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Domain statistics in a finite Ising chain
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We present a comprehensive study for the statistical properties of random variables that describe the domain
structure of a finite Ising chain with nearest-neighbor exchange interactions and free boundary conditions. By
use of extensive combinatorics we succeed in obtaining the one-variable probability functiofny tfoer
number of domain wallsjii) the number of up domains, arii) the number of spins in an up domain. The
corresponding averages and variances of these probability distributions are calculated and the limiting case of
an infinite chain is considered. Analyzing the averages and the transition time between differing chain states at
low temperatures, we also introduce a criterion of the ferromagnetic-like behavior of a finite Ising chain. The
results can be used to characterize magnetism in monatomic metal wires and atomic-scale memory devices.
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[. INTRODUCTION to present an interesting topic. This is so, because it does not

exhibit macroscopic ferromagnetic order. A detailed investi-

The Ising model, pioneered just 80 years afih has be-  gation of this model is important, however, by the following
come one of the most popular and useful models of statisticahotivating reasons. First, the domain statistics in such finite

physics. This model system itself and its numerous generalichains, i.e., a probability description of forming domains,
zations found wide application for the investigation of notdomain lengths, and domain walls contains most valuable

only physical but also for biological, economical, and socialinformation on the thermal equilibrium state. To the best of
systems, to name only a few. The model has also beeaur knowledge, these statistics have not been studied before.
widely used to characterize the cooperative behaviors ifhe main problem is that the domain characteristics are not
these and other systems. The salient advantages of the Isigdinary thermodynamic quantities, i.e., they are not readily
model are that it is generic for systems with phase transiexpressed through the partition function. In short, there are
tions, it is very convenient to use, and, moreover, for particun0 conventional methods to extract them. Second, a finite
lar cases it can be solved exactly, i.e., its partition functiodSing chain represents an appropriate phenomenological

can be calculated, at least in the thermodynamic limit, with-nodel for describing magnetism imonatomicmetal wires
out approximations. Because exact solutions were foun eposited on substrates. Indeed, as it has been discovered

only for a certain one- and two-dimensional versions of thetXPerimentally{12], a Co chain on Pt substrate is character-

Ising model[2,3], their role for statistical physics is most ized by the exchange couplinghis justifies the nearest-
important. neighbor approximation very large magnetic anisotropy

The ordinary one-dimensional Isina model. which is re (this justifies the approximation of atomic magnetic moments
y 9 R P by Ising sping, and long-range ferromagnetic ord#ris jus-

tfies th f finite Isi haipswe d hasize that i
either be up or down, and which do interact with each other les the use of finite Ising chainse do emphasize that in

i th iahb h X _ d contrast to the case with infinite Ising chains for which fer-
via the nearest-neighbor exchange Interaction, does not ®¥omagnetic order is forbidden at all nonzero temperatures
hibit the ferromagnetic phase transition at nonzero temper

. 6['13], finite chains can exhibit the ferromagneticlike behavior
tures[1]. This well-known result corroborates the known ar- (see also Sec. IV Finally, it is very likely that the one-

gument of Landau and Lifshitg4], according to which @ = yinensional magnets, which are modeled by finite Ising

Iohng-range order ininfinite onbe-dlme%s]lonal ;lystem? IW'th chains, will have an important implication for magnetic data-
short-range interactions is absent. The problem of long- ¢oraq¢ technologyldl.

rﬁnge ordéa_r!ng, Wh'Ch. ::andemerfge n .SUCh iystem_s \I/v_hen In this paper, using a variety of combinatorial approaches,
these conditions are violated, is of prominent theoretical Imy, o investigate thoroughly the domain statistics in a finite

portance. lts solution for infinite Ising chains wilbng- g chain. In Sec. 11, we describe the model and introduce
rangg mtefrachoni bbeltweer;_splns has %eefnSthflS“bJeCt of fhe main definitions. The joint probability functions that de-
humber of remarkable stu iésee, €.9., .e_i e ). . scribe the domain structure of a chain are calculated in Sec.
.A priori, the statl_sucal mechamcg offmng Ising chain Il by the combinatorial method. In Sec. IV, we demonstrate
with only exchangei.e., short-rangeinteraction seems not that the number of domain walls in a finite Ising chain is
binomially distributed. We then introduce a criterion of its
ferromagneticlike behavior and consider the limiting case of
*Electronic address: denisov@sumdu.edu.ua an infinite chain. In Sec. V, we derive the probability func-
TElectronic address: hanggi@physik.uni-augsburg.de tion for the number of up domains and calculate its average
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and its variance. The probability function for the number of

spins in an up domaifi.e., domain lengthand its numerical
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PN(Siprkrl) :WN(k)KN(Svplkll): (26)

characteristics are determined in Sec. VI. We summarize oh€reKn(s,p.k.1) is the number of spin configurations pos-
novel findings in Sec. VII. Some of our technical details andS€SSing the same set of the non-negative integer variables

manipulations are deferred to the Appendices.

II. MODEL AND NOTATIONS

We consider a finite Ising chain with free boundary con-

ditions that contains an even numbgrof Ising spins. We

assume that the spins interact through the nearest-neighbor

ferromagnetic couplingl(>0) and the spin variables; (i

p, k, andl. In accordance with the basic laws of probability
theory[17], all the one-variable probability functions can be
determined by fixing one variable and summiag(s,p,k,!)
over the admissible values of all remaining variables.

[II. JOINT PROBABILITY FUNCTIONS

A. Number of spin configurations

The chain states that we describe in terms of the four

=1,... N) assume only two values +1 and -1, respectively,ariaples mentioned above are, in general, degenerate and

given spin configuratiofio;}, the chain energy is written in
the form

N-1

Ex{oih) = -3 010741 (2.1
i=1

According to the Gibbs distribution, the probability of this
configuration is given by

1
Wy({oi}) = ——e P,

Z (2.2

whereB denotes the inverse temperature measured in ener
units, andZy==,., exd~BEn({o})] is the partition function
of a chain. Using, e.g., the transfer matrix metha8], Zy
can be evaluated exactly, yielding the well-known result

Zn =2V cosh™Y(BJ). (2.3

states. The states wigrp=k=I=0 ands=I=N, p=1, k=0
are characterized by only one spin configuratien=-1}
and{o;=+1} for all i, respectively. Therefor&y(0,0,0,0
=Kn(N,1,0,N)=1. For countingKy(s, p,k,!) in other cases,
when 1s=s=N-1, we use combinatorial methods. Within
their framework, we consider an Ising chain with fixgd,
k, andl as an alternate sequencepofip boxes andk-p+1
down boxes in whicks up spins andN-s down spins are
distributed.

Because the first up box must contdimp spins and in
each other up box must be at least one up ghence the
conditions—1=p-1 must hold, the numbeM; of different

Wistributions ofs up spins overp up boxes equal€l?,.

Here, the binomial coefficien&]! with integersn andm are
defined as followsC'=n!/(n—-m)!m! if n=m=0, C'=0 if

m>n=0 or if =0 andm< 0, andC?=Cl=1 for all integer
n. Using these properties, we can repreddntin the form
M, =CE2 8K (Agpi= 3500500 08,0, nm IS the Kronecker

In order to characterize the domain distribution in a chainsymbo), which is valid for O<s<N.

we introduce the number of up spins,the number of up

Similarly, the numbem, of different distributions ofN

domains,p, the number of domain walls, i.e., the number of —s down spins ovek—p+1 down boxes, each of which con-

up-down and down-up spin pairs, and the number of spins
in the first up domain]. These numbers satisfy the condi-
tions 0=s=<N, O=sp=<N/2, O<k=N-1, O<I=<N. These
numbers are not independent because, for exampfes If
thens=k=1=0, and if p=N/2 thens=N/2, k=N-1, andl

tains at least one down spin, is given W:Cﬁ_"s_l. By the
same reason as in the previous case, this formula is also valid
for all values ofs. It may seem at first glance, due to the
multiplication principle of combinatorics, that the represen-
tation Ky(s,p,k,1)=M;M is valid. This is, however, gener-

=1. The introduced quantities are random due to thermadlly not the case. To obtain the correct formula for
agitation, and our main objective is to calculate the oneKy(s,p,k,l) we note that forpp=1 the variablek can take

variable probability function®y(k), Py(p), and Py(l) that
describe in detail domain statistics in a chain Mflsing

only three valuesk=2p, k=2p-1, andk=2p-2. If k=2p
(k=2p-2) then both the first and the last domains in a chain

spins.(Notice that some features of the probability function belong to the dowr(up) type, and the previous formula is

of magnetization have been studied i6].) To this end, we
also introduce the four-variable probability function
Pn(s, p,k, 1) representing the joint probability that a chain is
characterized by the parametessp, k, andl. Taking into
account that

En({oi}) = En(k) ==J(N-1) + 2Jk (2.9

and
W) = Wh(k) = - PN, 2.5
N

this probability function can be written as

valid. However, ifk=2p-1 then those domains belong to
different types and, since the first domain can be either of the
up or down type, we find for this cas&y(s,p,k,!)
=2M;M,. Collecting the above results, we obtain

Kn(s,p.k 1) = (1 + 8- ) CEZPPCR ;. (3.

Note that this representation of the functisg(s,p.k,l) is
valid if the values of its variables are compatible with each
other.

B. Three-variable joint probability functions

By using Eqgs.(2.6) and(3.1), we next can determine all
the three-variable joint probability functions, namely,
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Pn(S,p.K), Pn(p,k, 1), P(s,p,1), andPy(s,k,1). In view of

our purpose, however, i.e., for determining the mentioned
above one-variable probability functions, we need only two

of them, Py(s,p,k) and Py(p,k,l). According to the com-
mon rule, to calculate the joint probability function

Pn(s,p,k) we need to fix its variables and to perform the

summation ofPy(s,p,k,l) over the admissible values of
Sincel =0 (andp=k=0) if s=0, andl=N (andp=1, k=0) if
s=N, and I=|=ss-p+1if 1<s<N-1, we find
Wy(0), s=0,s=N,

IBN(s,p,k), 1ss<sN-1.
Here, we have used the conditions th&§(0,0,0,0

=Wy (0) andPy(N, 1,0 ,N)=W,(0), and introduced the nota-
tion

Pn(s,p.k) = { (3.2

s—p+1

Pusp.K = > Prspkl). (3.3
=1

PHYSICAL REVIEW E 71, 046137(2005

N+p-k-1
Pup kD= X Puspkl). (3.9
s=p+i-1
By use of the relation18]
n
> CnCom=Chicit (3.10
m=0
in evaluating
N+p-k-1
> CEZCNR.=C\i, (3.11
sp+i-1
from Eq. (3.9) we obtain
Pu(pk 1) = (1+ 82 DWA(KCKL,. (3.12

Comparing this formula with{3.8), we check that, although
Eq. (3.12 is derived forp=2, it remains also valid fop

In order to evaluate the above sum, we evaluate first the 1 Therefore, introducing the notatiaty = 8,08 08 o the

sum S ==7P*cP2 If p=1 (i.e., s=1) then, using the
properties of binomial coefficients, we obtairf,
=3%,C;_,=C’1=1, and ifp=2 (i.e.,s=2) then, using the

relation[18],

n
> CLn=Cli-Cy, (3.4
m=0

result in Eqg.(3.7) can be represented in the appealing form

Pu(P. kD) = (1 + 8 op- ) W(KCR0P. (3.13

C. Two-variable probability functions

The four-variable joint probability functioPy(s,p,k,)

being valid when the binomial coefficients exist, we havedenerates six different two-variable joint probability func-

S,=CE-Ch3. SinceCh3=0 if p=2 andClj=1 if p=1,
we conclude that the formug,=C2} holds for alls=1 (we
recall that I=p=ys). Therefore, substituting Eq3.1) into

Eq. (2.6), from Eq.(3.3) we obtain

Pa(S,PK) = (1 + Gop- ) WN(KICEICKR 1. (3.5)

Although this formula has been derived foB<N-1, its
right-hand side exists also fa=0 (when p=k=0) and s

=N (when p=1 and k=0). Furthermore, sincéBN(O,O,O)

:IBN(N,l,O):WN(O), the desired joint probability function
(3.2 is given by the same expression, i.e.,

Pn(S,p.K) = (1 + 8 2p-)WNKICEICKR 1. (3.6)

To evaluatePy(p,k,l), we need to find the admissible
values ofs for fixed p, k, andl. If p=0 thens=0 (and p=I
=0), if p=1 thens=I for k=1,2 ands=I=N for k=0, and if
2=<p=<N/2 then p+l-1<s<N-(k-p+1) (recall thatk
—-p+1 is the number of down domains in a chaiiccording
to this observation we get

Wy(0), p=0,
Py(p.k ) =1 Pu(li1k 1), p=1, 37
Pupkl), 2<p<N/2,
where
Pr(lL 1K1 = (1 + 8 ) Wiy(K) CNziy (3.9
and

tions. But keeping in mind the one-variable probability func-
tions, we calculate only two of them, nameB(p,k) and
Pn(k,1). BecausePy(p,k)=Wy(0) if k=0 and the parameter
s varies fromp to N+p—-k-1 if 1<k=<N-1, the former is

given by
Wy(0), k=0,
P(p. )_{E’N(p,k), 1<k<N-1, (3.14
where
N+p-k-1
PypK= X PSPk, (3.19

s=p

Taking into account that, according to E§.10), the relation

N+p-k-1
2 ChCih=Cly (3.16
sp
holds (we used the conditio€) ™=C]), we obtain
PN(P.K) = (1+8op-) WGy (3.17)

The same expression fdéty(p,k) follows also from the
joint probability function(3.13. Indeed, since for £k<N
-1 the parameter is varied from 1 toN-k (the maximal
value ofl corresponds to the case when all the remaimng
—1 up domains and ak—p+1 down domains consist of one
spin), we have
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N-k +e?P)~1 (0<r<1/2), it can be recast to read as

E) ,k = P X ,| . 3.1
n(P.K) |21 N(SPil) (319 P(K) = C{ar (1 )N (4.3

Substituting Eq(3.13) into Eq.(3.18), and using the formula  (0<k<N-1). This explicitly shows that a binomial distri-
El“:l"c'g,‘_}_lzc',g_l—cﬁ_l, which results from Eq(3.4), and  pytion fork emerges.
granting the conditionsCi_;=0 (k#0) and Cy_,=1, we The fact that the number of domain walls in an Ising
again arrive at Eq(3.17). chain is binomially distributed has a simple interpretation. To
In order to findPy(k,l) from Eq. (3.13, we first notice  demonstrate this we first remind ourselves that the binomial
that for fixedk the parametep can take only one or two distribution gives the probabilitCg™(1-g)"™ of m suc-
values. More precisely, ik is odd, i.e.,k=2h+1 (O<h  cesses in a sequencervindependent trials, called Bernoulli
<N/2-1), then the first and the last spins of a chain belongtrials, each of which has only one outcome, i.e., success with
to the different types. In this casp=h+1, 1<I<N-2h  probabilityq or failure with probability 1-g. In our case, we
-1, andPy(k,l)=Py(h+1,2h+1,l). On the contrary, ik is  consider a chain as a result of one-by-one additioiN efl
even, i.e.k=2h, then the first and the last spins belong to thespins to the seed one. We treat each addition as a trial whose
same type. In accordance with this, acl<N-2h, the pa- outcome is either along or opposite the direction of the added
rameterp takes two valuep=h (if a chain begins and ends spin with respect to the direction of the nearest spin. If the
by the down spinsandp=h+1 (if a chain begins and ends added spin has the opposite direction then the domain wall is
by the up sping and so Py(k,)=Py(h,2h,l)+Py(h formed and we call such an outcome a success. Hence, a
+1,2h,1). Moreover, ifI=0 (p=k=0) or I=N (p=1, k=0)  chain ofN Ising spins withk domain walls is equivalent, in

then Py(k,I)=Wy(0). Combining these results yields the above sense, to a sequenceéNefl Bernoulli trials that
havek successes. Due to the exchange interaction, the prob-
B (k) = Wn(0), 1=0,1=N, (3.19 ability q of success equale™/(e#+ef)=r, and so the
N |~°N(k,|). 1<I<N-1, ' probability that a chain has exacttydomain walls is indeed
given by Eq.(4.3).
where The probability function(4.3) is properly normalized, i.e.,
[2)+1 SEPy(k)=1, and, in accordance with well-known proper-
PukD= X Pupkl (3.20 fies of the binomial distribution[17], the average(k)
p=[(k+1)/2] :E'lelkPN(k) and the variancgfz(kz)-—<k>2:E?=‘llk2PN(k)
wherein[x] denotes the integer part &f Finally, taking into —(k)* of the number of domain walls in a chain assume the
consideration the following relation: form
[k2]+1 (K=(N-Dr, oZ=(N-1)(L-nr. (4.4
1+ ) =2, 3.21 .
p:[(k2+1)/2]( B2p-1) ( ) For BJ<1, we obtain(k)=(N-1)(1-8J)/2 and af:(N

-1)(1-B%3%)/4 with linear and quadratic accuracy jgJ,
respectively. The relation lig)_o(k)=(N-1)/2 makes ex-
plicit that in the high-temperature case, which is character-
Pauk D =(2-680- d,N)WN(k)CKf_}ffk' (3.22 ized by the conditiom=1/2,approximately one domain wall
falls on two spins, implying that each domain contains, on
(A= 6¢0010)- average, two spinésee also Sec. VI
The increase oBJ leads to the decrease oand Eq.(4.4)
yields (k)= o~ (N-1)e 2"’ for large enough values ¢8J.
If 28J>In N then the conditionky<1 holds, which indi-
According to Egs.(3.17) and (3.21), the one-variable cates that in this case the spin configuratigns=1} and

we find from Egs.(3.19, (3.20, and(3.13 for the desired
probability function the result

IV. DISTRIBUTION OF DOMAIN WALLS

probability function {oy=-1} play the main role in determining the chain proper-
[K2]+1 ties. Let , and 7, be the transition time between these
Pu(K) = P(D.K), 4.1 states, i.e., the average time during which a chain passes
v p=[(k2+1)/2] NPk @) from the statdo;=1} to the statdo;=-1}, and the measure-

) . o _ment time, i.e., the total time necessary to perform a mea-
Whlch.char.ac.terlzes. th(_e d|st_r|but|on of the number of domairy;rement of the magnetization, respectively. Then, 40 2
walls in a finite chain, is written as >In N and =, > 7, a chain possesses a spontaneous magne-

_ k tization. In other words, these conditions form a criterion of
Pl = 2Wi(k)Crvs. (4.2 the ferromagneticlike behavior of a finite Ising chain. Notice
The last formula reflects the fact th&(k) is the overall that in the thermodynamic limifN— o) the second condi-
probability of all 2C:§_l spin configurations each of which tion holds always, see just below, while the first condition
possessek domain walls and has the probabilityy(k) (we  holds only if T=0. Therefore, in full agreement wifi], the
are grateful to an anonymous referee for this polay using  long-range ferromagnetic order in an infinite chain occurs
Egs. (2.39—2.5 and introducing the designation=(1  only at zero temperature.
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In order to estimate the dependence mfon N, it is (2] " (10" + (1 =%)"
necessary to go beyond the Ising model. To this end, we > Cx= > , (5.4
consider the Ising spins as the classical Heisenberg spins
with large uniaxial anisotropy and use the Arrhenius-Neel
law [19,20. According to it, the average timebetween the [(n-1)/2] (140" = (1 ="
spin reversals can be evaluatedrasrye® 2V, wherer, is the > Cﬁkﬂxk: \ — \ , (5.5
spin precession time, andlU(>g1) is the height of the k=0 2VX

potential barrier between two equilibrium directions of each
spin. Since a chain in a state wifk) <1 can be associated and the properties of the binomial coefficients, one readily
with a single enlarged spin for which the potential barrierfinds that the quantities

height is given byN AU, we find that the transition time,

: . _ N/2
exponentially grows witiN: 7, ~ eN-D58 AU: Note also that M= S G20 2 12 (5.6
becausg3]— » and r, —© asT— 0, there is always a tem- n-— = N-1-m :

perature interval where a finite Ising chain exhibits the fer-

romagneticlike behavior. ,m=0,1,2 can be represented in the form
We briefly discuss here also the problem of domain walls( 2 P
distribution in an infinite chain. As is well knowj21], the pm
binomial distribution has no unique asymptotic as the num- Im= 5[1 +(=1)™MM(1 = 2r)N-1m], (5.7

ber of Bernoulli trials tends to infinity. However, since in our
case the parameterdoes not depend oN, the probability
function Py(k) does have it. To characterizéy(k) as N

— o0, we assume in Eq4.3) thatk=(k)+ o,z and define the

With these results, it follows that the modified binomial dis-
tribution is also properly normalized, namely,

probability functionP(z) =limy_... oy Pn((k) + :2) of the pa- N/2 P
rameterz. Applying a local limit theoreni21], we immedi- S Py(p) = 12 (1+6,)10=1. (5.8)
ately find thatP,(z) has the standard Gaussian distribution: p=0 n=0 nn

_ ~112-712
Py2)=(2m e The average of the number of up domains in a chain is

defined as(p)= EN’OpPN(p) Using the probability function

V. DISTRIBUTION OF UP DOMAINS (5.3 and the identity
To derive the one-variable probability functiéh,(p) that 2pCP " =nCP I+ (N- 1)CP (5.9

describes the distribution of the number of up domains ina - _ _

finite chain, we again proceed from the joint probability which can be verified directly, we find

function Py(p,k). A simple consideration shows thiet 0 if

p=0, k=2p-i (i=0,1,2 if L=<p=N/2-1, andk=2p—i (i z

=1,2) if p=N/2. Hence, for fixeg the parametek is varied = 2 (L+ &[Nl +(N=-Dig], (5.10
from 2p—2+26, o to 2p— 8, N2, @and Py(p) is given by 4o
205 n12 and substituting Eq(5.7) into Eq. (5.10 we obtain
Pup = X Py(pk. (5.
224200 ()= % + %(N - Dyr. (5.11)

Substituting Eq(3.17) into this formula and taking into ac-
count the properties of binomial coefficients, this probability

distribution is obtained as It may seem strange at first glance tkpt=1/2 in thelow-

temperature limifr — 0), but in compliance with Eq5.3) at
20 r— 0 only two states of a chain, namely;=-1} (p=0) and
Pn(p) = 20(1 +610)W(2p — NG (5.2 1521} (p=1), have nonzero probabilities and they are equal
" to 1/2. Notice also that, according to E¢4.4) and (5.11),
Finally, using Eqgs.(2.3—(2.5), from Eg. (5.2 we find the the general condition(®)=1+(k) always holds.

2

desired probability function in the form To find the Variance;—%:(p2>—<p>2 of the number of up
2 domains in a chain, we first calculate the second moment
P(p) = 2 (1+6,)CPTP (LN (53 (P)=ZHGp?P(p). By applying the identity
n 0

2 n_ 2 n 2 n 1
(0=<p=N/2). This distribution, due to its formal closeness 4p" G =G + (20 + (N - DG
to the ordinary binomial distribution, will be termed the +(N-1)(N-2) P2 (5.12
modified binomial distribution
Taking into consideration the results for the finite series(note that last term equals zero ldt2) and the notation
[18], (5.6), this quantity can be expressed as
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2

(PP = %E (1+8 )[nA%+ (2n+1)(N- 1)1
n=0
+(N-1)(N-2)12]. (5.13

Inserting Eq.(5.7) into this formula and performing straight-
forward calculations yields
3 3 1 1
A==+ —(N=Dr+ - (N=1)(N=-2)r2+ (1 -2r)N*,
(Y=g + Z(N=Dr+2(N-D(N=2)r"+ 2(1 - )
(5.149

Therefore, using the definition of the varian@é we find

11 1
o5= gt Z(N D@ -rr+ 5(1 -Vt (5.15
The fact that(p?) —1/2 (0"2)—>1/4) asr—0 has the same
interpretation as the low-temperature behavior@f given

above.
In conclusion, we note that =(p)+o,z asN— = then

PHYSICAL REVIEW E71, 046137(2005

2-Nr(1-nN1t-2(1-r)N

H= .

(6.4
An alternative derivation of this result is presented in Appen-
dix B. According to this expression, we find lim.I)
=1/r, lim,_o(1)=N/2, and lim_;X1)=2-(N+2)2"N. The
last condition shows that in the high-temperature limit the
average number of spins that form one up domain in a long
chain is approximately equal to 2.

All other moments of the finite geometric distribution
(6.3 are also calculated exactly. In particular, the variance of
domain lengthsp?=(12—(I)?, is given by

ol=(1-n)r?= (N2 2+ -n)N)@ -V - N[1-2r

+(A-0NMA -0 Yr+[r-@-nNj@-nNr3. (6.5
With this result we immediately obtailjt|2—>(1—r)/r2 asN
—o, of—N?/4 as r—0, and of—2-(N>-2)2"N-(N
+2)2 N asr—1/2.

To gain more insight into the domain statistics, we also
introduce the probability functioiPy(l) that describes the

the parameter again possesses a standard Gaussian distrdomain lengths distribution in assemblies of Ising chains,

bution (see Appendix A

VI. DISTRIBUTION OF DOMAIN LENGTHS

To find the probability function of domain lengthB, (1),
we proceed from the joint probability functig8.22. Since
for 1=<I=<N-1 the number of domain wallscan vary from
1 toN-1 andk=0 if =0 or =N, this probability function
can be written as

Wy(0), 1=0,I=N,
PN(I):{E’N(I), 1<I<N-1, (6.1
where
N-|
Py() = k21 Pu(k, D). (6.2)

In virtue of this, taking into account thatV(0)=(1
-r)N1/2 and using the standard seri&§_Ckxk=(1+x)"

which permits us to reduce E@6.2) into the form E’N(I)
=r(1-r)""1, we obtain

(1-nNY2,
PO=] -,

[=0,1=N,

6.3
1<sI<N-1. 6.3

It is not difficult to verify, using the well-known relation
Eﬂzoxk:(l—x”’fl)/(l—x), that this distribution, which we
term thefinite geometric distributionis normalized, i.e.,
SNPn()=1. Note also that in the limit of an infinite chain
the domain lengths distributio¢6.3) is reduced to the geo-
metric distribution, P.()=r(1-r)""* (I1=1,2,..), whose
mean and variance arerland (1-r)/r?, respectively.

By applying the standard serieSp_kX=[x+(nx-n
-1)x"1/(1-x)?, the average length of an up domaith)
=N JP\(1), can be represented in the form

each of which contains at least one up domain of nonzero
length. In other words, we assume that the parametan
vary from 1 toN. In this case, in contrast with E¢B.22), the
joint probability functionPy(k,l) that a chain containk do-
main walls and the first up domain containspins is written

as

PRk = (2 = 8 ) WR(KICXZy, (6.6

where Wy (k) =e#EnM/Zy and Zy,=Zy-e#ND is the parti-
tion function for such a chain. Therefore, the probability
function PX(l), which is defined a@&(l):ENz’i_al’NPK,(k,l),
assumes the form

e 2 (1-nNY2,
P=2a r)N‘l{r(l -n',

One can again verify that the normalization condition
SN Pr()=1 holds, and that the average length of an up do-
main,(l)*zi{illPK,(l), can be represented as
2-Nr(1-nNt-21-r)N

2r—r(1-r)N1

= (6.8)

As N— oo, the average¢l)" and(l) tend to the same limit,
but their low- and high-temperature limits are different:
lim,_o()*=N and lim_,,%1)*=2-N/(2N-1). The former
confirms the possibility of the existence of the ferromagneti-
clike state in a finite Ising chain at low temperatures. We
note in this context that the condition32>In N, which we
introduced in Sec. IV is equivalent to the conditig& N,
where ¢ is the spin-spin correlation length. According to
[22], in the case of Ising chains with only exchange interac-
tion and free boundary conditions the correlation length is
given by the exact formul&=-In"Y(1-2r). Since at low
temperatures the asymptotic relatiafrs 1/2r andr ~ e 24
hold, the conditioné> N is actually reduced to 21> In N.
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VII. CONCLUSIONS eR, ( 1-r )Nr+2crpz+3/2—r—n

Cz(p)+2(rpz—n ~
We have determined the domain statistics in a finite chain N \"/27TN(1 N\ r
of Ising spins that interact only through the exchange inter- (A3)
action. For a chain with an even number of spins and free
boundary conditions, we have calculated, via a combinatoria@nd

approach, the joint probability function of four random vari- 207+ 1 =1 — | ~N@1)+202+3/2-1-n

ables (namely, the number of up spins, the number of up R, ~ (1——"—)

domains, the number of domain walls, and the number of N(L-r)

spins in the first up-domajnthat thoroughly describe the 202+ 2 —t —n |\ Nr20p2-3/24+n
domain statistics in a chain. Starting out from this result, we X (1 + _pT> (A4)
derived the probability distribution functions for the number

of domain walls, number of up domains, and number ofasN—«, and so

spins in an up domain. The first corresponds to the binomial P

distribution, the second to the modified binomial distribution, P(2) = lim €ap S+ SR, (A5)

and the third to the finite geometric distribution. For each of N—o 2\ 271 (1 = r)Np=o
them, we have calculated the corresponding thermal average ] .
and variance, have analyzed the cases of low and high terafma”)’: taking into account thato5/N—r(1-r)/4 and
peratures, and, as well, have considered the thermodynanii¢ Ri—-2"/2-1 as N—, we indeed find thatP,(2)
limit. = (2m) Y2 7R,
In addition, we have derived a criterion that a finite Ising
chain exhibits the ferromagneticlike behavior. According to APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (6.4)
it, the transition time between the fully magnetized chain  ysing the joint probability function(3.6), we can also
states must exceed the measuring time, and the average nufapresent|) in the following form:
ber of domain walls must be much less than 1. These condi- N2 20ms e Neokel
tions hold, i.e., a finite Ising chain does display a ferromag- 17 22 TR
neticlike order on the measuring time scale, if the =2 B > > sP(s,p,k). (B1)
temperature is sufficiently small. =L k=22 s
SincesC;=pC, Wy (k)=rX1-r)N"*1/2, and according to
the result for the serieS.10),

ACKNOWLEDGMENTS Npk-1
S.1.D. acknowledges the support by the European Union > sarlck®  =pCit, (B2)
under Contract No. NMP4-CT-2004-013545, and P.H. the s=p

support by the Deutsche Forschungsgemeinschaft, Grant Ngq (B1) can be rewritten as
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(1 _r)N—l 2
(=" 2 (L +01)Yn, (B3)
APPENDIX A: DISTRIBUTION OF DOMAINS IN AN n=0
INFINITE CHAIN where
To find the probability function of the parameter N2 e\ 2n
Pp(2)=limy_.. o,PN((P) + 0,2), first we represent the bino- Yo=2 (E) czpri, (B4)
mial coefficients in Eq(5.3) as p=1

Upon calculating these quantities with the help of the series

b [a+1) (A1) (5.4 and(5.5),

*“T(b+Dl(a-b+1) N .
1-r[( 1 (1-x
(T'(x) is the gamma functionand use the Stirling formula ~ Yn=—F—| |7 —~ (-1 =281 | =Ny

2r 1-r 1-r
[23]
_ (BS)
~ Xy X—1/2
) ~ v2me™x (X =) (A2) (n=0,1,2, and substituting the corresponding expressions
This yields into Eq. (B3), we again obtain Eq6.4).
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