
~ ~ S 0)2
[ =PL- P (9)] _ (Agi? A(T) G(-iQ)|
= 0,7= , (27
G(s) = ’ (21) M = SkaT 2 cose(Ti2kgT] 02 27

1= () e ()

- o o with &(T) given in Eq.(25), while v(T)=(7,)"*+(7.)"* de-
where yo(s) =k;"/(s+k;") is the Laplace transform of the 0 the sum of the closing and opening rags) in Egs.
stationary RTD of the open time intervals. Then, Ep) can (21) and (27) reads explicitly
be rewritten in a more compact form as
s

_ Cl—i G(s) = = , (28)
= %A <f>°+ i o cl i'(?) +O(A?). (22) s+k? +sK s+ ki[1 - ()]}
_ oo wherek? kK Kk, are the unperturbed rates an) is the
Since kin(r;) does not depend on voltageV, residence time distribution. The result in E87) coincides,
Bor = [(dIn(7e)/dV]|y=y,= ~[(dIn kf)o))/dV]|v=vo=/30 and  apart from a model specific constant, with the expression
the result in Eq.(22) coincides with the result of the phe- given in Ref.[24], Eq. (25 therein. Within the linear re-
nomenological two-state theory of non-Markovian SR putsponse approximation the corresponding signal-to-noise ratio

a1
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(SNR) at the angular driving frequend is obtained from ~ AP w(T) 2
RsN(Q,T):= 7TA2?7/S\,(w:Q), whereSy(«w) denotes the spec- RsM€2 —0,T) = 8(kgT)2 coSLe(T)/2kaT] 1+ C2."

tral power density of conductance fluctuations in the absence ¢

of signal V4(t). By use of the Stratonovich formula for the (33)

autocorrelation function of the alternating renewal process
[35] and the Wiener-Khinchin theorem one finds f&y(w)
[25,39

with C,>1. Thus, theRg(Q2=0,T) is fully suppressed,
making the detection of low frequency signals barely pos-
sible, e.g., for the power law distributiof( 7) o 1/72** with
2(ag? 1 0h< aj:il- considerfed below. Thhis supprelssion oc(%l)rsfdue to
_ the 1/ noise feature in the spectral powg or
Sw(@) = (1) +{(7e) @ o2 Re[g(m))] (29 small frequencies. Let us illustrate now these general consid-
erations with two particular models.

Therefore, the SNR equals the result derived in Refs.
[24,25, namely, IV. ION CHANNEL GATING: BIEXPONENTIAL

DISTRIBUTION VERSUS A POWER LAW

AP v(T) Q 0 The current three-state model provides a suitable frame-

8(kgT)? cosr?[e(T)/ZkBT]N( ). (30 work to clarify the role of power law distributed residence
times in the inactivated and closed states as compared with
the simplest two-state non-Markovian situatigvith respect
to the observabledynamicg of a biexponential distribution,
which, likewise, can be embedded into a three-state Markov-

1GG1Q)|2 ian description.
NQ)=———"— (31)
Re[G(iQ)]

RS’\(Q,T) =

where

A. The case of a biexponential distribution

We start our driven channel gating investigation with the
simplest case of an exponential residence time distribution of
the transitionl — C, i.e., ¢{7) =k, exp(-k,7). Then, Eq.(20)
yields

provides the specific function which accounts for manlfest
non-Markovian effects. In the low frequency limi — 0,
N(Q2) approaches the limM(0)=2/(C2+C?) [24,25, where
C, andC_, are the coefficients of variation of the RTDs of
the open and compound closed states, respectively. ~ kgo)(s+ k)

By use of the expansiof(s)=1-s(r,)+0(s) in Eq. (28) VoS = (s+ kE,O))(s+ k) +ki,s

and Eq.(17) we find in the adiabatic limi{) — 0 that the
spectral power amplification acquires the universal formggﬁs'l?;’elrz'on of Eq(34) yields a biexponential probability

reading

(34)

e (7) = CIN g eXp(— Ny 7) + Cohp €XP(— A7) (35
(Ag)%? 1
16(kgT)? cosH e(T)/2kgT]"

7(Q—07T)= (320 with _ the  rate  coefficients  \;,=3(k”+k
+k +\/(k(O —ki,—k;) +4k0)km) and corresponding weight
factors clz——[1+(k(° Kin=ke) /v (K© =k =k ) 2+ 4k %k, ].

The mean residence t|me correspondlng to this R3D) is

This result holds in the presence of asymmetry with nonva-
nishinge(T). In such a case, the SRB2) can exhibit a sharp
stochastic resonance at the physiologically relevant tempera- 1 Kin

tures whene(T) changes sign, when the probabilities of the (7e) = KO I+ ) (36)
channel to be open or to stay closed become equal. This '

corresponds to the opening threshold for the case detaileduch a nonexponential, i.e., biexponential, RTD can actually
below of an ion channel sensitive to coldr, vice versa, be very broad as characterized by the corresponding coeffi-
sensitive to heat, if the open state is preferred from an ensient of variationC:= \,<72>—<r>2/<7->, yielding from Eq.(35)
tropic viewpoinj. The cold-sensitive or heat-sensitive ion Q)

channels[36] present appropriate candidates to reveal this C. = /1 2k0 Kin (37)
entropic SR effect. This feature at very small driving fre- ¢’ (km+k)2

quencies, which mimics a Markovian behavior, has thus

nothing to do with non-Markovian properties: it is solely due Indeed, fork, <k, <k” we deduce from Eq(37) that Cy

to an entropic asymmetry. The non-Markovian effects= \/2k )/k.n>l This implies that the distributio(85) has a
emerge, however, at small, but finite frequencies in the corsmall, but very broad long-time tail, which in turn results in
responding SPA curvetsee in Ref[24]). Most prominent a large variance of the residence times. This finding carries
non-Markovian, long-time memory effects distinctly sup- important consequences: As shown in Rdf84,25 the
press, however, the SNR in the low frequency domairsignal-to-noise ratidRsy is then strongly suppressed in the
[24,25. For ) —0, we obtain(with C,=1) low-frequency limit Q—0 by the factor 1N(0)= 2(C2
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+C§,), where C, is the coefficient of variation fong,(7), TABLE I. Free energy barrierdG,=AH,-TAS,.

Co=1 in the present case. This presents a first manifest non- N _
Markovian effect which is present already within this sim- @ Enthalpy partAH,, (kJ/mo)™ Entropy partAS, (units ofkg)

plest non-Markovian setting. We also note that the auxiliaryc 175 52
function G(s) can be recast as o 15 -10
- S(S+ kin + kr) in 15 -15
g(s) = : (38) _
[s+ s (D]ls+ pa(T)] r o 20
where *Table depicts the corresponding parameters for the free energy bar-

riers that enter the related rate coefficients. Hetkl, must be
1 0 4 O divided by the Avogadro numbeX, to obtain the corresponding
,U«l,z(T) = E(ko +ke + ki value per single molecule. For examplé =175 kJ/mol thus cor-
respondgwe use the Boltzmann constakg and not the gas con-
+h £ V(KO + KO — ki — k)2 + 4k%k,) (39)  stant R=kgN, in the rate expressiopsto a value AH.~2.91
X 1019)~1.81 eV, etc.
are the decay rates of the conductance time correlations. By
use of Eqs(38) and(31) the results in Eq927) for the SPA
and (30) for the SNR assume explicitly the form

other details determining the transmission coefficienin
condensed phases. The correct estimation of this prefactor
(Ag)%f? A(T) would require a more elaborate theory of the Kramers type

7(Q,T)= 2 [37] rather than the absolute rate theory used here. Neverthe-
16(kgT)* cosH e(T)/2kgT] less, this ambiguity does not play a role if we assume that the
y 02+ (ki + k)2 (40) frequency prefactow, is one and the same for all the rate
(0% + ui(M Q% + u5(T)] | _ |
and
wA%? v(T)
RN, T) =
s T) 8(kgT)? cosH[ (T)/2kgT]
Q2+ (ki + k;)?
. (kin 2kr)(0) , (41)
Q +(kin+kr) +ko kin
respectively. The remaining parameters ar€l)=(r,)™*
(1) =k +K Pk (ke +ki) with K in Eq. (9) and «(T)
=AG,(Vg) —AG(Vp) +kgT In(1+ki,/k;) with exponential @) E
Arrhenius rates ki,= vy exp(-AG;,/kgT) and k =vyexd Oy T S S
-AG,/kgT] [37]. temperature [°C]

The results in Eq940) and(41) constitute central results
for the SR occurring in a three-state Markovian model of T I
gating in ion channels possessing an inactivation from the i
closed state. At the same time, these results correspond to a
simplest non-Markovian two-state model of the observable
dynamics of conductance fluctuations.

We performed numerical calculations for the set of test
parameters given in Table | which is chosen to mimic the
experimental temperature dependence of the cold-sensitive
ion channelgsee in Ref[36]).

The temperature dependence of the corresponding Mar-
kovian transition rates are given in Fig@R For this set of 3
parameters, the coefficient of variation of the closed resi- ofb) | | , | ‘ ,
dence time(compound staewithin the three-state Markov- 1070 0 10 20 30 40
ian description i<C.,~17.14 and the low-frequency SNR is temperature [*C]

sgppressed by the factor of M00)~147.43 as Compgred FIG. 2. Temperature dependence of the rates used for the ion
with the corresponding two-state Markovian case with thechannel gating dynamics, absent the drivirig: the considered
same rate (CO) and kgf)::(rcfl. Their temperature depen- three-state Markovian modelh) the corresponding two-state non-
dence is depicted in Fig(B). The frequency prefactor, has ~ Markov model with the effective opening rate defined k%
been taken to bey=6.11x 10*2 ™. This value corresponds :=(7.)"1, where(r.) is the mean residence time. The ra¢
approximately to a gas-phase valuekgT/h at T=20 °C. It  denotes again the transition from the open stateward the closed
clearly overestimates any effects that relate to friction andstateC in the absence of time-dependent driving.
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: ' ' ' ] behavior would formally be assumédot depicted in Fig.

] 3(b)] only at physiologically unrealistic high temperatures of
about 600 °C. This resonance behavior is formally contained
in Eq. (33 [notice the presence af(T) in the numerator
there, which invalidates the criteriasiT) = 0]. The behavior

at extreme high frequencig3> kin,kr,kfjo) [cf. Eq.(41)] as-
sumes qualitatively the same behavior as depicted in Fig.
3(b); the only difference being that the SNR becomes in-
creased by the factoﬁCi, +1)/2. Surprisingly(in view of the
rather large enthalpic barrigrghis does not exclude the ap-

L / . \ ] pearance of stochastic resonance in the SNR behavior at
[(a) y | ‘ | . ] physiological temperatures at some intermediate high fre-
% 0 10 20 30 20 quency of the signal. For the studied model system this oc-
temperature [°C] curs, for example, fof)=10* s* [this feature is not depicted
because the accompanying spectral amplificatigii) in

Fig. 3(a) comes out to be extremely smiall

Ix10°F

5x10°1

B. The case with a power law distribution

6
2x10 To model the gating dynamics more realistically we next

consider a description with a nontrivial nonexponential resi-
dence time distribution in the inactivated regimier) in Eq.
(28). In particular, we use a probability densiyr) with the
following characteristic functiof29]:

Rgy

1x10°F

_ 1
- 1+ S< Tr>ga(STd) ,

(42)

(0 . ws
-10 0 10 20 30 40
temperature |°C|

where

FIG. 3. Markovian three-state model of ion channel gatifay:
spectral power amplificatiom [in units of (Agg)?/(J/mo)?] and tanHz*?)
(b) signal-to-noise ratidRgy [in units of 7(qA)?/(J/mo)h? s71] ver- 9.(2) = T2 (43
sus temperaturén degQ at different angular frequencidé3 of the
harmonic signal. In(a), the full line corresponds to the adiabatic
limit ) — 0; the dash-dotted line corresponds(ie-10 s1and the
dotted line corresponds =100 s. The corresponding lines for

The RTD(42) has been obtained in R¢29] as the solution

of a conformational diffusion model accounting for an
0=0.1 and 1 ! cannot be resolved from the zero-frequency limit. anomalous .Su'bdiffusi(.)n over energgticglly. quasidegenerate
In (b), all the lines for the above mentioned four different frequen-SUbStates_ within th?_ given C(_)nformatlon, ilein the present
cies merge with the zero-frequency regsblid line). Note that for ~ WOrK. This probability density possesses three parameters:
the two-state Markovian counterpart of the considered three-staff1€ mean residence timey) in this inactivated conforma-
model with the rates depicted in Fig(t®, all the lines for the tion, the conformational diffusion timey, and the index of
different frequencies merge with the zero-frequency resultajn  subdiffusiona, 0<a<1.

Likewise, in(b), the depicted line must be multiplied by the factor  In spite of possessing three independent parameters only,
1/N(0)~147.43 to yield the corresponding Markovian two-state the RTD (42) is capable of displaying a rich behavior. The
result. case of single-exponential distribution with the rate param-
eterk,:= =(7,)"! is rendered forry=0. The casex=1 corre-

parameters. This is so because a different valug,efould sponds to normal diffusion. Fag<¢(r.), the intraconformas-

result in one and the sam@nknown systematic entropy ° e .

correction for all metastable states. The entrojf§erences tional d'ﬁUS'On effects are2 not essential. However, fx_ar

between the metastable states remain unchanged. >(m) and in the range)*/7y<7<7y the corresponding
Our results for this choice of parameters are depicted ifR1D assumes a negative power law, i(7) 7, which

Fig. 3@ for the spectral amplification;, and Fig. 3b) for ~ €nds up in an exponential tail for> 74 [19]. For <1, the

the corresponding signal-to-noise ratRyy In particular, ~ distribution (42) has an infinite variance, singg®)=o for

Fig. 3@ convincingly demonstrates the possibility of sto- any 74#0 and, depending on a subtle interplay of param-

chastic resonance within the range of physiological temperza€ters, it can display up to three different power laws. These

tures whene(T) =0, in accordance with Eq32). The SNR  are () 7“2 initially, (7)o 7?2 intermediately, and

in Fig. 3(b) also exhibits the SR-like increase with increasing #(7) = 7 2*® asymptotically{29]. With the discussed choice

temperature. It does not, however, reach a resonance peak ¥(7), the characteristic function of the RTD in the com-

behavior in the corresponding temperature range. This pegboundC’ state reads
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~ o [5G.(s79) + k] -

V(9= a e . (49 i

(s+ ko )[Sga(STd) + kr] +KinSQ,(S7y) 1x10® N

It possesses the same average residence (@®eand the [
coefficient of variation is

©, a < 1, = a

Co = \/ KO, (45) s5x10”F
145000 9 4k ri3), a=1. i
g+ k2 7 :

Note that fora <1, C. =o. This implies that the detection of
low frequency signal€)— 0 is fully suppressed aRg\((2)
—0 at Q—0 [24,25. A bistable stochastic element with 05 il 1'0 e 4;0
such properties can thus be used as a high pass filter for th temperature [°C]
signal transduction. In this case, the first leading terms of the
smalls expansion of o (s) read ¢ (s)=1—(7)s
+%(km/ kgo)ker)(STd)1+a. This corresponds asymptotically to | |— Q=0
a distribution ¢/ (7) = 72 similar to the Pareto law be- -
havior considered in Ref$24,25. T - o
With Eq. (42) in Egs.(27), (28), and(30) one can evaluate =10 s S e
the spectral amplification of the signal and the signal-to- z | R
noise ratio. We did this for the above set of thermodynamical“ Rrd
parametergsee Table)l entering rates that are supplemented P e
with the following parameters of the RTD in E2): a Ix10 %
=0.25, 74=0.1 s. As can be seen in Fig(a} the non- s e
Markovian effects resolve the lines at the frequencies I e
0=0.1 and 1 s which merge with the zero-frequency line (b)
in Fig. 3(@). Moreover, the different lines that merge in Fig. %%
3(b) become also resolveldee Fig. 4b)], where upon in- temperature ["C]
creasing the angular frequen€ythe SNRRg\((2,T) grows;
namely, at zero frequencRg\(2—0,T)=0 and for Q
~100 S Rgp(2,T) reaches approximateljrom below) its

low frequen_cy three-state Markovian limit in Figl8. With inactivated state is given now by E®2) with «=0.25 andy
the further increase df) the SNR will, however, grow fur-  — 1 5 The other parameters remain the same as in Fig. 3. The

ther, approaching asymptotically the two-state Markovianyanifest non-Markovian effects result in a resolution of the differ-
limit, where the non-Markovian form factor becomes unity, en Jines that merged in Fig. 3. Note {h) that the signal-to-noise
i.e., N(Q)=1. It is worth noticing that for the two lower ratio is fully suppressed toward zero f&— 0 (the result merges
curves in Fig. 4b) the SNR seemingly saturates with in- with the horizontal axis The adiabatic limit of the corresponding
creasing temperature. In fact, however, the SR behavior exviarkovian three-state model is approximately assumedQat
hibits a rather broad maximum. The occurrence of this maxi=100 s*; cf. the dotted line inb) which compares with the solid
mum is quite surprisingsee the discussion at the end of Sec.line in Fig. 3b).
IV A) and is due to non-Markovian effects.

Moreover, at variance with the SNR behaviarere the

1
1
[oR of of o o]
<

—_——— O

SRR

T
N
1

FIG. 4. The case with a power law distribution of residence
times for three-state ion channel gatifef. Fig. 1). Instead of a
single-exponential RTD¥(7), the residence time distribution in the

(refractory, i.e., 1—2—3—1. This unidirectional cycling

SNR increases with increasing angular frequency of sjgnalCC/fESPONds to processes that are very far from the thermal
tl,equnlbrlum and which require a continuous supply of free

the corresponding SPA diminishes with increasing angula - o : ; ]
frequency. Therefore, there should exist an intermediate frez 1o 9Y- In contrast, our modeling is compatible with the ther

: . . al equilibrium. The ion channel gating is commonly as-
ﬂg(na_nl\c/:l);rrsg\%:r\]/vgllgh would prove optimal for the detection OfrS]Lmed to be a thermal equilibrium procddd]. This is in

contrast to the situation with ion pumps and neuronal sys-

tems which do require a free energy supply for proper func-
V. SUMMARY tion_in_g. A_s has bee_n sho_wn in this work, our three-state de-

scription is compatible with the phenomenological two-state

With this work we have investigated stochastic resonanceéheory of non-Markovian stochastic resonance put forward in

in a three-state non-Markovian model of ion channel gatingRef. [24], while the nonequilibrium, three-state model of
We note that our scheme of a three-state non-MarkoviaRef. [39] is not within this class of system behavidi25].
modeling is distinctly different from a similar one, recently Nevertheless, the result of R¢89] for the spectral power
applied to an excitable neuronal dynamii88,39. The latter  amplification can be reproduced from our E41) by speci-
model assumes a three-state system which cycles unidirefifing the RTD of the compound silent statiee., the silent
tionally between three states, (3ileny, 2 (excited, and 3  state plus the refractory statas a time convolution of two
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corresponding residence time probability densities and exef an arbitrary two-state renewal process characterized by the
panding it as in Eq(A2). In other words, the model of Ref. conditional RTDs;-; ,(7|t) and the amplitude of conduc-
[39] can be recovered as a special case within our genergnce fluctuationdg to a periodic signal in Eq4) is given
nonequilibrium approach put forward in R¢25] (Sec. IV in the limit A—0 by

therein. 2iA 1
In conclusion, the non-Markovian SR effects such as thegy) = _dag -
suppression of the signal-to-noise ratio for low frequency AQ (7)) +(1p)
signals and the resolution of different signal frequencies in ~1),_ ~ ~1),_ ~
the spectral amplification of signal in the presence of possi- Vs IO = (=i ] = " (=1L = o= IQ)].
bly large (entropig asymmetries can be nicely modeled al- 1 ‘TM(‘ iQ)sz(— iQ)

ready within a three-state Markovian model. Such a three- (A1)
state Markovian model yields the simplest non-Markovian

model after the corresponding projection onto the subspacg, Eq. (A1), Tﬂj(s) denote the Laplace transforms of station-
of two observable states. The signal-to-noise ratio remains

. o ~(1)
however, finite in the limit of the zero-frequency signal. Its éryIRTDs in fthe abfser?ce of d“‘"”g anpf (S_) are the h
complete suppression requires an infinite variance of the resk-aplace transforms of the corresponding contributions in the

dence time intervals in the inactivated state. For such a man£XPansion of the conditional, driven RTDs, i.e.,

fest non-Markovian SR behavior, weak external oscillating *
signals with an intermediate frequency should be used in wj(r|t)= E w}”)(r)exp(—inﬂt). (A2)
order to detect SR experimentally. n=-

Our present results provide a theoretical proof for the oc- L~ .
currenc% of stochasticpresonancesilmgle bior?wolecules at The lquantltles,//f )(.S) must be evaluateq from an underlylng
physiological temperatures. This being so, our findings C(,:“I]nuIUStateNorl continuous state dynamics to first ordeAin
guide the experimentalists to choose both the appropriatWheneveﬁﬁ} (s) satisfy the relation
molecules for doing experiments and to identify the corre- _ 1
sponding experimental parameter regime which in turn will z/f}l)(— iQ)=- E,B,-A[l —(-1Q)], (A3)
reveal the SR phenomenon in a single ion channel. Presently
there exist only very few experimental, ion-channel-basedhen the result of the phenomenological theory in @) is
SR works. In Ref[7] attempts to identify SR in a single ion recovered from Eq(A1). For the exponential form of distri-
channel were made; the occurrence of SR therein is, howpytion of open residence timesy,(7]t) = yu( 7] t) =k(t
ever, not convincing. In Ref.6] one investigates SR and +7ex—["k,(7')d7'], the relation(A3) is satisfied. We
demonstrates SR. The phenomenon has been studied, hopeniify here the state “1” with the compound closed state
ever, only on the level _of a small number of dynamically “(C, 1" and the state “2” with the open stat®™ note also
self-assembled alamethicin ion channels. that 8;= ., B,=/.. This relation is valid as well for a

Our findings show that ideal candidates to observe Sk iexponential distribution which assumes a scaling rela-
experimentally on the level of single molecules are cé- (o among the rate parameters which is not modified by
heat)sensitive ion channelg36]. From this viewpoint, we  qriving, i.e., a form-invariant RTD, cf25]. Below we dem-
believe that a repetition of the experiments in R&fl by  gngsirate that the relatia3) is also valid in the present case
resorting to such channels would indeed become successfiyhich obviously does not belong to the latter universality

for observing SR in a single ion channel operating within itS¢|ass. Nevertheless, the application of the phenomenological

physiological regime. linear response theory to the considered non-Markovian pro-
cesse$24] is justified.
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APPENDIX: DERIVATION OF LINEAR RESPONSE —py(7At) = kiype(7]0) _f T(r=)p(7|0d7, (A4)
FUNCTION WITHIN NON-MARKOVIAN TWO-STATE dr 0

THEORY with the initial conditionsp,(0|t)=1 and p,(0]t)=0. Then

In this appendix the result in Eq423) is rederived from  ®,(7|t)=p.(7|t)+p,(7|t). Asymptotically, the considered pe-
the non-Markovian two-state theory of RE25]. Namely, in  riodically driven renewal process becomes cyclic-stationary.
Ref.[25] it has been shown that the linear response functiorFor such a cyclic-stationary process,(7|t) must be invari-

061906-9



GOYCHUK et al. PHYSICAL REVIEW E 71, 061906(2005

ant under time shifts—t+nT, n=+1,+2,... with period linear. The use of standard perturbation theory then yields to
T=27/Q; it thus can be expanded into Fourier series as irthe lowest order irA

Eqg. (A2). With k,(t) being a periodic function of time, we are 1

seeking a solution of Eq.A4) in the form p,(r|t) P9 = — —— + O(A?),
=37 p"(Dexp-inQt), po" (D =[p"(AT, a=c, I. Invok- s+kpn+ K2 -k [(9)/[s+T(s)]
ing additionally a small-signal expansi@8) this yields an (A7)
infinite system of coupled integro-differential equations for
(T) which upon the use of the Laplace-transform method 5 kKO (s+i€Q)
results in a recurrent-difference relation iiiﬂ“)(s) ie., Pc(8)=- s+k, + kgo _ kinI‘(s)/[s+’l:(s)]. (A8B)
0 Kinl'(S) B W+ (s — Equation(A7) determines in combination with EGA6) for
<S+ in ¥ s+T(s) (8 +ko [P - n=0 the stationaryi.e., in the absence of drivijgsurvival

function of the compound closed state in Ef8) and the
+ PN (s+iQ)] = 8,0, (A5)  corresponding RTOI19), respectively.
Equation (A8) yields in virtue of B”(0)=1/k”+0(A?)

and a relation expressirf@m(s) through~(”)(s) reading and Eq.(11) the result

- k; - =)
B = —2—F(s), (n6) P (719
s+ 1, Bo
wherek = A is given in Eq.(11). Note thafp"(s) are non- 2 i+ Ky + KO~k D (- iQ)[-iQ+ T (=i0)]
linear functions of the driving amplitudA. Equation(A5) (A9)

can be solved perturbatively by using the corresponding ex-

pansions off"(s) in A. The expansion 0p”(s) in A starts ~ Together with Eq(A6) for n=1 this gives with3,= 8,
from the driving-independent terms and obviou§hpm the ~ 1 ~

symmetry reason#\— —A) does not contain a linear contri- P (-iQ) = EA,qu)(lo)(— iQ). (A10)
bution in the amplitude strength. Moreover p(+1)(s)ocA to

the lowest order inA. Hence, p+2)(s) O(A?) because the Upon using the general reIatioM/(n (s)= 5“0_5&.)?(3), Eq.
response at the second harmonic driving frequency cannot &10) thus yields the desired relation {A3).
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