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Abstract

We explore the possibility of inducing in heterostructures driven by an ac gate voltage the coherent current suppression recently
found for nanoscale conductors in oscillating fields. The destruction of current is fairly independent of the transport voltage, but can
be controlled by the driving amplitude and frequency. Within a tight-binding approximation, we obtain analytical results for the
average current in the presence of driving. These results are compared against an exact numerical treatment based on a transfer-
matrix approach.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction and modelling

The study of electron transfer comprises a rich variety
of systems inmany different areas such as chemistry, biol-
ogy, and life sciences [1,2]. Although electron transfer
processes are mainly attributed to electrochemical appli-
cations, they are conceptually related to molecular elec-
tronics [3–5] and electron transport in low dimensional
materials in solid-state physics. In that context, semicon-
ductor heterostructures represent a popular physical sys-
tem for the investigation of mesoscopic transport [6–8]
and tunnelling phenomena [9–13]. The main reason for
this is the high mobility and the rather long mean free
path of the charge carriers populating them. Standard
beam epitaxy techniques make the accurate growth of al-
loys of such materials on substrates possible, and the
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nearly identical lattice parameters, together with the pos-
sibility of controlling the band gap, turn the combination
GaAs/AlxGa1�xAs into an ideal candidate for building
complex low dimensional structures with quantum wells
and tunnel barriers. Moreover, these setups open various
ways to study tunnelling in time-dependent systems
[14–16]. A straightforward possibility for introducing a
time-dependence is the application of an ac transport
voltage which only modulates the energies of the elec-
trons in the leads while the potential inside the meso-
scopic region remains time-independent. This kind of
driving allows for a description within Tien–Gordon the-
ory [17] which expresses the dc current in terms of the sta-
tic transmission and an effective distribution function for
the lead electrons. If the time-dependence enters via an
external microwave field or an ac gate voltage, however,
such an approach is generally insufficient [18].

A remarkable difference with respect to the static sit-
uation is the emergence of inelastic transport channels
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stemming from the emission or absorption of quanta of
the driving field. For a periodically time-dependent
transport situation, however, we expect the transmission
probabilities and, consequently, the resulting current to
be time-dependent as well. This follows indeed from a
recently presented Floquet theory for the transport
through driven tight-binding systems [16,18]. For the
computation of the dc current, this approach justifies
the applicability of a Landauer-like current formula
where the static transmission is replaced by the time-
averaged transmission of the time-dependent system.

The transmission of both the elastic and the inelastic
transport channels can depend sensitively on the driving
parameters; the contribution of certain channels can
even vanish. For the transport across two barriers which
enclose an oscillating potential well, Wagner [19]
showed that it is possible to suppress the contribution
of individual inelastic scattering channels. The total cur-
rent, however, is given by the sum over all channels, and
thus it is not possible to isolate the contribution of a sin-
gle channel in a current measurement. By contrast, in
the case of transport through a two-level system with at-
tached leads, it has been found that driving with a dipole
field has directly observable consequences. There, the
driving not only affects the contribution of individual
transport channels, but the dc current can be suppressed
almost entirely [20,21]. Therefore, for the appearance of
this coherent current suppression, it is essential that the
central region consists of at least two weakly coupled
wells which oscillate relative to each other [18].

In this work, we explore the possibility of coherent
current suppression in double-well heterostructures.
Thereby, we compare two theoretical approaches to de-
scribe coherent transport in quantum-well structures:
The transfer-matrix method and a tight-binding ap-
proach. As a model we consider the triple-barrier struc-
ture sketched in Fig. 1 where the driving enters via an
oscillating gate voltage which modulates the bottom of
the left well. The applied transport voltage is assumed
to shift the Fermi energy of the left lead by �eV with
Fig. 1. Model potential for the double-well heterostructure. In the
numerical calculations, we employ barriers with the heights
VL = VR = 90 meV, VC = 40 meV and the widths dL = dR = 5 nm,
dC = 15 nm. The dotted lines mark the energy of a metastable
tunnel doublet with splitting energy 2D. The left well is subject to an
electric dipole field generated by an alternating gate voltage with
amplitude Vac.
�e being the electron charge. We note that since the
time-dependent gate voltage affects only one well, the
structure depicted in Fig. 1 is sufficiently asymmetric
to also act as an electron pump, i.e., to induce a non-
zero current for eV = 0 [16]. In this work, however, we
focus on the transport properties in the presence of a fi-
nite bias voltage.

For the exact numerical computation of the transmis-
sion probabilities, we employ the transfer-matrix meth-
od developed by Wagner [22], which is reviewed in
Section 2. In Section 3, we introduce the related tight-
binding system for which the transport properties can
be calculated analytically within a high-frequency
approximation scheme [21]. The predictions from the
perturbative approach are compared to the exact solu-
tion in Section 4.
2. Transfer-matrix method

Following Landauer [23], we consider the coherent
mesoscopic transport as a quantum mechanical scatter-
ing process. The central idea of this approach is the
assumption that sufficiently far from the scattering re-
gion, the electronic single-particle states are plane waves
and that their occupation probability is given by the
Fermi function with the chemical potential depending
on the applied voltage. The unitarity of evolution under
coherent ac driving allows us to write the resulting cur-
rents as [24]

I ¼ e
h

Z
dE½T RLðEÞfLðEÞ � T LRðEÞfRðEÞ�; ð1Þ

where TRL(E) denotes the total transmission probability
– i.e., summed over transverse modes and outgoing
inelastic channels – of an electron with energy E from
the left lead to the right lead while TLR(E) describes
the respective scattering from the right to the left lead.
For time-independent conductors, the time-reversal
symmetry of the quantum mechanical scattering process
together with the energy conservation ensures
TRL(E) = TLR(E) such that, in the absence of a trans-
port voltage, the current vanishes. This is not the case
for a general time-dependent structure [16].

When the total Hamiltonian is time-periodic due to
an external driving field, Hðx; tÞ ¼ Hðx; t þTÞ, one
can apply Floquet theory [25,26,14]. It states that the
corresponding time-dependent Schrödinger equation
has a complete set of solutions of the form

waðx; tÞ ¼ expð�i�at=�hÞuaðx; tÞ; ð2Þ
where uaðx; tÞ ¼ uaðx; t þTÞ denotes the so-called Flo-
quet states, and �a the so-called quasienergies in analogy
to the quasimomenta of Bloch theory.

Owing to their time-periodicity, we can decompose
the Floquet states into a Fourier series
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uaðx; tÞ ¼
X1
n¼�1

e�inXtua;nðxÞ. ð3Þ

The form (3) of the Floquet states suggests that during
the scattering, an electron with initial energy E evolves
into a coherent superposition of states with energies
E 0 = E + n�hX. The arbitrary integer n is referred to as
the sideband index; the inelastic channels are called side-
bands. We emphasise that, despite the existence of a
band bottom, the summation over n in Eq. (3) is
unrestricted.

A proper calculation of the dc current through a
time-dependent scatterer must now include these inelas-
tic channels, and the Landauer formula of Eq. (1) has to
be conveniently generalised to take them into account.
Since the Floquet scattering states can be thought of
as having been created from the orthogonal dc states
by adiabatically switching on the driving, they too must
be orthogonal, so that it is sufficient to sum over chan-
nels incident from both leads [24].

In the transfer-matrix method described below, the
Floquet states are decomposed into plane waves
throughout the driven heterostructure, so that they can
be appropriately matched with the scattering channels in
the leads. This decomposition allows us to separate the
time- and the space-dependent parts of the wave func-
tion, thus obtaining directly the time-independent prob-
abilities that go into Eq. (1).

For a spatially constant potential with a time-depen-
dent gate voltage Vac(t), the solution of the Schrödinger
equation is readily obtained to read

wðE; z; tÞ ¼
Xþ1

n¼�1
wnðzÞ exp � i

�h
ðE þ n�hXÞt � i/ðtÞ

� �

ð4Þ
with the accumulated phase

/ðtÞ ¼ e
�h

Z t

dt0V acðt0Þ ¼ /ðt þTÞ. ð5Þ

Its time-periodicity follows from the zero time-average
of the gate voltage.

Neighbouring layers of a heterostructure may have
different ac voltages applied in addition to different
band-edges. As a consequence, the wave functions in
Eq. (4) which solve the Schrödinger equation in each
layer do not coincide in the general case. The solution
for the complete system has to be constructed by match-
ing the corresponding wave functions at the interfaces
between layers. With this goal in mind, we assume that
the wave function (4) is a solution of the Schrödinger
equation for the time-dependent Hamiltonian

Hðz; tÞ ¼ H 0ðzÞ þ eV acðtÞ

¼ � �h2 o 1 o þ V ðzÞ þ eV ac cosXt; ð6Þ

2 oz mðzÞ oz
and that, moreover, wn(z) is an eigenfunction of the
time-independent Hamiltonian H0 with the spatially
piecewise constant effective mass m(z), and has the gen-
eral form

wnðzÞ ¼ An expðknzÞ þ Bn expð�knzÞ. ð7Þ
The wave vector

kn ¼ 2mðV � E � n�hXÞ½ �1=2 ð8Þ
describes travelling as well as decaying waves (bound
states) for complex and real values of kn, respectively.
The matching conditions at an interface follow from
the fact that both the wave function and the flux have
to be continuous, i.e., at z = z0

lim
z!zþ

0

wðz; tÞ ¼ lim
z!z�

0

wðz; tÞ;

lim
z!zþ

0

1

mðzÞ
o

oz
wðz; tÞ ¼ lim

z!z�
0

1

mðzÞ
o

oz
wðz; tÞ.

ð9Þ

This yields an infinite system of algebraic equations for
the coefficients An and Bn in each layer. Inserting the
Fourier expansion of the phase in Eq. (5),

exp � ie
�hX

V ac sinXt
� �

¼
Xþ1

n0¼�1
Jn0

eV ac

�hX

� �
expð�in0XtÞ;

ð10Þ
where Jn0 is the n 0th order Bessel function of the first
kind, allows one to recast these equations for an
interface between layers I and II at z = zi in matrix
form:

TI
zi

AI
n

BI
n

 !
¼ TII

zi

AII
n

BII
n

 !
. ð11Þ

The matrices TI
zi
and TII

zi
with elements T I

zi;n;n0
and T II

zi;n;n0
,

respectively, are of infinite dimension, and contain the
coefficients of all possible scattering channels, i.e., pho-
ton exchanges between the incoming electron and the
driving field, at either side of the interface. Their precise
form depends on whether or not a layer is affected by the
time-dependent gate voltage. The transfer matrix Tzi!zj

between two sides of a layer of width zj � zi is then de-
fined as [27]

Tzi!zj ¼ TI
zj
TI

zi

� ��1
. ð12Þ

This definition in terms of layers, rather than using a
similar one across interfaces, is physically more sensible,
since the matrices depend on the properties of just one
layer. They are also numerically easier to implement,
as there are fewer qualitatively different matrices to deal
with. To calculate the total transfer matrix across the
structure, we have to multiply the matrices across all dif-
ferent layers and obtain

TL!R ¼ TzRTzj!zR � � �TzL!ziTzL ; ð13Þ



Fig. 2. Schematic energy diagram of a symmetric double-well structure
in the tight-binding approximation. The tunnelling matrix element is
given by D and each well couples with CL and CR to the associated
lead. The state |Li in the left well is driven by a oscillating gate voltage
with amplitude Vac. In addition, an external bias V = (lR � lL)/e is
applied.
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where TzL and TzR represent the initial and final matrices
at the ends of the heterostructure. With the elements
T n;n0

L!R of the total transfer matrix we can find the prob-
ability that an electron with energy E + n�hX in lead L
is scattered into a channel with energy E 0 = E + n 0�hX
in lead R, with integer n,n 0. The diagonal elements
T n;n

L!R are closely related to the (static) transmission
probability TRL, while the off-diagonal elements T n6¼n0

L!R

describe the effects of the absorption or emission of
n � n 0 photons on the transmission probability of the
electron. For flat conduction bands on both sides of
the heterostructure, the wave functions in the contacts
are plane waves, and in this case the proper boundary
conditions to describe an electron incident from, say,
the left-hand side at energy E are An

L ¼ dn;0 and
Bn
R ¼ 0. The transmission probability in sideband n is

then defined as

T n
RL ¼ knR

k0L

mL

mR

An
R

A0
L

����
����
2

; ð14Þ

where knR and k0L represent the wave vectors on the right-
and left-hand side in sidebands n and 0, respectively.

In a numerical implementation of the transfer-matrix
technique, it is necessary to truncate the infinite matri-
ces. Thereby for consistency, a proper cut-off has to be
so large that unitarity of the scattering process is pre-
served, i.e.,

Xþ1

n¼�1
T n

RL þ
Xþ1

n¼�1
Rn
LL ¼ 1; ð15Þ

where Rn
LL represents the reflection probability of an elec-

tron to be reflected from energy E into a sideband at en-
ergy E + n�hX on the same side. The number of sidebands
that need to be taken into account to meet a given accu-
racy (which in our calculations was set to 10�17) depends
essentially on the ratio eVac/�hX, as this is the argument of
the Bessel function Jn that determines the weight of each
sideband n. To proceed, one starts at the initial value of
Vac = 0 with a tentative number of sidebands, and in-
creases it for growing driving amplitudes if a check with
Eq. (15) suggests that unitarity is breaking down. When
particle number conservation is restored one can go to a
higher Vac. Transfer matrices such as those employed
here have the advantage of being easily scalable to arbi-
trarily complex structures. The combination of flexibility
in structural properties and numerical accuracy makes
this method well-suited to the study of strongly driven
semiconductor heterostructures.
3. Tight-binding approximation

A different approach to study resonant tunnelling in a
driven double-well structure is based on the adoption
of a tight-binding (TB) picture. Fig. 2 depicts the TB
configuration corresponding to the heterostructure
introduced above.

3.1. The model

Then, the Hamiltonian of the system is given by

HðtÞ ¼ HwellsðtÞ þ H leads þ H contacts; ð16Þ
where the individual terms describe the driven quantum
wells, the electron reservoirs in the leads, and the cou-
pling of the left and the right well to the respective
neighbouring lead. For simplicity, we neglect the elec-
tron spin.

Within the framework of the TB approximation, the
time-dependent quantum-well Hamiltonian reads

HwellsðtÞ ¼
X
‘;‘0

H ‘;‘0 ðtÞcy‘c‘0

¼ �DðcyLcR þ cyRcLÞ þ eV ac cosðXtÞcyLcL. ð17Þ

An electron can be localised in the left or right well,
whereupon the fermion operator c‘ (c

y
‘) annihilates (cre-

ates) an electron in the respective well (‘ = L,R). These
localised states |Li and |Ri are coupled by the tunnelling
matrix element D. For convenience, the energy scale is
set such that the on-site energies of the two resonant
TB levels are zero and lie exactly halfway in between
the transport bias window defined by the chemical
potentials lL and lR. The second term of the Hamilto-
nian (17) accounts for the harmonic driving of the tra-
versing electrons in the left well via an oscillating gate
voltage with amplitude Vac and period T ¼ 2p=X.

The leads are modelled as ideal Fermi gases with the
Hamiltonian

H leads ¼
X
‘;q

�‘qc
y
‘qc‘q; ð18Þ

where c‘q (c
y
‘q) annihilates (creates) an electron in the lead

with energy �‘q with ‘ = L,R. As an initial condition, we
employ the grand-canonical ensembles of electrons in the
leads at inverse temperature b = 1/kBT. Therefore, the
lead electrons are characterised by the equilibrium Fermi
distribution f‘(�‘q) = {1 + exp[�b(�‘q � l‘)]}

�1.
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The localised state in each well couples via the tunnel-
ling matrix element V‘q to the state |‘qi in the respective
lead. The Hamiltonian which describes this interaction
has the form

H contacts ¼
X
‘;q

V ‘qc
y
‘qc‘ þH.c. ð19Þ

The lead–well coupling is entirely specified by the spec-
tral density C‘ð�Þ ¼ 2p

P
qjV ‘qj2dð�� �‘qÞ. Since, for the

system at hand, the bandwidth of the conduction band
of the leads is much larger than the energy regime where
transport happens, the spectral densities are practically
constant, i.e., C‘(�) = C‘, which defines the so-called
wide-band limit.

3.2. Floquet transport theory

In order to determine the time-averaged dc current
which matches Eq. (1) for the TB approximation, we em-
ploy a generalised Floquet approach to solve the corre-
sponding Heisenberg equations of motion and derive
an expression for the retarded Green�s function in terms
of Floquet states. This result is applied to study transport
by evaluating the operator I ‘ðtÞ ¼ ie½HðtÞ;

P
qc

y
‘qc‘q� for

the time-dependent current through contact ‘. In the next
subsection we will also derive an analytic expression for
the current valid in the high frequency limit with respect
to the driving.

We start out by stating the solution of the Heisenberg
equations of motion for the lead operators, which is gi-
ven for the left lead by [18]

cLqðtÞ ¼ cLqðt0Þe�i�Lqðt�t0Þ=�h � iV Lq

�h

Z t

t0

dt0e�i�Lqðt�t0Þ=�hcLðt0Þ.

ð20Þ
For the corresponding solution of cRq(t), L has to be
substituted by R. Now inserting these solutions into
the Heisenberg equations of motion for the quantum
wells yields the two coupled linear differential equations

_cL ¼ � ie
�h
V ac cosðXtÞcL �

CL

2�h
cL þ

i

�h
DcR þ nLðtÞ; ð21Þ

_cR ¼ i

�h
DcL �

CR

2�h
cR þ nRðtÞ. ð22Þ

Here, within the wide-band limit, the coupling to the
leads has been eliminated in favour of the spectral den-
sity C‘ and the fermionic fluctuation operator

n‘ðtÞ ¼ � i

�h

X
q

V �
‘qe

�i�‘qðt�t0Þ=�hc‘qðt0Þ. ð23Þ

Assuming that the initial conditions are those of the
grand canonical ensemble, this Gaussian noise operator
satisfies

hn‘ðtÞi ¼ 0; ð24Þ

hny‘ðtÞn‘0 ðt0Þi ¼ d‘‘0
C‘

2p�h2

Z
d�ei�ðt�t0Þ=�hf‘ð�Þ. ð25Þ
Then the operator for the time-dependent current
through the left lead becomes [18]

ILðtÞ ¼
eCL

�h
cyLðtÞcLðtÞ � e cyLðtÞnLðtÞ þ nyLðtÞcLðtÞ

� 	
ð26Þ

with a corresponding expression for IR(t). Here we made
use of the wide-band limit. To evaluate the time-depen-
dent current, we thus have to find the solution for the
inhomogeneous set of the quantum Langevin equations
(21) and (22) of the quantum-well operators, which is
formally given by

c‘ðtÞ¼
Z 1

0

ds G‘Lðt; t� sÞnLðt� sÞþG‘Rðt; t� sÞnRðt� sÞ½ �

ð27Þ
in the stationary limit t0 ! 1 with ‘ = L,R. What re-
mains is to determine the retarded Green�s function
G(t, t � s). This is where Floquet theory comes into play
by making use of the T-periodicity of the driving. Solv-
ing the Floquet eigenvalue equation

HwellsðtÞ � iR� i�h
o

ot

� �
juaðtÞi ¼ ð�a � i�hcaÞjuaðtÞi ð28Þ

of the physical problem at hand, where HðtÞ ¼P
‘;‘0 j‘iH ‘;‘0 ðtÞh‘0j, we get the Floquet states |ua(t)i and

the complex-valued quasienergies �a � i�hca. Note that
the prior equation is, in contrast to the usual Floquet
equation, non-Hermitian. This is due to the presence
of the self-energy 2R = |LiCLhL| + |RiCRhR|, which re-
sults from tracing out the leads [28]. Therefore, Eq.
(28) has to be solved also for its adjoint eigenstates
juþa ðtÞi [16]. With the corresponding expression for the
propagator U(t, t � s), the retarded Green�s function as-
sumes the form

Gðt; t � sÞ ¼
X
a

e�ið�a=�h�icaÞsjuaðtÞihuþa ðt � sÞjHðsÞ; ð29Þ

where H(s) is the Heaviside step function.
The dc current is now obtained by calculating the

expectation value hIL(t)i and averaging over one driving
period. This time-averaging will cancel those terms of
hIL(t)i, which are responsible for a T-periodic charging
of the wire. After eliminating backscattering terms [18],
we arrive at the very compact form for the final result

�I ¼ e
h

X
n

Z
d� T ðnÞ

LRð�ÞfRð�Þ � T ðnÞ
RLð�ÞfLð�Þ

h i
; ð30Þ

where the total transmission probabilities are given by
T ðnÞ

LRð�Þ ¼ CLCRjGðnÞ
LRð�Þj

2 and T ðnÞ
RLð�Þ ¼ CLCRjGðnÞ

RLð�Þj
2,

which resemble the Fisher–Lee relation [29]. The above
equation also holds for the current through the right
contact owing to charge conservation. The Green�s
function

GðnÞð�Þ ¼
X
a;n0

jua;n0þnihuþa;n0 j
�� ð�a þ n0�hX� i�hcaÞ

ð31Þ
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is the t-averaged Fourier transformed of the propagator
(29). Physically, it describes the propagation of a trans-
mitted electron with initial energy � from one lead to the
other lead undergoing scattering events with emission
(n < 0) or absorption (n > 0) of |n| photons, or being
transmitted elastically (n = 0).
3.3. High-frequency limit

The Floquet treatment of the present transport prob-
lem allows for the implementation of a stationary per-
turbation scheme for driving frequencies much larger
than all other frequency scales of the system [26]. This
approach has recently been extended to transport situa-
tions which are characterised by the presence of leads
[18,21]; here we only outline the derivation and refer
the reader to [16]. A particular benefit of this perturba-
tion scheme is the achievement of a physical understand-
ing of the transport processes by approximately
mapping the time-dependent problem to a static one
with renormalised parameters. For the static situation,
in turn, the current is well known by Eq. (1), where
the transmission in the wide-band limit reads
T(�) = TLR(�) = CLCR|GLR(�)|

2. This looks similar to
the driven case but with n = 0 and therefore we have
in contrast to the driven system GLR(�) = GRL(�). For
the static system given by (16) with Vac = 0, we obtain
for the transmission

T ð�Þ ¼ C2D2

jð�� iC=2Þ2 � D2j2
ð32Þ

assuming equal coupling to the leads (C‘ = C).
The starting point of the approximation scheme is the

unitary transformation

U 0ðtÞ ¼ exp � ie
�hX

V ac sinðXtÞcyLcL
� �

; ð33Þ

which is first applied to the quantum-well Hamiltonian
(17). For sufficiently large driving frequencies X�
D/�h, a separation of time scales is performed by this
transformation. Thereby, fast oscillations of the trans-
formed Hamiltonian are neglected by averaging over a
driving period [14,30]. Finally, we arrive at the effective
Hamiltonian for the quantum wells

�H eff ¼
1

T

Z T

0

dt U y
0HwellsðtÞU 0 � i�hU y

0
_U 0

� �
¼ �DeffðcyLcR þ cyRcLÞ; ð34Þ

which is of the same form as in the static case but with
the effective tunnelling matrix element Deff = J0 (eVac/
�hX)D [30,20]. J0 is the zeroth order Bessel function of
the first kind. Therefore, the resulting effective transmis-
sion Teff(�) with the substitution D ! Deff in Eq. (32) is
controllable via the driving parameters and even van-
ishes at zeros of the Bessel function.

The transformation (33) also affects the lead–well
coupling. If we apply U0(t) also to Hcontacts and solve
the Heisenberg equations for the lead and quantum-well
operators in the wide-band limit, we can eventually ex-
tract the new fluctuation operator. For the left lead
one finds

gLðtÞ ¼ � i

�h

X
q

V �
Lq

� exp � i

�h
�Lqðt � t0Þ þ

ie
�hX

V ac sinðXtÞ
� �

cLqðt0Þ;

ð35Þ
whereas gR(t) remains unaffected. Now calculating the
correlation function and time-averaging it over one driv-
ing period to neglect the T-periodic contributions, the
resulting expression assumes the form (25) but with
the Fermi function of the left lead replaced by the effec-
tive electron distribution

fL;effð�Þ ¼
X1
n¼�1

J 2
n

eV ac

�hX

� �
fLð�þ n�hXÞ. ð36Þ

The squares of the nth-order Bessel function of the first
kind in this expression weight those processes where an
electron with energy � is transmitted from the left lead to
the double-well system under the emission (n < 0) or
absorption (n > 0) of |n| photons. The effective electron
distribution exhibits steps at the energies � = lL + n�hX
and is constant elsewhere.

With the effective quantities Teff(�) and fL,eff(�) the dri-
ven problem is ascribed for fast driving to a static one.
Since Teff(�) is sharply peaked around � = 0 and fR(0)
and fL,eff(0) are constant for finite voltage, the current
in the high-frequency approximation results in

�I ¼ eC
4�h

D2
eff

D2
eff þ ðC=2Þ2

1þ
X

jnj6KðV Þ
J 2
n

eV ac

�hX

� �" #
ð37Þ

applying the effective parameters to the current formula
(1). Here K(V) is a shorthand notation for the integer
part of e|V|/2�hX.

In order to compare the transfer-matrix and the tight-
binding approach, we have to ensure that the same phys-
ical situation is addressed. As a matching condition we
compare the transmission T(�) in the time-independent
case (Vac = 0). The level splitting energy 2D due to the
central tunnel barrier is extracted from the resonance
peaks of the doublet states computed within the trans-
fer-matrix method. Solving for C in Eq. (32) with
� = 0 and T(0) and D taken from the previous calcula-
tion, the corresponding lead–well coupling for the
tight-binding system is determined.
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4. Coherent transport suppression

We now turn our attention to the coherent control of
current. Tunnelling suppression in a closed, driven sys-
tem is known for more than a decade. For example
for a driven bistable potential, tunnelling breaks down
at exact crossings of the quasi-energy spectrum, i.e.,
one observes the so-called coherent destruction of tunnel-

ling [31,32]. Tunnelling suppression has been studied in a
number of cases [22,33,34], but the investigation in a
transport context, i.e., in an open system where an
appropriate treatment of the leads is crucial, has re-
ceived attention only recently [18,21].

Surveying the time-averaged current calculated
numerically from the transfer-matrix and the tight-bind-
ing method plotted in Fig. 3, we observe current minima
for distinct values of eVac/�hX for frequencies in the
microwave regime. The reason for the current suppres-
sions becomes apparent by comparison with the high-
frequency approximation, which exhibits minima close
to those of the transfer-matrix and tight-binding curves.
The current (37) vanishes whenever the ratio eVac/�hX as-
sumes a zero of the Bessel function J0, i.e., for the values
2.405,5.520,8.654, . . ., since then Deff / J 2

0 ¼ 0. By vary-
ing the ratio between driving amplitude and frequency,
we can thus tune the tunnelling between the two wells
and thereby control the current [21]. For a frequency
X = 5D/�h, the analytical expression (37) shows a
remarkable agreement with the exact tight-binding re-
sult (30) for Vac [ V. The inset of Fig. 3 shows the min-
imum current at the first suppression decays as a
function of the driving frequency X. This is expected
from the good agreement between the numerical results
and the high-frequency approximation, because the
approximation accounts for the first order term in a per-
turbative scheme in 1/X [18,21]. Higher order contribu-
tions are included in a numerically exact calculation,
Fig. 3. Average current vs. driving amplitude obtained numerically
from transfer-matrix (solid line) and tight-binding (dashed) methods.
Also shown is the high-frequency approximation (dashed-dotted). The
inset depicts the value of the first current minimum as a function of the
driving frequency. Solid (transfer-matrix) and dashed (tight-binding)
line decay approx. as 1/X. The chosen parameters are �hX = 1.15 meV,
V = 6.0 mV, C = 0.16 meV and D = 0.23 meV. The corresponding
parameters for the barriers are the same as those of Fig. 1.
which results in a non-vanishing current at the minima.
A similar X-dependence is observed also for the transfer-
matrix formalism.

While the general shape and magnitude of the current
are very similar for both models, there still appears a
small difference in the location of the minima for the rel-
atively low barriers chosen in Fig. 3. For a continuous
potential, the current assumes minima at values of
eVac/�hX higher than those predicted by the tight-binding
description. We can understand this shift by analysing,
for given X, the deviation dV = Vmin � V0 of the driving
amplitude Vmin for which the current exhibits its first
minimum. The amplitude V0 corresponds to the first
zero of J0. In Fig. 4 we plot dV as a function of jd,
where d = dL = dR and j ¼ ½2mðV � �lÞ=�h2�1=2, i.e., jd
is the instanton action in units of �h and exp(�2jd) is
the WKB transmission probability of the outer barriers
in Fig. 1. Here V = VL = VR is the corresponding bar-
rier height and �l ¼ ðlL þ lRÞ=2 denotes the average
chemical potential representing approximately the mean
energy of the resonance doublet.

If the width of the outer barriers is kept fixed, dV de-
creases for growing jd because then the resonance ener-
gies are further away from the barrier edge. Therefore,
the wave functions of the well states become more local-
ised. This situation corresponds in the tight-binding pic-
ture to a lead–well coupling C that is almost energy
independent and thus reproduces the wide-band limit.
Furthermore, this argument is used to explain the smal-
ler deviation observed with thinner barriers for the same
jd, since VL is much larger in that case.

As can be seen by comparing data sets for different
central barrier heights in Fig. 4, an increase of the height
of the central barrier VC reduces the level splitting 2D,
that is, the overlap between the localised states in the left
and right well in a tight-binding description. Thus the
tight-binding and the transfer-matrix results converge
as a function of the barrier height. Finally, it is impor-
tant to note that varying any of the barriers affects the
transmission properties of the whole heterostructure,
Fig. 4. Deviation of the driving amplitude for the first current
minimum from the expected first zero of J0, V0 = 2.405�hX, for different
barrier widths and heights. The parameters for the first three data sets
are dC = 15 nm, �l ¼ 12.0 meV and VC = 40 meV, whereas for the last
one (s), we chose �l ¼ 13.3 meV and VC = 80 meV.
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in contrast to the tight-binding model, where the different
coupling parameters can be controlled independently.
5. Conclusions

We have demonstrated that the dc current across a
double-well heterostructure can be suppressed by the
purely coherent influence of an oscillating gate voltage.
We have used a transfer-matrix method as an exact ap-
proach to compute tunnelling currents through such a
system. We compared these results to that obtained
from a tight-binding Floquet description. In particular,
we find that the current suppression is controlled by
the ratio of the driving frequency and amplitude. This
can be understood by exploring the high-frequency limit
within the tight-binding formalism. In this perturbative
scheme, the time-dependent system is mapped onto a
static one with renormalised parameters, that is, with
an effective hopping matrix element accounting for
inter-well coupling and with an effective electron distri-
bution for the attached left lead. Since the effective in-
ter-well coupling depends on the ratio between driving
amplitude and frequency, the transport properties of
the double well can be adjusted through the driving
parameters, with the effective behaviour ranging from
transport through an almost open channel to a regime
of rare tunnel events.

The results presented in this work strongly support the
idea that transfer-matrix and tight-binding descriptions
of quantum transport are equivalent provided the barri-
ers are sufficiently high. In this case the lowest resonance
states in the wells are rather localised and consequently
the tight-binding description becomes accurate. For a
proper choice of parameters, we find a good agreement
between the exact transfer-matrix calculation and the re-
sults obtained within the tight-binding formalism. The
study presented here shows that the coherent control of
time-dependent electron transport can be investigated
with current semiconductor nanotechnology.
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