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Abstract

A novel quantum Smoluchowski dynamics in an external, nonlinear potential has been derived

recently. In its original form, this overdamped quantum dynamics is not compatible with the second

law of thermodynamics if applied to periodic, but asymmetric ratchet potentials. An improved

version of the quantum Smoluchowski equation with a modified diffusion function has been put

forward in L. Machura et al. (Phys. Rev. E 70 (2004) 031107) and applied to study quantum

Brownian motors in overdamped, arbitrarily shaped ratchet potentials. With this work we prove

that the proposed diffusion function, which is assumed to depend (in the limit of strong friction) on

the second-order derivative of the potential, is uniquely determined from the validity of the second

law of thermodynamics in thermal, undriven equilibrium. Put differently, no approximation-induced

quantum Maxwell demon is operating in thermal equilibrium. Furthermore, the leading quantum

corrections correctly render the dissipative quantum equilibrium state, which distinctly differs from

the corresponding Gibbs state that characterizes the weak (vanishing) coupling limit.
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1. Introduction

In classical statistical physics, the description of a system coupled to thermal bath
of temperature T is formulated in terms of Langevin-type equations and
corresponding Fokker–Planck or master equations [1,2]. This scheme models the
phenomenon of Brownian motion, a phenomenon that has been described
theoretically by the two ‘‘grandfathers’’ of Brownian motion: Albert Einstein and
Marian von Smoluchowski [3,4]. For a classical Brownian particle moving in an
external field, the statistical properties are described by the Klein–Kramers equation
in the phase space of position and momentum degree of freedom [1,2,5]. In the
strong friction limit it reduces to the so-called Smoluchowski equation in position
space alone [6]. The issue of quantum Brownian motion is more subtle [7]. In this
context, it is important to note that for a correct description of the quantum
dynamics of the subsystem, the Brownian particle must at all times be consistent with
the Heisenberg principle and the commutator structure of quantum dynamics; as a
consequence, the reduced dynamics modeled in the form of a corresponding
quantum Langevin equation must necessarily operate in the total Hilbert space of
the system dynamics (i.e., the particle) and the thermal bath degrees of freedom.
Given an initial preparation scheme [8], a consistent statistical description is also
possible as well in terms of (generalized) quantum master equations for the reduced

density operator of the system dynamics alone, i.e., the quantum Brownian
dynamics. An example constitutes the weak coupling limit, for which quantum
master equations (e.g. of Lindblad form) have been derived [9]. The strong friction
limit has only recently attracted interest. Different approaches have been proposed
in the recent years that are seemingly not wholly consistent with each other [10].
Here, we follow the scheme that is rigorously based on a path integral formulation of
the (reduced) quantum Brownian motion [5,7].
Following Ankerhold–Pechukas–Grabert [11], the limit of strong friction can be

described by a corresponding quantum Smoluchowski dynamics containing leading
quantum corrections. For a particle of mass M moving in the potential V ðxÞ; such a
quantum Smoluchowski equation has been derived for the diagonal part of the
density operator rðtÞ; i.e., for the probability density Pðx; tÞ ¼ hxjrðtÞjxi in the
position space x. It explicitly reads [11]

gM
q
qt

Pðx; tÞ ¼
q
qx

V 0
eff ðxÞPðx; tÞ þ

q2

qx2
Deff ðxÞPðx; tÞ ; (1)

where g is a friction coefficient. The effective potential reads

Veff ðxÞ ¼ V ðxÞ þ ð1=2ÞlV 00ðxÞ ; (2)

wherein the prime denotes the derivative with respect to the coordinate x. The
effective diffusion coefficient

Deff ðxÞ ¼ D1ðxÞ ¼
1
b½1þ lbV 00ðxÞ� (3)
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both includes leading quantum corrections described by the (quantum)-parameter

l ¼ ð_=pMgÞ lnð_bg=2pÞ; b ¼ 1=kBT (4)

and kB is the Boltzmann constant. The parameter l is nonlinear with respect to the
Planck constant _ and measures typical quantum fluctuations in the position space
[11,12]. Note that at strong friction, the leading quantum corrections vanish for
(biased) free quantum-Brownian motion, i.e., for potentials with V ðxÞ ¼ const; or
with linear V ðxÞ ¼ ax; in the two latter cases no normalizable stationary state occurs.
The validity regime for Eq. (1) is in the quantum Smoluchowski regime when
lb1=Mbg2 and kBT5_g [11]. Note that formally l diverges at zero temperature;
it is thus important to note that the limit b ! 1 should be taken only after the
limit g ! 1:
This equation assumes the form—within the regime of validity with Deff 40—of a

classical Smoluchowski equation with state-dependent diffusion. Thus, it intrinsi-
cally obeys detailed balance for all confining potentials V eff ðxÞ obeying V eff ðx !

�Þ ¼ 1: Put differently, for unbounded, confining potentials this one-dimensional
Smoluchowski equation obeys formally detailed balance. This situation changes,
however, for the class of bounded potentials. For example, in a periodic potential
V eff ðxÞ; the second law of thermodynamics implies that no stationary current is
supported. This is the case if detailed balance also holds for the class of such periodic
potentials, or more generally, for bounded potentials.
It is thus a nontrivial observation that—upon inspection—the above Smolu-

chowski equation indeed does not obey the second law of thermodynamics for
periodic potentials. Indeed, let us consider a periodic potential V ðxÞ ¼ V ðx þ LÞ of
period L. From Eq. (1), following the reasoning of Stratonovich [13], but generalized
here to state-dependent diffusion, see [14], the stationary drift velocity hvi of the
particle emerges as

hvi ¼
L

gM

1� exp½CðLÞ�R L

0 D�1
1 ðxÞ exp½�CðxÞ�

R xþL

x
exp½CðyÞ�dydx

(5)

with the generalized thermodynamic potential given by

CðxÞ ¼

Z x

0

V 0
eff ðyÞ

Deff ðyÞ
dy : (6)

If the periodic potential is asymmetric, e.g., V ðxÞ ¼ cosð2pxÞ þ ð1=4Þ sinð4pxÞ; and
L ¼ 1; the generalized thermodynamic potential CðLÞa0: Consequently, a nonzero
stationary drift velocity occurs in the thermal equilibrium state, i.e., an approxima-
tion-induced quantum Maxwell demon [15] is seemingly at work.
2. Diffusion function

In the recent work [16], we have proposed an improved quantum Smoluchowski
equation, in which the effective potential V eff ðxÞ is the same as in (2) but the
diffusion function Deff ðxÞ is modified in such a way that the modified Smoluchowski
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equation no longer causes such a perpetual motion phenomenon. This new quantum
Smoluchowski dynamics is subject to the following construction criteria:
(i)
 Remedy the diffusion function to obey CðLÞ � 0 for any periodic potential
V ðxÞ:
(ii)
 Assume that the diffusion function is a function F of the second-order derivative
of V ðxÞ; i.e., Deff ðxÞ ¼ F ½V 00ðxÞ�; as in (3).
(iii)
 For the harmonic oscillator, the position equilibrium probability emerging from
(1) should coincide at strong friction with the exact distribution [17].
Condition (ii) may seem to be restrictive: the unknown diffusion function could depend
functionally not only on V 00ðxÞ; but also on higher order derivatives of the potential.
However, if we take into account the leading quantum corrections in the asymptotic
strong friction limit, such higher order derivatives of V ðxÞ can safely be neglected.
Next, from the first two conditions we obtain

Z L

0

V 0ðxÞ þ ð1=2ÞlV 000ðxÞ

F ½V 00ðxÞ�
dx ¼ 0 : (7)

The second part of the integral, which contains the contribution V 000ðxÞ; is zero for
arbitrary periodic functions V ðxÞ and functions F ½V 00ðxÞ�; for which the integral
exists. Indeed, upon a change in the integration variable x to the new variable
y ¼ V 00ðxÞ; and a partition of the interval ½0;L� into a sum of subintervals, on which
the function V 00ðxÞ is monotonic, we find that this second contribution is
proportional to

Xn�1
i¼0

Z yiþ1

yi

ð1=F ðyÞÞdy ¼
Xn�1
i¼0

AðyÞjyiþ1
yi

¼ AðynÞ � Aðy0Þ ¼ AðV 00ðLÞÞ � AðV 00ð0ÞÞ ¼ 0 ; ð8Þ

because V 00ðxÞ is periodic and V 00ð0Þ ¼ V 00ðLÞ: The first position is y0 ¼ V 00ð0Þ; the
last one is yn ¼ V 00ðLÞ; and the remaining positions are yi ¼ V 00ðxiÞ; where the set of
positions xi are positions of extremal values of the function V 00ðxÞ: The function AðyÞ

denotes the anti-derivative (i.e., the integral) of 1=F ðyÞ: Therefore, condition (7)
becomes equivalent to

Z L

0

V 0ðxÞ

F ðV 00ðxÞÞ
dx ¼ 0 : (9)

With this work we show that there is indeed only one function F ðyÞ; for which
condition (9) is obeyed for an arbitrary periodic potential V ðxÞ ¼ V ðx þ LÞ: In our
proof, we use the well-known functional method familiar from theoretical mechanics:
among all possible trajectories, find the one for which the functional (called the action)
is extremal. Our task can be formulated as follows: among all possible functions
F ðV 00ðxÞÞ; find the one for which (9) is fulfilled. To this goal, let us denote

f ðxÞ ¼ V 0ðxÞ; GðyÞ ¼ 1=F ðyÞ : (10)
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Condition (9) then takes on the form
Z L

0

Gðf 0
ðxÞÞf ðxÞdx ¼ 0 : (11)

Let X be a set of L-periodic functions f : R ! R such that
R L

0
f ðxÞdx ¼ 0: Moreover,

mainly for technical reasons, we assume from here on that f 2 C3: Next, we derive the
following theorem:

Theorem 1. Let G : R ! R be a three times differentiable function with continuous

derivative G000: If (11) holds for every f 2 X ; then G is a linear function, i.e., GðyÞ ¼

a þ by:

Proof. Consider a functional S on X given by the expression

Sðf Þ ¼

Z L

0

Gðf 0
ðxÞÞf ðxÞdx : (12)

Then, from (11) it follows that the functional Sðf Þ is constant and its increment
Sðf þ hÞ � Sðf Þ ¼ 0 for every f 2 X and h 2 X ; this implies that the functional
derivative ðdS=df ÞðhÞ ¼ 0; i.e., by use of the notation Gðf 0

ðxÞÞ ¼ ðG � f 0
ÞðxÞ we obtain

dS

df
ðhÞ ¼

Z L

0

½ðG0 � f 0
ÞðxÞf ðxÞh0

ðxÞ þ ðG � f 0
ÞðxÞhðxÞ�dx (13)

¼ ðG0 � f 0
ÞðLÞf ðLÞhðLÞ � ðG0 � f 0

Þð0Þf ð0Þhð0Þ (14)

þ

Z L

0

fðG � f 0
ÞðxÞ � ½ðG0 � f 0

ÞðxÞf ðxÞ�0ghðxÞdx : (15)

Since f ð0Þ ¼ f ðLÞ; hð0Þ ¼ hðLÞ and f 0
ðLÞ ¼ f 0

ð0Þ; one finds

dS

df
ðhÞ ¼ �

Z L

0

cðxÞhðxÞdx ¼ 0 ; (16)

where

cðxÞ ¼ ½ðG0 � f 0
ÞðxÞf ðxÞ�0 � ðG � f 0

ÞðxÞ : (17)

Given the proposition proved in the appendix it follows that c � const: Next, let f a;m
be a family of functions from the set X such that f a;mðyÞ ¼

m
2

y2 þ a; a 2 R; m 2 R; for
y 2 ðL

3
; 2L
3
Þ: After substituting f a;m into (17) we obtain

G0ðmyÞ
m
2

y2 þ a
� �h i0

� GðmyÞ � const ; (18)

and consequently

amG00ðmyÞ þ
m2

2
y2G00ðmyÞ þ myG0ðmyÞ � GðmyÞ � const : (19)

Since the left-hand side of this equation is constant for arbitrary a; we conclude that
G00ðmyÞ � const for my 2 ð

mL
3
; 2mL

3
Þ: Since m is an arbitrary constant we have G00 � const



ARTICLE IN PRESS

J. Łuczka et al. / Physica A 351 (2005) 60–68 65
on the whole R: Consequently,

1
2
ðmyÞ2G00ðmyÞ þ myG0ðmyÞ � GðmyÞ � const (20)

for y 2 ðL
3
; 2L
3
Þ: Since m is an arbitrary constant we also obtain that

1
2 y2G00ðyÞ þ yG0ðyÞ � GðyÞ � const (21)

for y 2 R: With the result G00 ¼ const; it thus follows uniquely that GðyÞ ¼ a þ by þ

cy2; where a; b; c 2 R: Insertion of GðyÞ into (21) yields c ¼ 0: As a main result we
obtain GðyÞ ¼ a þ by; thereby completing the proof.
3. Discussion and conclusion

Given Theorem 1, it follows that the sought-after diffusion function F in (9)
assumes the form

F ½V 00ðxÞ� ¼
1

a þ bV 00
ðxÞ

; (22)

with arbitrary constants a and b. These two constants can be determined as follows:
expand (22) into a series. Then for a ¼ b and b ¼ �lb2; the diffusion functions (3)
and (22) coincide to the first order with respect to the quantity �ðxÞ ¼ jlbV 00ðxÞjo1:
For smooth periodic functions V ðxÞ; this inequality can be fulfilled for arbitrary x

and sufficiently small lb: Note that, V 00ðxÞ is bounded for arbitrary x and the
convergence of (22) to Eq. (3) is uniform. Given the above findings, we propose a
new quantum Smoluchowski equation (1) with the modified diffusion function
reading

Deff ðxÞ ¼ D2ðxÞ ¼
1

b½1� lbV 00ðxÞ�
; (23)

which must be interpreted as the leading, nonperturbative, asymptotic large friction
result.
In conclusion, the above quantum stochastic dynamics becomes, in this strong

friction limit equivalent to a classical, overdamped Brownian dynamics in the
effective potential (2) and with a state-dependent diffusion coefficient (23). The
corresponding classical Langevin equation reads in the Ito-representation [1]

gM _x ¼ �V 0
eff ðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gMD2ðxÞ

p
xðtÞ ; (24)

where the dot denotes the time derivative and xðtÞ is classical Gaussian white noise of
vanishing mean and correlation hxðtÞxðsÞi ¼ dðt � sÞ:
Our result for the quantum Smoluchowski equation resembles in spirit the

problem of modeling colored (or correlated) noise in classical, nonlinear stochastic
physics in terms of an effective Fokker–Planck equation [18]. The Langevin equation
with Gaussian nonwhite noise constitutes a nonMarkovian process whose single
time stochastic dynamics in limiting cases can be approximated well by a
corresponding (single time) Markovian diffusion process. This latter Markovian
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diffusion process is equivalently described by the Langevin equation with Gaussian
white noise and a state-dependent diffusion coefficient [18]. For example, for a
Langevin equation with additive Ornstein–Uhlenbeck noise, Fox [19] derived in the
limit of small Ornstein–Uhlenbeck noise correlation time t the following asymptotic
form of the diffusion function

DðxÞ ¼
D0

1þ tV 00ðxÞ
; (25)

where D0 is the noise intensity. The same characteristic contribution 1=½1þ tV 00ðxÞ�

occurs in the theory of unified colored-noise approximation, which in fact bridges
small correlation times with large correlation times [20]. We observe that in both
diffusion functions (23) and (25) the function V 00ðxÞ occurs. If the correlation time
t ! 0 then clearly DðxÞ ! D0:
In the quantum Smoluchowski case, the corresponding thermal quantum noise is

also not white and the corresponding quantum Brownian motion corresponds to a
nonMarkovian quantum dynamics, which here (limit of large friction) is
approximated by the Markovian diffusion process described by Eq. (1). If the
analogous parameter to t; i.e., l approaches zero at high temperatures, i.e., b ! 0
then the new diffusion function D2ðxÞ ! 1=b in (23), i.e., the classical limit is
approached.
The periodic stationary solution PðxÞ of (1) with the diffusion function (23) reads

PðxÞ ¼ Ne�bFðxÞ ; (26)

where the equilibrium thermodynamic potential assumes the form

FðxÞ ¼ V ðxÞ þ 1
2
lV 00ðxÞ � 1

2
lb½V 0ðxÞ�2 � 1

4
l2b½V 00ðxÞ�2 � 1

b ln½1� lbV 00ðxÞ� :

(27)

To the first order in l; it coincides with that presented in Eq. (11) of Ref. [11] and it
reduces for the harmonic oscillator to the exact probability density in the strong
friction limit [17]. Remarkably, this quantum equilibrium potential depends in the
strong coupling limit between system and bath explicitly on the friction strength g:
Put differently, in clear contrast to the case of weak coupling, the quantum thermal
equilibrium state is not of the Gibbs form, meaning that FðxÞaV ðxÞ:
In summary, we have shown that the diffusion function in the quantum

Smoluchowski limit is uniquely determined to be of the form in (23). It depends
on the potential via V 00ðxÞ; and is consistent with dissipative quantum equilibrium
thermodynamics. Moreover, the diffusion function should not become negative; the
diffusion function in (23) is positive for the sufficiently small quantum correction
parameter l and for bounded V 00ðxÞ: This holds true for the case of smooth, spatially
periodic asymmetric potentials, i.e., so-called Brownian motor systems [21], for
which our approximate quantum Smoluchowski equation is valid in the whole state
space of the system [16]. If V 00ðxÞ is not bounded, as it occurs for bistable systems, the
Smoluchowski equation (1) with the new diffusion function (23) is valid only in a
restricted domain of the state space. This same restriction holds also for the related
problem of colored noise-driven classical dynamical systems [18].
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Appendix A

In this appendix we prove the following proposition:

Proposition 1. Let
Z L

0

cðxÞhðxÞdx ¼ 0 (28)

for h 2 X : Then c ¼ const:

Proof (indirectly). Assume that c is not a constant function. Since we have assumed
in the Theorem that the functions are in C000; cf. (17), there exists a position x0 2

ð0;LÞ such that c0
ðx0Þa0: Without loss of generality we can assume that c0

ðx0Þ40;
because we can replace c by �c: Since c0 is a continuous function, we can find e40
such that 0ox0 � eox0 þ eoL and c0

ðxÞ40 for x 2 ðx0 � e;x0 þ eÞ: Since cðxÞ ¼
cðx0Þ þ c0

ðyÞðx � x0Þ; where y 2 ðx0 � e;x0 þ eÞ; we have cðxÞ4cðx0Þ for x 2

ðx0; x0 þ eÞ and cðxÞocðx0Þ for x 2 ðx0 � e; x0Þ: Next, let

hðxÞ ¼ ðx � x0Þ
5
ðx � x0 � eÞ4ðx � x0 þ eÞ4 (29)

for x 2 ðx0 � e; x0 þ eÞ and hðxÞ ¼ 0 for x 2 ½0; x0 � e� [ ½x0 þ e;L�: Then h is a C3-
function and since hðxÞ ¼ 0 for x in the neighborhoods of 0 and L, the function h can
be extended to a L-periodic function. Moreover, hðx0 þ xÞ ¼ �hðx0 � xÞ which
implies that

R L

0
hðxÞdx ¼ 0: This also means that h 2 X : Next, observe that

Z L

0

cðxÞhðxÞdx ¼

Z x0

x0�e
cðxÞhðxÞdx þ

Z x0þe

x0

cðxÞhðxÞdx (30)

4
Z x0

x0�e
cðx0ÞhðxÞdx þ

Z x0þe

x0

cðx0ÞhðxÞdx (31)

¼ c0ðxÞ

Z L

0

hðxÞdx ¼ 0 (32)

because cðxÞ4cðx0Þ; hðxÞ40 for x 2 ðx0;x0 þ eÞ; and cðxÞocðx0Þ; hðxÞo0 for x 2

ðx0 � e;x0Þ: Consequently,
R L

0 cðxÞhðxÞdx40; this finding in turn contradicts the
assumption that the integral is zero. Thus, for every function f 2 X we have c ¼

const; and this completes the proof of the proposition. &
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