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Abstract

We present an approximate analytical expression for escape rates of time-dependent driven

stochastic processes with an absorbing boundary such as the driven leaky integrate-and-fire

model for neural spiking. The novel approximation is based on a discrete state Markovian

modeling of the full long-time dynamics with time-dependent rates. It is valid in a wide

parameter regime beyond the restraining limits of weak driving (linear response) and/or weak

noise. The scheme is carefully tested and yields excellent agreement with three different

numerical methods based on the Langevin equation, the Fokker–Planck equation and an

integral equation.
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1. Introduction

Although the solution of the stationary and unbounded Ornstein–Uhlenbeck
process has been found long ago, it is not yet possible to give an analytic exact
expression that includes time-dependent driving and absorbing boundaries [1,2]. Yet,
see front matter r 2005 Elsevier B.V. All rights reserved.
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such processes with a linear restoring force and a periodic driving which terminate at
a prescribed threshold are widely used as models for numerous physical effects.
Examples range from rupturing experiments on molecules [3] where the time-
dependence is introduced as linear movement of the absorbing boundary up to
totally different processes as defined e.g. by the leaky integrate-and-fire (LIF) model
for neuronal spiking events [4–8]. The latter is the application we primarily think of
in this paper. The stochastic variable stands for the cell soma’s electric potential xðtÞ

that is changing due to a great many incoming signals from other neurons. It is thus
customary to employ a diffusion approximation for the stochastic dynamics of xðtÞ:
The driven abstract LIF model assumes the non-stationary Langevin dynamics (in
dimensionless coordinates)

_xðtÞ ¼ �xðtÞ þ A cosðot þ fÞ þ
ffiffiffiffiffiffiffi
2D

p
xðtÞ ; (1)

where the process starts at time t ¼ 0 at xð0Þ ¼ x0 and fires when it reaches the
threshold voltage x ¼ a � 1: xðtÞ is white Gaussian noise. Here, a sinusoidal stimulus
has been chosen for convenience. The following analysis may easily be extended to
general periodic stimuli. The dynamics of the process xðtÞ is equivalently described
by a Fokker–Planck (FP) equation for the conditional probability density function
(PDF) rðx; t jx0; 0Þ in a time-dependent quadratic potential, Uðx; tÞ ¼ ðx �

A cosðot þ fÞÞ2=2; reading

q
qt

r ¼ LðtÞr ¼
q
qx

ðU 0ðx; tÞrÞ þ D
q2

qx2
r ; (2)

with the absorbing boundary and initial conditions

rða; t jx0; 0Þ ¼ 0 for all t and x0 (3)

rðx; 0 jx0; 0Þ ¼ dðx � x0Þ : (4)

After firing the process immediately restarts at the instantaneous minimum of the
potential.
The set of Eqs. (1)–(4) defines our starting point for obtaining the firing statistics

of this driven neuron model. Our main objective is to develop an accurate analytical
approximation that avoids certain restrictive assumptions of prior attempts. All
these, in fact, involve the use of either of the following limiting approximation
schemes such as the limit of linear response theory (i.e., a weak stimulus A51) [7,9]
or the limit of asymptotically weak noise [10–14]. Our scheme detailed below yields
analytic and tractable expressions beyond the linear response and weak-noise
limits; as will be demonstrated, this novel scheme indeed provides analytical
formulae that compare very favorably with precise numerical results of the full
dynamics in Eqs. (1), (2)–(4). The arguments given for the agreement of the first-
passage time distribution also hold for the residence-time [15], which is not further
considered here.
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2. Reduction to a discrete model

The periodicity of the external driving with the period T ¼ 2p=o allows one to
represent the time-dependent solution rðx; tÞ of the FP equation in terms of Floquet
eigenfunctions and eigenvalues of the FP operator, viðx; tÞ and mi; respectively [10,16]

�
q
qt

viðx; tÞ þ LðtÞviðx; tÞ ¼ miviðx; tÞ ; (5)

where the eigenfunctions are periodic in time, integrable in x from �1 to a, and
fulfill the absorbing boundary condition at x ¼ a:

viða; tÞ ¼ 0 : (6)

The time-dependent probability density function (PDF) can be written as a weighted
sum of the Floquet eigenfunctions

rðx; tÞ ¼
X

i

civiðx; tÞ expðmitÞ ; (7)

where the coefficients ci are determined by the initial PDF. Note that because of the
absorbing boundary condition at x ¼ a the total probability is not conserved and
therefore all Floquet eigenvalues have a non-vanishing negative real part.
The first main assumption that we impose concerns the value of the potential at

the boundary: The minimum of the potential must always belong to the ‘‘allowed’’
region left of the threshold, and, moreover, the potential difference between
threshold and minimum, denoted by DUðtÞ; must always be larger than at least a few
D, i.e., DUðtÞ=D44: This assumption implies an exponential time-scale separation
between the average time tk in which the threshold is reached from the minimum of
the potential compared with the time tr of the deterministic relaxation toward the
potential minimum. In the dimensionless units used here tr ¼ 1: For the Floquet
spectrum this implies the presence of a large gap between the first eigenvalue m1
which is of the same order as �1=tk and the higher ones which are of the order �1 or
smaller. After a short initial time of the order 1, all contributions from higher
Floquet eigenvalues can be neglected and only the first one survives:

rðx; tÞ � v1ðx; tÞ expðm1tÞ : (8)

In general, the Floquet eigenfunctions and the corresponding eigenvalues are
difficult to determine. A formal expansion in terms of the instantaneous
eigenfunctions ciðx; tÞ of LðtÞ fulfilling

LðtÞckðx; tÞ ¼ lkðtÞckðx; tÞ (9)

is always possible, though not always helpful

viðx; tÞ ¼
X

k

dikðtÞckðx; tÞ : (10)

The periodicity of viðx; tÞ and ckðx; tÞ implies that the coefficients dikðtÞ also are
periodic functions of time. Expansion (10), along with the Floquet equation (5),
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yields a coupled set of ordinary differential equations for the coefficients dikðtÞ [17]:

_dikðtÞ � ðlkðtÞ � miÞdikðtÞ ¼
X

l

dilðtÞ
q
qt

jkðtÞ;clðtÞ

� �
; (11)

where jkðx; tÞ denotes the instantaneous eigenfunction of the backward operator
LþðtÞ belonging to the eigenvalue lkðtÞ:

LþðtÞjkðx; tÞ ¼ lkðtÞjkðx; tÞ : (12)

The eigenfunctions ckðx; tÞ and jkðx; tÞ constitute a bi-orthogonal set of functions
that can always be normalized such that

hjlðtÞ;ckðtÞi ¼ dkl : (13)

Here, the scalar product hf ; gi is defined as the integral over the real axis up to the
threshold:

hf ; gi ¼

Z a

�1

dx f ðxÞgðxÞ : (14)

With our second assumption, we require that the driving frequency o is small
compared with the relaxation rate in the parabolic potential. Under this condition,
the matrix elements hqjkðtÞ=qt;clðtÞi that are proportional to the frequency o are
also small and may be neglected to lowest order in the equations for the coefficients
dikðtÞ [17]. The resulting equations are uncoupled and readily solved to yield with the
periodic boundary conditions

d1kðtÞ � d1k exp

Z t

0

dt0 l1ðt0Þ � m1t
� �

; (15)

where m1 ¼
1
T

R T

0 l1ðtÞdt follows from the periodicity of d11ðtÞ: Along with Eqs. (8)
and (10), we obtain for the long-time behavior of the PDF

rðx; tÞ � exp

Z t

0

dt0 l1ðt0Þ
� �

c1ðx; tÞ : (16)

Note, that the first Floquet eigenvalue has canceled. The lowest instantaneous
eigenfunctions c1ðx; tÞ and j1ðx; tÞ are related by

c1ðx; tÞ ¼ j1ðx; tÞr0ðx; tÞ ; (17)

where

r0ðx; tÞ / expð�Uðx; tÞ=DÞ : (18)

For the corresponding eigenvalue l1ðtÞ; we find from (9),

l1ðtÞ ¼

R a

�1
dxj1ðx; tÞLðtÞj1ðx; tÞr0ðx; tÞR a

�1
dxj21ðx; tÞr0ðx; tÞ

: (19)

An explicit expression, valid for high potential differences, can be given after
linearization of U about a

j1ðx; tÞ ¼ 1� expððx � aÞU 0ða; tÞ=DÞ ; (20)
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which gives for l1ðtÞ;

l1ðtÞ ¼ �
DUðtÞ

D

1� erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DUðtÞ=D

p
 �
1� expð�DUðtÞ=DÞ

; (21)

where erfðzÞ is the error function and DUðtÞ ¼ Uða; tÞ:
The waiting-time probability [18] can be expressed as

PðtÞ ¼

Z a

�1

dxj1ðx; tÞrðx; tÞ � exp

Z t

0

dt0 l1ðt0Þ
� �

: (22)

Therefore, the eigenvalue l1ðtÞ coincides with the negative of the time-dependent
escape rate kðtÞ:
With expression (21) for the escape rate we can calculate the property of interest,

namely the PDF for the first-passage time (FPT) of the attracting ‘‘integrating’’ state
that covers the domain �1oxðtÞoa: The FPT-PDF is given by the negative rate of
change of the waiting time probability, i.e.,

gðtÞ ¼ �
dPðtÞ

dt
¼ kðtÞ exp �

Z t

0

kðt0Þdt0
� �

: (23)

The quantitative validity of these expressions for an extended parameter regime will
be checked next.
3. Numerical analysis

We implemented three different numerical methods to obtain both the FPT-PDF
and the rate in order to have a reliable basis for comparison with the analytical
expression (21). The first method performs explicit time-steps of the Langevin
equation (1). We used an elaborate technique for the time-integration of the
fluctuating force xðtÞ: For points away from the threshold a it is sufficient to take a
normal distributed random variable for the displacement due to xðtÞ; quite the
contrary, in the vicinity of the absorbing boundary. Here, the integral of xðtÞ rather
behaves like a Wiener process with absorbing boundary, as illustrated in Fig. 1. The
appropriate transition distribution is known analytically as the weighted difference
axi

Fig. 1. Transition probabilities pðxiþ1; t þ dt jxi; tÞ (black line) and N1ðxiþ1; t þ dt jxi; tÞ (dashed line) from
xi for a single time-step, with and without the absorbing boundary, respectively. The vertical line indicates

the boundary.
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between two normal distributions [1]:

pðxiþ1; t þ dt jxi; tÞ ¼ N1ðxiþ1; dt jxi; 0Þ � N2ðxiþ1; dt jxi; 0Þ

¼:N1ðxiþ1; dt jxi; 0Þð1� Poutðxiþ1;xi; dtÞÞ : ð24Þ

The multiplication on the right-hand side stands for a logical AND that leads to a
correction step in the algorithm. First, a new position xiþ1 is proposed according to
the normal distribution density N1: With the probability Poutðxiþ1;xi; dtÞ the
trajectory has already crossed the boundary during this time-step dt from xi to xiþ1

and, therefore, is to be ended. The explicit forms of N1 and N2 give

Poutðxiþ1;xi; dtÞ ¼
N2

N1
¼ exp �

1

Ddt
ða � xiþ1Þða � xiÞ

� �
: (25)

The same formula has been given by [19] but with a different reasoning.
In order to get the correctly normalized FPT-PDF gðtÞ; we counted the number of

trajectories hitting the absorbing boundary within the interval ½t; t þ dtÞ: The
FPT-PDF is then estimated by this number divided by dt and by the total number of
trajectories. The rate is given by

kðtÞ ¼ gðtÞ=PðtÞ ; (26)

where 1� PðtÞ is estimated by the number of trajectories that have escaped up to
time t, divided by the total number of trajectories.
For the second numerical method we have solved the FP equation (2) using the

Chebychev collocation method to reduce the problem to a coupled system of
ordinary differential equations [13,20]. This gives PðtÞ as the integral of rðx; tÞ
from �1 to a. The FPT-PDF is then calculated according to Eq. (23), and the rate
again by (26).
The third method solves Ricciardi’s integral equation for the FPT-PDF and is

detailed in Refs. [21,22]. For employing his algorithm, the process must be
transformed into a stationary Ornstein–Uhlenbeck process with a moving absorbing
boundary

SðtÞ ¼ a �
A

1þ o2
½cosðot þ fÞ þ o sinðot þ fÞ � e�t� : (27)

All the three methods provide practically identical results as can be seen in
Figs. 2 and 3. The results for the FPT-PDF and for the rate all collapse into one
single line. Differences between the numerical methods, e.g. fluctuations in the
histogram of the Langevin equation method are visible only in the plots of the
relative errors (Fig. 3, middle and lower rows).
Fig. 2 shows that the FPT-PDF is extremely well approximated by expression (21)

for the rate kðtÞ: In the left plots we used quite a high barrier with quite slow driving
compared with the time-scale tr of the process. Good agreement is thus expected. In
the right plots we show the situation with extreme parameters. The lower barrier
height DUmin=D goes down to 3, where a rate-description is unlikely to suffice.
Moreover, the driving is faster, o ¼ 0:5: The system cannot follow the driving
instantaneously, and we find a shift in the maximum of the FPT-PDF to later
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Fig. 2. First-passage time density gðtÞ (upper) and rate kðtÞ (lower plots) as functions of time. Displayed
here are all the three numerical methods we used for testing (solid lines) and the approximation based on

(21) (dashed lines). The parameters in the left plots, DUðtÞ=D 2 [5,8] and o ¼ 0:05; are chosen to yield a
very good approximation of the rate by (21). The right plots display extreme parameters, DUðtÞ=D 2 [3,8]

and o ¼ 0:5; where no good approximation of the rate can be expected. In both cases f ¼ 0:
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times. Under these conditions it is impressing how good the novel approximation
still works.
A more delicate measure for the errors of the approximation is the rate kðtÞ itself

and its relative deviation from the three numerically calculated rates. Both can be
seen in Fig. 3. The upper row of plots shows the approximation error of the rate for
the same two parameter sets as in Fig. 2. Especially at the maximum the rate is over-
estimated. This leads to a faster decay of the FPT-PDF, which is scarcely visible in
Fig. 2. Also, the shift of the maxima (indicated by vertical lines) can be observed. It is
negligibly small for o ¼ 0:05 but more pronounced for o ¼ 0:5:
In the middle row of Fig. 3, a systematic error of the approximation becomes

visible. The relative error with respect to the numerical results behaves roughly
sinusoidally with a phase-shift of p=2 relative to the driving and with an additional
constant offset. For the instantaneous rate expression (19) to be valid it is necessary
that the driving signal is sufficiently slow. If this assumption is violated, then a rate
can still be defined if the barrier is sufficiently high. But in addition to the leading
term d11ðtÞ in (10) the higher instantaneous eigenfunctions must be taken into
account. The coupling to the coefficients d1kðtÞ is induced by the matrix elements
h _fkðtÞ;clðtÞi; see Eq. (11), containing a time derivative that introduces non-adiabatic
corrections to the rate and, consequently, to the statistics of the FPT.
It is quite astonishing that the huge relative error on the right-hand side middle

plot of Fig. 3 leads to such a good result in Fig. 2. The explanation for this is that
the FPT-PDF (23) uses the time-integrated rate. Therefore, errors are important
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Fig. 3. Comparison of the numerical rates and the novel approximation from Eq. (21). The respective

parameters in the left/right plots are the same as in Fig. 2. Upper plots: The numerically determined rates

are displayed as solid lines: Langevin equation simulations (black); FP equation (blue); Ricciardi’s integral

equation (green). The theoretical approximation kðtÞ from Eq. (21) is displayed as the red dashed line.

Middle plots: Relative error of the approximation kðtÞ with respect to each numerical rate kaðtÞ (with the
same color coding as above). Lower plots: Errors of the numerical rates with respect to each other. The

thin vertical lines indicate the positions of the numerical rates’ maxima.
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only where the rate is large. A closer look on the plot shows that around the
maxima of the rate the relative error is comparably small. Since the errors are
linear in time around the rate’s maxima, they cancel out when integrated over time
in (23). The same is valid for the residence time whose PDF also contains integrals of
the rate [15,23].
Fig. 4 shows this relative error of kðtÞ at the maxima of the numerically obtained

rate as a function of the barrier height. Again, two different driving frequencies are
given. In both the cases, the relative error has the same order of magnitude, and thus
explains why both parameter sets in Fig. 2 yield good approximations.
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Upper plots: The error relative to kRIC evaluated at the maxima of kRIC: Shown are data for ðDUmax=D �

DUmin=DÞ 2 ð0:1; 1; 2; 3; 5Þ; from top to bottom with the colors (red, green, blue, cyan, magenta), and the

phase f 2 ð0; p=2; pÞ with the symbols (�;�;þ). In the left panel the driving is slow, o ¼ 0:05; in the right
it is fast, o ¼ 0:5: Note that the relative error is of the same order of magnitude for slow and for fast

driving. A dependence on the phase f cannot be observed. Lower plots: The difference of the maxima’s

position of kRIC and rate (21) in units of the period T, again for o ¼ 0:05 (left panel) and o ¼ 0:5 (right
panel). Color and symbol codings are the same as above.
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Finally, we would like to point the reader’s attention to the limitations of the
linear response approximation. For linear response the parameter ratio A=D needs
to be small. In our validating example in Fig. 2 (left plots), it takes on the value
A=D ¼ 1:5: Thus, our approximation scheme is valid beyond the linear response
limit.
The time-scale of the driving force is mainly restricted by the relaxation time-scale

tr and much less by the magnitude of the rate itself. There is no restriction on the
relative magnitudes of k and T. Instead, both o and k have to be sufficiently small.
Fig. 5 indicates that both the relative error and the time-shift of the maxima’s
positions are modest for oo0:1:
4. Conclusions

By reference to a discrete Markovian dynamics for the corresponding full
space-continuous stochastic process, we succeeded in obtaining an analytical
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approximation for the time-dependent escape rate which can be used for calculating
first-passage time statistics. This result is valid beyond the restraining limits of linear
response or asymptotically weak noise and of adiabatically slow driving.
We checked our findings using simulations of the Langevin equation (1) and

numerical solutions of the equivalent FP equation in (2) and of the integral equation
in Ref. [21]. We found an impressive agreement for the first-passage time density and
a good match for the rate which is the more delicate property for comparison.
Finally, we note that our method is not restricted to a periodic forcing but applies

also to arbitrary drive functions. However, in the oscillatory case some of the
approximation errors cancel out. This leads to useful results even in extreme
parameter regimes where an agreement cannot be expected a priori.
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