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Abstract. We report the results of the numerical estimation of statistical memory
effects in diffusion for two various systems: Lennard-Jones fluids and the model
of the Brownian particle in a one-dimensional harmonic lattice. We have found
the relation between the diffusion coefficient and the non-Markovity parameter,
which is linear for the Lennard-Jones systems in liquid state. The relation between
the memory measure and the excess entropy is also discussed here.

The famous Einstein relation between the diffusion coefficient and the long time behaviour
of the mean-square displacements of a particle as a function of time [1] is a basis for different
modern physical approaches (for example, the fractal Einstein relation [2]), although its derivation
by Einstein was originated by a direct attempt to describe the irregular motion of particles
suspended in a liquid, observed in a microscope by the botanist Robert Brown in 1828. At
present, transport phenomena attract a lot of attention due to the investigations on space-time
nonlocality and memory effects. Disorder can arise in two different ways. Firstly, the investigated
matter can have some settled disorder structure with long-range correlations similar to the
fractal geometrical structure. Secondly, disordering of the background originates directly through
temporal correlations in interactions between random walkers and the background [3]–[6]. The
mathematical language of fractional derivatives [7, 8] and steady distributions [9] have allowed us
to generalize and expand the physical theory of stochastic transport. Such anomalous dynamics
has been investigated theoretically and observed experimentally in amorphous semiconductors
[10], turbulent flows [11], surface diffusion [12], low-dimensional lattice gases [13], polymers
and plasmas [14], subrecoil laser cooling [15] and has been successfully described by means of
continuous time random walk approaches [7], where the stochastic theory yields non-Gaussian
probability density functions exhibiting stretched exponential and Lévy power law decays for
anomalous transport. Although intensive studies of normal and anomalous diffusion (super- and
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sub-) have been carried out, the role of memory effects in diffusion processes (even for the case of
the normal diffusion described by the Einstein relation) induced by disorder of the surroundings
is not completely clear [3]–[6], [16]. This work is devoted to the study of influence of memory
effects on disordering processes in a system.

It is well known that the diffusion coefficient in a three-dimensional isotropic system is
defined by the famous Einstein formula [1, 17]:

〈|�r(t)|2〉 = 6Dt, t → ∞. (1)

Then, taking into account that

〈|�r(t)|2〉 = 2
∫ ∞

0
(t − t′)〈vα(0)vα(t

′)〉 dt′, (2)

and the mean-squared velocity is 〈|vα(0)|2〉 = 3kBT/m, one can obtain from equation (1) for the
velocity autocorrelation function a(t) = 〈vα(0)vα(t)〉/〈vα(0)2〉 the Green–Kubo’s relation for the
diffusion constant [18, 19]:

D = kBT

m

∫ ∞

0
a(t) dt, (3)

where kB, T and m are the Boltzmann constant, the temperature and the mass of the particle,
respectively.

On the other hand, the technique of projection operators and recurrent relation approach
allow one to obtain the generalized Langevin equation (GLE) from the Heisenberg equation of
motion [4, 20, 21]:

d

dt
vα(t) = −ω(2)

∫ ∞

0
M1(t − τ)vα(τ) dτ +

F(t)

m
, (4)

where ω(2) = 〈|Lvα|2〉/〈|vα|2〉 is the second frequency moment of a(t) with the Liouville operator
L, and the normalized memory function M1(t) is related to the stochastic force F(t) by means of
the fluctuation–dissipation theorem:

〈F(t)F(0)〉 = mkBTω(2)M1(t). (5)

Multiplying equation (4) by vα(0)/〈|vα(0)|2〉 and performing an appropriate ensemble average
〈· · ·〉, we obtain the GLE of the following form:

da(t)

dt
= −ω(2)

∫ t

0
M1(τ)a(t − τ) dτ, 〈vα(0)F(t)〉 = 0. (6)

In case of short-range memory M1(t) = 2τ1δ(t), equation (6) is reduced to the ordinary Langeven
equation [22]:

m
d

dt
vα(t) + mω(2)τ1vα(t) = F(t) (7)
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with the ordinary exponential solution for VACF:

a(t) = e−ω(2)τ1t . (8)

Further application of the technique of the projection operators leads to the whole chain of
interconnected integro-differential non-Markovian equations of the form (6) containing memory
functions Mn(t) and even frequency moments ω(2n), n = 1, 2, 3, . . . ,:

ω(2) = 4πn

3

∫ ∞

0
dr g(r)r2

[
3

r

∂U(r)

∂r
+ r

∂

∂r

(
∂U(r)

r∂r

)]
, (9)

where n is the density, g(r) the radial distribution function and U(r) the potential of interparticle
interaction.

ω(4) = 8πn

3m

∫ ∞

0
dr g(r)

[
3

(
dU(r)

dr

)2

+

(
r

∂

∂r

(
∂U(r)

r∂r

))2

+
∂U(r)

∂r
· ∂

∂r

(
∂U(r)

r∂r

) ]

+
8π2n2

3m

∫ ∞

0

∫ ∞

0
dr dr1 r2r2

1

∫ 1

−1
dβ g3(r, r1)

[
3

rr1

∂U(r)

∂r
· ∂U(r1)

∂r1

+
r

r1

∂U(r1)

∂r1
· ∂

∂r

(
∂U(r)

r∂r

)
+

r1

r

∂U(r)

∂r
· ∂

∂r1

(
∂U(r1)

r1∂r1

)

+ rr1
∂

∂r1

(
∂U(r1)

r1∂r1

)
· ∂

∂r

(
∂U(r)

r∂r

)
β2

]
, (10)

where g3(r, r1) is the distribution function of three particles, β the cosine between r and r1 (see,
for example, [23]). The expression for ω(6) also contains quadruplet correlation functions [24]:

ω(6) = 4π

m3

∫
drg(r)(Uxy(r)Uxx(r)Uyy(r) + 3kBTU2

xyz(r))

+
n2

m3

∫ ∫
dr dr1 g3(r, r1)[3kBTUxxy(r)Uxxy(r1)]

+ Uxx(r)[6Uxy(r)Uxy(r1) − Uxy(r)Uxy(r − r1)]

+
n3

m3

∫ ∫ ∫
dr dr1 dr′

2 g4(r, r1, r2)Uxx(r)Uxy(r1)Uxy(r
′
2), (11)

where

Uxyz(r) = ∂3U(r)

∂rx∂ry∂rz

,

x, y, z are the Cartesian components.
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The Laplace transformation reduces this chain of non-Markovian equations to the infinite
continued fraction of the following form:

ã(s) =
∫ ∞

0
dt e−sta(t) = [s + ω(2)M̃1(s)]

−1

= 1/{s + ω(2)/[s + (ω(4)/ω(2) − ω(2))M̃2(s)]}
= 1/{s + ω(2)/[s + (ω(4)/ω(2) − ω(2))/(s + · · ·)]}, (12)

and equation (3) to the form

D = kBT

m
ã(s = 0). (13)

So, the calculation of diffusion constant is reduced to a search for the velocity autocorrelation
function and truncation of infinite continued fraction (12).

The numerical estimation of the memory effects for diffusion can be executed by a simple
comparison of the relaxation scale of VACF, τ0, with the time scale of its memory, τ1, as

ε0 = τ0/τ1. (14)

The quantity ε0 is known as the non-Markovity parameter [25] and may be generalized to
εn = τn/τn+1, where τn = ∫ ∞

0 dt e−stMn(t) is the relaxation time of thenth order memory function
Mn(t). The expression for ε0 may be obtained from equation (14) taking equation (13) and the
second equality in equation (12) at s = 0 into account:

ε0 = ω(2)

[
mD

kBT

]2

= 4πn

3

[
mD

kBT

]2 ∫ ∞

0
dr g(r)r2

[
3

r

∂U(r)

∂r
+ r

∂

∂r

(
∂U(r)

r∂r

)]
. (15)

The non-Markovity parameter ε0 obtained for a wide range of the temperature T ∗ = kBT/ε

and the density n∗ = nσ3 of Lennard-Jones fluids is presented in figure 1. Here σ and ε

are parameters of the potential. The values of D and ω(2) were taken from [26, 27] and
[28], respectively. As one can see from the figure, the non-Markovity parameter here always
satisfies the condition ε0 > 1. This is the evidence of comparatively weak memory effects in
diffusion processes, which is usually observed in Markovian and quasi-Markovian processes.
In this case, the relaxation time of memory is much smaller than the relaxation scale of the
velocity autocorrelation function. The obtained result explains the amazing efficiency of different
Markovian approximations in the study of diffusion in Lennard-Jones liquids in the range of
low densities and high temperatures [29]. As can be seen from figure 1 the non-Markovity
parameter has its minimal values ∼4 near the triple point with n∗ = 0.849 and T ∗ = 0.773.
This is a quantitative evidence of considerable memory effects in the diffusion processes of
Lennard-Jones system in this phase range, characterized by a well-known negative correlation
in the velocity autocorrelation function behaviour a(t). Furthermore, the parameter ε0 smoothly
increases with the increase of temperature and decrease of density. In this case Markovization in
the movement of particles is observed, which may be related to the rise of disorder in diffusion
processes.
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Figure 1. The density- and the temperature-dependence of the non-Markovity
parameter ε for VACF of Lennard-Jones systems for the following region of the
phase diagram: 0.3 � n∗ � 0.7 and 1 � T ∗ � 4.7, n∗ = nσ3, T ∗ = kBT/ε, where
σ and ε are parameters of Lennard-Jones potential.

The dependence of the diffusion coefficient on the non-Markovity parameter for the case
of Lennard-Jones fluids is presented in figure 2. The calculations are carried out according to
equation (15) on the basis of the diffusion results of the molecular dynamics simulations and data
of ω(2) published in [26]. As can be seen from the figure, the diffusion coefficient in a Lennard-
Jones system increases with the increase in the non-Markovity parameter (with the weakening
of statistical memory effects). Moreover, the dependence between these quantities is practically
linear. The interpolar procedure reveals the following relation:

D∗ = Cε0, C = 0.057. (16)

As a result, the more disorder there is in the system, the weaker are the memory effects. From
this interpretation, the non-Markovity parameter acquires the quality of a disorder measure
comparable with configuration entropy. The direct relation between the non-Markovity parameter
and entropy can be received from the scaling relationship between the diffusion coefficient and the
excess entropy S = (Sliquid − Sid.gas)/kB suggested by Dzugutov [30]. In the original formulation
of Dzugutov this relationship has the following form:

D∗ = D

σ2�E

= Cunive
S, (17)

where σ is the particle diameter, �E = 4σ2g(σ)n
√

πkBT/m is the average pair collision frequency
of an equivalent hard sphere fluid and the Cuniv = 0.09 is taken from [31]. Numerous testings of

New Journal of Physics 7 (2005) 9 (http://www.njp.org/)

http://www.njp.org/


6 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
*

Non–Markovity parameter ε
0

Figure 2. Variation of the diffusion coefficient D∗ = D(m/εσ2)1/2 with the non-
Markovity parameter ε0. Solid line is the result of linear interpolation.

equation (17) have justified its validity for a model system of hard spheres, for binary mixtures,
liquid metals (Ag, Au, Cu, Ni, Pd, Pt) and metallic alloys (Ni3Al and AuPt) [30]–[36] in the
range of high densities (0.68 < nσ3 < 0.936) including the range of supercooled liquids. As
for the whole phase range of a liquid state, the coefficient D∗ increases with the rise in S.
However, the exact dependence between these quantities obtained from the initial equations and
true of the whole phase range remains a very interesting challenge to pursue [35].

Taking into account equation (15), we obtain from equation (17)

ε0 ∼ eS. (18)

Then, for the case of Lennard-Jones liquids we obtain from equations (17) and (16):

ε0 = Cuniv

C
σ�E

√
m

ε
eS, (19)

where Cuniv/C = 1.57. Equations (18) and (19) determine the inter-relationship between the
measure of memory effects in the system, the non-Markovity parameter, and the measure of the
number of accessible configurations of the system, the excess entropy. However, it is necessary
to note that the restriction in equation (17) by the area of high density refers to equation (19) as
well. So, if the non-Markovity parameter ε0 is defined for the velocity autocorrelation function
as considered here, it also is the measure of the system disorder.

Another part of our study is devoted to the analysis of memory effects and the definition of
the non-Markovity parameter for the model of the Brownian motion of Rubin [37], where heavy
isotropic impurity (M, x0 and v0 are the mass, the coordinate and the velocity, respectively)
behaves similar to a freely moving Brownian particle with a frictional force proportional to its
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velocity. This particle is located in an infinite, one-dimensional harmonic lattice (particles of the
lattice have the same mass m) with interactions between their nearest neighbours (K is the spring
constant). As a result, the energy of the system is

E = M

2
v2

0 +
m

2

N−1∑
j=1

v2
j +

K

2

N−1∑
j=0

(xj − xj+1)
2, j = 0, 1, 2, . . . , (20)

and the equation of motion of particles is

[m + (M − m)δj,0]ẍj = K(xj+1 − 2xj + xj−1). (21)

To carry out the study of the diffusion time scales and to define the diffusion constant of
impurity, it is necessary to know the long-time behaviour of the velocity autocorrelation function
a(t) = 〈v0(0)v0(t)〉/〈v2

0(0)〉, 〈vjv0〉 = (kBT/M)δj,0, 〈xjv0〉 = 0.
The Laplace transformation ã(s) = ∫ ∞

0 dt e−st a(t) is defined from equation (21) by its
solution with the help of the Laplace transformation and transition to other coordinates (see
pp 24–26 in [3]). It has the following form:

ã(s) = q

(q − 1)s +
√

s2 + 4K/m
, (22)

where q is the mass ratio:

q = M

m
. (23)

Then, the diffusion constant is

D = kBT

M
ã(s = 0) = kBT

2
√

Km
. (24)

The inverse Laplace transformation can be found in two cases: if M and m have the same
values, i.e. q = 1; and if q = M/m = 2. The solutions for both cases are expressed in terms of
the Bessel functions of order 0 and 1, respectively:

a(t) =


J0(2t

√
K/m), if q = 1,

J1(2t
√

K/m)

t
√

K/m
, if q = 2.

(25)

Note that the behaviour of a(t) at large q approaches ordinary exponential dependence (except
for the small t) [37]. It is interesting that the second equation of the system (25) corresponds
exactly to the approximation M1(t) = a(t) for GLE (6).

The short-time asymptotic of a(t) may be found from the large s expansion:

ã(s) = 1

s
− 2K

qms3
+

2K2(2 + q)

q2m2s5
− 4K3(q2 + 2q + 2)

q3m3s7
+ O(1/s9). (26)

New Journal of Physics 7 (2005) 9 (http://www.njp.org/)

http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Then one obtains

a(t) = 1 − ω(2)
a

2!
t2 +

ω(4)
a

4!
t4 − ω(6)

a

6!
t6 + O(t8)

= 1 − 2K

qm

t2

2!
+

2K2(2 + q)

q2m2

t4

4!
− 4K3(q2 + 2q + 2)

q3m3

t6

6!
+ O(t8) (27)

by the inverse Laplace transformation.
As we can see from the last equation, the short-time asymptotic of a(t) is characterized

by the Gaussian behaviour and defined by inertial properties of the particle itself, whereas the
long-time behaviour of the particle is independent of its mass (see equation (24)), but it is defined
by the characteristics of the surroundings, K and m.

Then the Mori coefficients for a(t) are

�2
1 = ω(2) = 2K

qm
, �2

2 = ω(4)

ω(2)
− ω(2) = K

m
,

�2
3 = 1

�2
2

[
ω(6)

ω(4)
−

(
ω(4)

ω(2)

)2
]

= K

m
. (28)

As a result, we find the first three points of the generalized non-Markovity parameter εn [6]:

ε0 = �2
1τ

2
0 = 1

2
q, ε1 = �2

2

�4
1τ

2
0

= 1, ε2 = �4
1�

2
3τ

2
0

�4
2

= 1. (29)

So, the non-Markovity parameter ε0 is proportional to the mass ratio q. This helps us
to understand the reason for the observed Markovization at q 
 1 [37]. The non-Markovity
parameter is also ε0 
 1, which is true in Markovian case, when the time scale of memory is
much smaller than the relaxation time of the velocity autocorrelation function. Another result
concerning the unit values of the parameters ε1 and ε2 is also of interest. In particular, the value
of ε1 = 1 means the equality of τ2 and τ1, which has recently been discovered for Lennard-Jones
fluids [6]. Furthermore, in case of M = 2m (i.e. q = 2), the relaxation time scales of a(t), M1(t)

and M2(t) are absolutely identical, and functions themselves may have the same time dependence,
which can be exactly defined by the Bessel function of the first order (see the second equation
of the system (25)).

The main results of this work can be summarized as follows:

(i) Detailed numerical estimation of memory effects in diffusion processes of Lennard-Jones
fluids has been executed for a wide phase range. For this purpose, the first three points
of the generalized non-Markovity parameter have also been obtained for the velocity
autocorrelation function in the case of the Rubin model.

(ii) The results related to a unit value of ε1 for the Rubin model are evidence of equality of time
scales of the first- and second-order memory functions (that was earlier found for the case
of Lennard-Jones fluids [6]). It is important that this result is obtained here exactly from the
primary model conditions.

(iii) Linear interrelation between diffusion coefficient and non-Markovity parameter for the case
of Lennard-Jones fluids has been found.
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(iv) The attempt to find interrelation between a measure of memory and the thermodynamic
quantity, entropy, has also been made in this work. The obtained relation is evidence that
ordering (disordering) processes in a system and non-Markovity of particle movements have
immediate link.
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