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The dynamics of stochastic processes in real complex systems is very complicated and entangled.
At the examination of various dynamic states of similar systems one of the central points is consisted in
finding a quantitative measure of chaoticity and regularity in its evolution. In this work we represent the
results of the study of solar activity from the point of view of complexity, discreteness, non-stationarity
and non-Markovity of dynamic evolution of atmosphere of the Sun. The study was carried out by using
of means of the statistical theory of discrete non-Markov stochastic processes [1]-[3]. The statistical non-
Markov effects in time series of solar activity are considered thoroughly. For realization of correlation
analysis as an initial time series we use a time series of Wolf number (one of solar indexes). In this work
the effects of regularity and chaoticity connected with dynamics of various cycles of solar activity come
to light. For the finding of local time dependence the kinetic and relaxation parameters and obtaining
of the additional information about physical nature of the phenomena going on the Sun we offers
local averaging operation. In this paper the comparative analysis of the various parameters connected
with minima and maxima of solar activity has been implemented. Specific features in behavior of
phase clouds at a minimum of solar activity are characterized by the occurrence of obtuse angles and
symbolical ”Dinara’s Crosses” in distribution of phase points. The phase points at a maximum of solar
activity form a nucleus in the form of the oval curve. The dynamics of solar spots is connected to specific
alternation of the effects of chaoticity and robustness. The peculiarities of the frequency dependence
of non-Markovity parameter ε1(ν) which is the original indicator of chaoticity and regularity reveal a
complicated competition of noise and separate modes of the Sun mobility.
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1 Introduction

Solar activity is one of the interesting astro-
nomical processes which accessible for the study
within various methods. In astronomical bibliog-
raphy is being considered more than 20000 ref-
erences on this subject. Not only astrophysicists
but also geophysicists, meteorologists, physicians,
telecommunications workers have a big interest to
solar activity. Various formations, such as mag-

netohydrodynamic processes in Sun, fluctuation
and undulation motions of plasma in solar atmo-
sphere, interactions of charged particles with sub-
stance and magnetic fields are very important for
the development of theoretical physics. Compre-
hension of solar activity phenomena and its man-
ifestation on Earth one can allow to explain the
various processes and make forecasting of behav-
ior complex dynamical systems like solar atmo-
sphere.
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Discovered in 1610-1611 by Galilei, sunspots
are the most famous and the most accessible fea-
ture among solar activity events. They represent
magnetic structures located within active regions
distinctly darker than the normal solar photo-
sphere. The formations of sunspots concern the
instability-driven processes in convective tubes on
the Sun surface areas. The time scale for the
formation of large sunspots range between a few
hours and several days. They exist on surface
during decades and hundreds hours and move on
solar disk due its rotation. The temperature in
solar spots is 1000-1900 K less than in the quiet
Sun fields. It depend on the high value of the
magnetic field strength in sunspots (1800 3700
G, more information see [4]).

So, sunspots are indicators of magnetic activ-
ity of the Sun. They envelop all solar atmosphere
and display also filaments and prominences, flares
in chromosphere, coronal holes, which are sources
of high-speed charged particles. Sunspots groups
and particular sunspots form the heart of an ac-
tive region where dynamical energetic processes
following by moving of the gas and variation of
sizes and shapes of spots take place.

In middle of XIX century H. Schwabe and R.
Wolf the 11-years periodicity in changing of num-
ber of sunspots on a seen disk of the Sun have
established. Since then ”Wolf numbers” are used
as a key parameter of an estimation of solar ac-
tivity and for the characteristic of condition of
the Sun. In Fig. 1 Wolf numbers dependence
from time by values published by the Royal ob-
servatory of Belgium (http://www.oma.be/ KSB-
ORB/SIDC/) is presented. The full physical cy-
cle of solar activity is connected with dynamics
of a global magnetic field and contains two 11-
years periods. The first period has smaller am-
plitude, during a maximum of the second period
occurs change of poles of magnetic field. Today
magnetic cycles and all large-scale structure of
a magnetic field of the Sun are described in dy-
namo model in convective zone [5]. This model
is adjusted with observed characteristics of solar
activity. Recently the theory of a nonlinear dy-
namo, based on magnetic helicity conservation,

was offered in Ref. [6].
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FIG. 1. The diagram of change of daily Wolf numbers
(a) and the smoothed curve of monthly Wolf numbers
(b) from 1895 to 2003. The 18 and 22 cycles of solar
activity are marked.

Emergence of effects of nonlinearity is not ran-
dom [7]. First, interaction of the magnetic field
with moving plasma of the rotating star itself
is the nonlinear process. Secondly, a daily fluc-
tuations of Wolf numbers have noise character,
therefore it is rather difficult to apply the stan-
dard methods of the statistical analysis to them.
The basic period of the solar activity is quasi-
periodic (from 9 to 13 years), with irregular phase
and amplitude variations. The each cycle has an
asymmetric kind (the section of growth on aver-
age is more short for 2-3 years, than the section
of recession, only in three of 22 cycles was ob-
served contrary). Moreover within the processes
of decreasing and increasing of activity level are
observed the short-range and long-range changes
(for example, a Maunder Minimum in XVII cen-
tury).
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The 27-day period (it is connected with pe-
riod of rotation of the Sun) is most authentic one
among the short periods. Also there are periods
12-14, 50-52, 154 days which are caused by the
certain physical processes in the solar atmosphere
[8]. Quasi-yearly variability of a global magnetic
field of the Sun was established on the basis of
satellite data [9]. Various statistical methods of
the analysis of indexes of solar activity (it is, first
of all, the daily and monthly Wolf numbers) for
search of periodicity in activity of the Sun are
used. So, the standard correlation and Fourier-
analysis specify the 27-day, 11-year and secular
periods, but these methods are intended for the
description of regular processes only. Therefore
other specific techniques are developed. For ex-
ample, a Singular Spectrum Analysis method eas-
ily discriminate a secular component, the period
of Schwabe and quasi-biennial variations of Wolf
numbers and other indexes of activity [10].

The review of the long-period variations of so-
lar activity on the basis of solar, astrochemi-
cal (isotopes), geophysical, and also the histori-
cal data is given in work [11]. Here the Gleiss-
berg (50-80 and 190-140 years) cycles and the
period of Suess by duration of 170-260 year are
considered. They also have physical basis and
slowly change, a moreover last cycle is more sta-
ble one. The mathematical procedure of wavelet-
transformation and the Fourier-analysis are used
for definition of these periods.

The irregularity is emerged not only in change
of solar activity, but also in the processes oc-
curring on the Sun. For example, the asymme-
try ”north - south” in distribution of sunspots in
different hemispheres is observed on short time
scales [12, 13]. The irregular components sepa-
rating at the analysis of the spots activity, are
caused by random noise, instead of elements of
chaos [8]. Carbonell et al. [14] have carried out
the study of possible chaotic behavior of Sun ac-
tivity from the sampling of Wolf numbers with
the help of method of correlation integral. The
conclusion was made, that due to the insufficient
completeness of the observed data is obstructing
detection of this behavior. Meanwhile, the ape-

riodic character and separate processes testify in
favor of the description of solar activity as deter-
ministic chaos. Until now a modern observations
testifies, that modulation of a solar cycle submits
to laws of the deterministic chaos [5].

It was earlier established, that chaotic char-
acter of processes of solar activity is emerged
on rather large time intervals. The short-period
processes (for example, solar flares, [15]) sub-
mit to stochastic laws. Use of the algorithm of
Grassberger-Procaccia shows, that it is possible
to consider a time interval of 8 years [16, 17] as
the time boundary of transition stochastic pro-
cesses into chaotic.

As it was well established by various authors,
dynamic behavior of solar activity displays vari-
ous multi-fractal properties. On intervals of order
of a few days up to 2 months fractal dimension
corresponds to stochastic changes of parameters
submitting to Gaussian distribution. Spatially
these stochastic structures form the small groups
of spots. Global indexes of solar activity are
demonstrate irregular behavior and on the ranges
of times from 1-2 months to 2 years they are de-
scribed by Poisson distribution. Fractal structure
of magnetic fields on a surface of the Sun is char-
acterized by the big groups of spots and active ar-
eas [18, 19]. Other the big time scales (2-13 years)
are correspond to the quasi-periodic variations
with the periods 1-2 years which are elements of a
11-years cycle of solar activity [20]. Similar struc-
tures are occupy giant and supergiant cells which
create large-scale structure of magnetic field in
space. Thus, the behavior of temporal and spatial
structures will be quasi-regular with attributes of
chaos in these scales. Intimate connection be-
tween structures of different scales and times is
observed. So, on the basis of study Wolf numbers
by methods of nonlinear dynamics an elements of
the deterministic chaos [21] in solar activity even
on small time intervals were found. The long-
time changes in the fractal properties of of solar
activity were found also [11].

Daily measurements of Wolf numbers during
enough large time (since 1749) have allowed to
collect the great database. It allows to carry
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out a various statistical estimation of behavior
of sunspots and accordingly activity of the Sun.
A study of the stochastic processes arising in
solar atmosphere, estimations of regularity and
chaoticity of dynamics of the phenomena occur-
ring during change of activity of the Sun, gener-
ates the big interest in modern physics and as-
trophysics. Forecasting of solar activity based on
results of studying of these processes is also rather
important problem.

Many works are devoted to the prediction of
conduct of the solar activity (especially per years,
previous to the next maximum in the cycle). Var-
ious methods of analysis of the observational data
on the previous cycles of activity or their geo-
magnetic manifestation are used for this purpose.
Here we choose only some examples. The ener-
getic parameters of a global magnetic field, their
connection with activity of spots are received in
Ref. [22]. Analytical and graphic connections
between them are found on this basis. It allows
to predict amplitude of the following maxima of
activity with the certain accuracy.

The forecasting of a maximum for the 23 cy-
cles of activity is carried out in work Li [23] on
the basis of behavior of all known cycles by ob-
servation of growth of activity within the first 3-4
years of a new cycle (over analogy to one of ob-
served maxima). But this method is appropriated
for prediction of behavior of one cycle only.

Khramova et. al [24] have offered ”method of
phase average” in which predicted values of Wolf
numbers are defined by extrapolation from the
certain technique on the basis of unsmoothed av-
erage monthly Wolf numbers. On the grounds of
this principle the long-term forecast is given, for
example, on 23 and 24 cycles.

Complexities in forecasting a maximum of ac-
tivity of the Sun are caused first of all by defi-
ciency of connection between the period and am-
plitude of cycles of activity. The dependence be-
tween Wolf number and the period, and also du-
ration of a growth phase of the given cycle was
observed in Ref. [25]. Probably, the amplitude of
cycle and time derivative of number of sunspots
also are connected with each other. It allows to

calculate dynamics of solar activity in model of
dynamo.

Nonlinearity of processes of solar activity re-
quire the application of non-standard and non-
conventional forecasting methods. To them it is
necessary to attribute the method of the nonlin-
ear forecast [8], as well as method of nonlinear
dynamics [26]. But nonlinear and chaotic nature
of processes imposes the certain restrictions on
these methods, therefore exact prediction of be-
havior of solar activity are possible only for some
years forward.

Excepting of the foregoing methods, the
wavelets-transformation and auto-correlation
methods described in works [27, 28] are applied
intensively to the study of the future behavior
of solar activity. For example, with the help of
wavelet entropy method [29] the contribution
to solar activity of the certain measure of the
disorder was found out. Existence of such
contribution results in evolution of magnetic
cycles. There is an assumption, that there is a
certain connection between qualitative behavior
of wavelet entropy and excursion phases of solar
dipoles.

In this paper the method based on the sta-
tistical theory of discrete non-Markov stochas-
tic processes is offered. We use the set of Wolf
numbers as observational sampling. Here we per-
form the analysis with the help of our technique
which allows to extract the properties of regular-
ity and chaoticity from the dynamics of different
phases of solar activity. In the second section we
present the basic points of our statistical theory
non-stationary non-Markov processes in complex
systems (of main base of the method developed
by some of the authors in last years). In section
3 we describe the basic observational data and
a technique of their processing. In fourth section
the received results are discussed. In last part the
basic conclusions from the done work are submit-
ted.
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2 Basic concepts and definition
of the statistical theory of
nonstationary discrete non-
Markov processes in complex
systems

The obtained data were processed by means of
the below introduced technique. We use results
of our last theory of discrete non-Markov ran-
dom processes for the quantitative description of
chaotic and regular components in stochastic al-
teration of registered data. The set of three mem-
ory functions was calculated for each sequence
of data. Frequency power spectra for each of
these functions are obtained using the fast Fourier
transform. For a more detailed analysis of prop-
erties of the system we examine also the frequency
spectrum of the first three points of the statistical
spectrum of non-Markovity parameter. The spec-
trum of non-Markovity parameter was entered
earlier in following articles: Refs. [1, 2, 30, 31]
and was also used in statistical physics of liquids
[32, 33]. In this study we use frequency spectrum
of non-Markovity parameter

εi(ν) =
{

µi−1(ν)
µi(ν)

} 1
2

, µi(ν) = |ReM̃i(ν)|2,

as an information measure of chaoticity and ro-
bustness of the studied process. Here i = 1, 2, 3...,
M̃i(ν) and µi(ν) there is Fourier transform and
power spectrum of ith level memory function
Mi(t) (see, Eqs. (20), (22) below). The pa-
rameters εi allow to receive quantitative estima-
tion of long-term memory effects in experimental
time series of the data as shown in Refs. [32]-
[35]. From the physical point of view the value of
parameter εi allows to mark out the three most
important cases [32]-[35]. The Markov and com-
pletely randomized processes correspond to the
values ε →∞, quasi-Markov processes (elements
of memory can be noticed there) correspond to
values ε > 1. The limiting case ε ∼ 1 concerns
the case of non-Markov processes, i.e., processes,
where exist the effects of the long-range memory.

The matter is that at analysis of the complex
system we obtain the discrete equidistant series
of the experimental data, the so-called random
variable

X = {x(T ), x(T + τ), x(T + 2τ), · · · , (1)
x(T + kτ), · · · , x(T + τN − τ)}.

This set corresponds to the signal measured
within time t = (N −1)τ , where τ is a temporary
sampling interval of the signal. The mean value <
X >, fluctuation δxj , absolute (σ2) and relative
(δ2) dispersion for the set of random variables in
Eq. (1) are defined as follows

< X >=
1
N

N−1∑

j=0

x(T + jτ), (2)

xj = x(T + jτ), δxj = xj− < X >, (3)

σ2 =
1
N

N−1∑

j=0

δx2
j , (4)

δ2 =
σ2

< X >2
=

1
N

∑N−1
j=0 δx2

j

{ 1
N

∑N−1
j=0 x(T + jτ)}2

. (5)

The above-mentioned set of values determine the
static (independent from time) property of the
considered system. For the dynamical analy-
sis it is more convenient to use the normalized
time correlation function (TCF). For the dis-
crete processes the TCF has the regular form
(t = mτ,N − 1 ≥ m ≥ 1)

a(t) =
1

(N −m)σ2

N−1−m∑

j=0

δx(T + jτ) (6)

δx(T + (j + mτ)).

The properties of TCF a(t) are determined by
the condition of normalization and attenuation
of correlation

lim
t→0

a(t) = 1, lim
t→∞ a(t) = 0. (7)

For real systems the values xj = x(T + jτ) and
δxj = δx(T+jτ) represent the experimental data.
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To account the dynamics of a system we shall
define the evolution operator U(T + t2, T + t1) as
follows (t2 ≥ t1)

x(t + τ) = U(t + τ, t)x(t). (8)

Then the equation of the motion becomes discrete

dx

dt
=
4x(t)
4t

= iL̂(t, τ)x(t),

L̂(t, τ) = (iτ)−1[U(t + τ, t)− 1]. (9)

Let us introduce the vector of the initial and final
states of the system

A0
k(0) = (δx0, δx1, δx2, · · · , δxk−1) =

(δx(T ), δ x(T + τ), · · · , δx(T + (k − 1)τ).(10)

Am
m+k(t) = {δxm, δxm+1, δxm+2, · · · , δxm+k−1}

= {δx(T + mτ), δx(T + (m + 1)τ), . . . ,
δx(T + (m + k − 1)τ}. (11)

The normalized TCF can be presented as a
scalar product of the state’s vectors (t = mτ is
discrete time):

a(t) =
< A0

k ·Am
m+k >

< A0
k ·A0

k >
=

< A0
k(0) ·Am

m+k(t) >

< A0
k(0)2 >

.

(12)
The initial TCF can be received by projection

of the vector of the final state on the direction
of vector of the initial state by the use of the
following projection operator

ΠAm
m+k(t) = A0

k(0)
< A0

k(0)Am
m+k(t) >

< |A0
k(0)|2 >

= A0
k(0)a(t). (13)

The projection operator Π possesses the following
properties

Π =
|A0

k(0) >< A0
k(0)|

< |A0
k(0)|2 >

, Π2 = Π,

P = 1−Π, P 2 = P, ΠP = 0, PΠ = 0. (14)

The vector of the fluctuation obeys the finite-
difference Liouville’s equation

∆
∆t

Am
m+k(t) = iL̂(t, τ)Am

m+k(t). (15)

The projection operators Π and P split the Eu-
clidean space of states A(k) into two mutually -
orthogonal subspaces which allows us to split the
dynamic Eq. (15) into two equations in two sub-
spaces

∆A′(t)
∆t

= iL̂11A
′(t) + iL̂12A

′′(t), (16)

∆A′′(t)
∆t

= iL̂21A
′(t) + iL̂22A

′′(t). (17)

Extracting from Eq. (17) the irrelevant part
∆A′′(t) we obtain the closed finite-difference
equation of a non-Markov type for TCF a(t):

∆a(t)
∆t

= λ1a(t)−τΛ1

m−1∑

j=0

M1(jτ)a(t−jτ). (18)

Here Λ1 is a relaxation parameter with the di-
mension of square of frequency and parameter λ1

describes an eigen-spectrum of Liouville’s quasi-
operator L̂

λ1 = i
< A0

k(0)L̂A0
k(0) >

< |A0
k(0)|2 >

, (19)

Λ1 =
< A0

kL̂12L̂21A0
k(0) >

< |A0
k(0)|2 >

.

The function M1(jτ) in the rhs of Eq. (18) rep-
resents the first memory function

M1(jτ) =
< A0

k(0)L̂12{1 + iτ L̂22}jL̂21A0
k(0) >

< A0
k(0)L̂12L̂21A0

k(0) >
,

M1(0) = 1. (20)

It is easy to notice, that except for the initial TCF
in Eq. (20) we consider the time correlation of the
new orthogonal dynamic variable L̂21A0

k(0).
Eq. (18) represents the first equation of the

chain of finite-difference kinetic equations with
memory for the discrete TCF a(t). The memory
function M1(t) takes into account the time mem-
ory about the all previous states of the system.
Acting similarly to the above-stated procedure
one can receive kinetic equations for subsequent
memory functions. However a more convenient
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way is making use of the Gram-Schmidt orthog-
onalization procedure. Because of this it is easy
to obtain the recurrence formula, in which senior
variables Wn = Wn(t) with higher index are ex-
pressed in terms of the junior variables with lower
indices

W0 = A0
k(0), W1 = {iL̂− λ1}W0, . . .

Wn = {iL̂− λn−1}Wn−1 (21)
+Λn−1Wn−2 + ..., n > 1.

Using the above mentioned procedure and intro-
ducing the corresponding projection operators,
we come to the following chain of connected non-
Markov finite-difference kinetic equations (t =
mτ)

∆Mn(t)
∆t

= λn+1Mn(t) (22)

−τΛn+1

m−1∑

j=0

Mn+1(jτ)Mn(t− jτ).

Here parameters λn+1 represent an eigenvalues of
the Liouville’s quasioperator and the relaxation
parameters of Λn+1 are determined as follows

λn = i
< WnL̂Wn >

< |Wn|2 >
,

Λn = −< Wn−1(iL̂− λn+1)Wn >

< |Wn−1|2 >
.

The zero order memory function M0(t) in Eq.
(22)

M0(t) = a(t) =
< A0

k(0)Am
m+k(t) >

< |A0
k(0)|2 >

, t = mτ

describes the statistical correlation in complex
systems with discrete time. The initial TCF a(t)
and the set of discrete memory functions Mn(t) in
Eq. (22) are important for further consideration.
The first three equations of this chain (t = mτ is

discrete time) can be presented as follows

∆a(t)
∆t

= −τΛ1

m−1∑

j=0

M1(jτ)a(t− jτ) + λ1a(t),

∆M1(t)
∆t

= −τΛ2

m−1∑

j=0

M2(jτ)M1(t− jτ)

+λ2M1(t),

∆M2(t)
∆t

= −τΛ3

m−1∑

j=0

M3(jτ)M2(t−jτ)+λ3M2(t).

These systems of finite-difference Eqs. (22) and
(23) are a discrete analogue of the well-known
chain of kinetic Zwanzig’-Mori’s equations. The
latter plays a fundamental role in modern statis-
tical physics of non-equilibrium phenomena with
continuous time. It is necessary to note that the
chain of Zwanzig’-Mori’s equations is valid only
for quantum and classical Hamiltonian systems
with continuous time. The finite-difference chain
of kinetic Eqs. (22),(23) is valid for complex sys-
tems, in which there is not any Hamiltonian, but
time is discrete, and the exact equations of mo-
tion are absent . However, the ”dynamics” and
”motion” in real complex systems undoubtedly
exist and can be directly registered in the experi-
ment. The first three equations in the chain (23)
form the basis for quasihydrodynamic description
of stochastic discrete processes in complex sys-
tems.

The obtained relations allows to find the all
necessary memory function Ms(t) of any order
s = 1, 2... on the basis of the experimental data,
using only the initial TCF a(mτ). Relaxation pa-
rameters λi and Λi, i = 1, 2, 3..., in Eqs. (23) can
be calculated from experimental data. The appli-
cation of Eqs. (23) opens new possibilities in the
detailed analysis of the statistical properties of
the correlations in complex systems. The fact of
the existence of a finite- difference Eqs. (22), (23)
allows us to evaluate unknown memory functions
directly from the experimental data.
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R.M. Yulmetyev et al.: Dinara‘s Crosses, Chaoticity and Robustness . . . 217

3 Observational data and data
processing

By the analogy with other studies we use in
this study daily sunspot numbers in time inter-
val 1940-2001. This database includes five cy-
cles of the solar activity from 18 to 22th and
22065 data points. Analyzed sample of sunspot
observations was provided by the Sunspot In-
dex Data Center of Belgian Royal Observatory
(http://www.oma.be/KSB-ORB/SIDC/).

It is necessary to note that Wolf numbers as
time series have the high noise level therefore in
our future papers we will use other physical pa-
rameters of the solar activity. Data processing
is carried out on the basis of the above-stated
statistical theory of non-stationary discrete non-
Markov processes. The received experimental
data are used as the initial data.

4 Discussion of results

In this section we present the quantitative and
comparative analysis of chaotic dynamics of solar
activity in the range from 1940 to 2001 on the
basis of the theory submitted in Section 3. The
time series of the initial signals and the dynamic
variables, the phase portraits of the four first dy-
namic variables, the power spectra of the TCF
and the junior memory functions as well as fre-
quency dependence of the first three points of the
statistical non-Markov parameter, the local time
dependence the kinetic and the relaxation param-
eters λ1, λ2, λ3, Λ1 and Λ2 are submitted in Figs.
2-6. Here we offer the new method of definition
of chaoticity and regularity of the stochastic pro-
cesses taking place on the Sun.

4.1 The study of chaotic dynamics of
the solar activity submitted for the
full-scale time interval

The time series of the orthogonal variables W0

(Fig. 2(a)), W1 (Fig. 2(b)), W2 (Fig. 2(c)), W3

(Fig. 2(d)) for chaotic dynamics of solar activity
are submitted in Fig. 2. As the initial time se-

ries the variable W0 forms a dynamic noise. The
analysis of the time series of a variable W0 shows,
that the most appreciable fluctuations of this dy-
namic variable relate on the maxima of solar ac-
tivity. The bursts of solar activity are located on
quasiequal intervals from each other. It testifies
about the quasi-periodicity changes of Sun activ-
ity during all research time interval. The time
series of the first three variables W1, W2, W3 are
symmetric in regard to the axis of abscissa. The
five dynamic peaks falls at five full cycles (for the
period with 1940 on 2001). We can note the bifur-
cation in the each dynamic peak and this indicate
on the existence of two peaks during maximum
of the solar activity in each cycle (Fig. 1(b)).
The kind of each separate maximum resembles
outwardly a sea wave. At first, the wave gathers
force, then reaches a point of the maximal height,
weakens a little, then again gathers force and falls
down finally.

In Fig. 3 phase clouds in six plan projections of
the four first dynamic variables Wi, i = 0, . . . , 3
are submitted for cycles of solar activity. The
asymmetry of phase clouds concerning the center
of coordinates on the three first phase portraits is
observed. The phase points form an oval nucleus
and settle down in such a manner that remind
”a flame which is taking off for nozzle rocket”.
The most cluster in this case fall on a place of an
output of a flame. The diversity of phase points
is enhanced at removal from a place of flameout.
On the last three phase portraits are apprecia-
ble central nucleuses which are symmetric about
center of coordinates.

In Fig. 4 the power spectra of TCF µ0(ν)
and the three junior functions memory µi(ν), i =
1, 2, 3 for the chaotic dynamics of solar activity
are submitted. The frequency spectra are given
in doubly logarithmic scale for a more detailed
analysis of the data. The power spectra of TCF
µ0(ν) has fractal dependence on the middle and
high frequencies. The small burst of power on
frequency ν = 4 ∗ 10−2f.u. (1f.u. = 1/τ) divides
area of these frequencies where τ there is time of
discretization, τ = 1 day. A distinct peak with
period 25-27 days (the frequency ν = 4∗10−2f.u.)
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FIG. 2. The time series (for the period with 1940 on 2001) of the orthogonal variables W0 (a), W1 (b), W2 (c),
W3 (d) for chaotic dynamics of solar activity. The most fluctuations of a time series of a variable W0 fall at
maxima of solar activity. The bursts of solar activity are located on quasiequal intervals from each other, that
speaks about quasi-periodicity changes of activity of the Sun during all studied time interval.
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FIG. 3. The phase clouds of solar activity in six plan projections of the four first dynamic variables Wi, i = 0...3
for all time interval. The phase points of clouds (a, b, c) form an oval nucleus and settle down in such a manner
that look as ”a flame which is taking off for nozzle rocket”. The most cluster in this case fall on a place of an
output of a flame. The diversity of phase points is enhanced at removal from a place of flameout.
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represents the rotation of the Sun as viewed from
Earth [16]. In the field of low frequencies the
sharp break which maximum falls to the fre-
quency ν = 3 ∗ 10−4f.u. is observed. The large
peak at frequency 0.0003f.u. on the left in Fig.
4 corresponds to the decadal solar activity cycle.
Between these two peaks the spectrum displays
a power-law dependence on scale [16]. The fre-
quency behavior of the three junior memory func-
tions µi(ν), i = 1, 2, 3 has an identical structure.
In the field of low frequencies the sharp break
with a characteristic maximum is found. The
burst on the certain frequency ν = 4 ∗ 10−2f.u.
divides the areas of middle and high frequencies.
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FIG. 4. The power spectra of TCF µ0(ν) (a) and
the three junior memory functions µi(ν), i = 1, 2, 3
for chaotic dynamics of solar activity. The frequency
spectra are given in doubly logarithmic scale for a
more detailed analysis of the data. The areas of mid-
dle and high frequencies are divided by small burst of
power on frequency ν = 4 ∗ 10−2f.u. on the all dia-
grams.

In Fig. 5 the spectra of the first three points of
statistical non-Markovity parameter εi(ν), where
i = 1, 2, 3 are presented. The parameter ε1(ν) on
the frequency ν = 0 accept a value 95 that tes-
tifies about strong markovization and amplifica-
tion of chaoticity of the process. The Markovian
bursts on the frequencies ν = 0, 0.04, 0.07f.u. are
observed and they reach the values 95, 23 and
110. The second burst corresponds to a maxi-

mum (in point of peak on low frequencies) in the
power spectra of initial TCF (Fig. 4(a)). The
spectrum of non-Markovity parameter for the sec-
ond point ε2(ν) is symmetric about the direct line
ε2(ν) =1. In the frequency spectrum of the third
point of the statistical non-Markovity parameter
ε3(ν) the characteristic minimum with peaks in
the beginning and the end of the frequency de-
pendencies is appreciable. In the spectra ε2(ν),
ε3(ν) at the frequency ν = 0.04, 0.07f.u. charac-
teristic bursts are observed. The first peaks cor-
respond to the maxima of low-frequency bursts
in the power spectra µ1(ν), µ2(ν).
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FIG. 5. The spectra of first three points of the statis-
tical non-Markovity parameter εi(ν), where i = 1, 2, 3.
At the frequency ν = 0 the parameter ε1(ν) (a)
achieves value 60 that speaks about strong markoviza-
tion of studied process and transition in a mode of
Markov chaoticity. The Markovian bursts on the fre-
quencies ν = 0.04, 0.07f.u. are observed and they
reach values 23, 110. The first peaks correspond to
maximum of peak on low frequencies in the power
spectra of the initial TCF.

Recently the correlation analysis has experi-
enced a marked lack of information concerning
the object under study. Procedure of local av-
eraging of various parameters allows to examine
the separate hidden properties of objects studied.
The characteristic feature of the usual correlation
analysis is the fact that the greatest possible set
of signals is required for the qualitative analysis
of the properties of the object of the research.
At longer sample of such signals it is possible to
receive more exact information with the help of
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the correlation analysis. Let us take a random
non-Markov process as an example. This pro-
cess consists of sequence of alternating random
states. Thus, the problem of extraction of more
information not only about the common process
but about various single dynamic states of a sys-
tem arises. In this case the use of the correlation
analysis for the whole time series will be ineffi-
cient. The processing of the signals is necessary
for separate local sites of the full time series. It
will allow to consider the properties of separate
dynamic states of the system.

Hereinafter a new method of data processing
based on the local averaging of kinetic and re-
laxation parameters is offered. This method al-
lows to consider the properties of separate non-
stationary states of the systems. The idea of a
method is the following: there exists an initial
data set. Let’s take a sampling in length N of
signals and to calculate its kinetic and relaxation
parameters. Then the operation of ”step-by-step
shift to the right” for one time interval is carried
out. The kinetic and relaxation parameters are
calculated again. The ”step-by-step shift to the
right” will continued to the end of time series.
Such locally averaged parameters have high sen-
sitivity to the effects of intermittency and non-
stationarity. If the initial time series has some
irregularity, it is instantly reflected in the behav-
ior of the locally averaged parameters.

The use of this method requires the choice of
the optimal length of a sampling which enables
to receive the most trustworthy information. If
a sampling is too short, so noise effects does not
allow to receive qualitative information. Besides
with a short length sampling we have significant
errors. On the other hand at great length of a
sampling locally averaged parameters lose ”sensi-
tivity” necessary for the study. As a result of the
study of different lengths of local sampling we
have received the optimal length compose 100-
120 points. Further proofs of all aforesaid will be
given below.

In Fig. 6 the time dependence located kinetic
(λ1, λ2, λ3) and relaxation (Λ1, Λ2) parameters is
submitted. Procedure of localization allows to re-

ceive more detailed representation about a phys-
ical nature of researched object. The located pa-
rameters have ”increase”of sensitivity to features
of local states. The local parameters reflect sep-
arate local changes which occur in investigated
object. The detailed analysis of the time depen-
dence of the local kinetic parameter λ1(t) allows
to show the six most significant changes. The be-
havior of parameter changes sharply in the case of
occurrence of minima of solar activity. Equidis-
tance and periodicity of similar changes follows
from here. The similar picture is observed and for
other local parameters. The parameters λ1 and
Λ1 have an maximal sensitivity among all local
parameters. The parameters λ1, λ2, λ3 possess
negative values on all the time interval whereas
Λ1, Λ2 have an both positive and negative numer-
ical values.

4.2 The study of some features of
separate solar cycles

The analysis of qualitative results of data pro-
cessing for chaotic dynamics of separate cycles of
solar activity (18) allows to reveal the following
regularity. In the most cases the maximum of so-
lar activity has an complex structure on which is
emerged no one, but two peaks. The first peak
achieves the greatest amplitude in addition. The
amplitude of the first peak in a maximum of each
cycle is defined by special ”indicator” which is the
first point of the non-Markovity parameter ε1(ν).
This parameter constitute an informative mea-
sure of chaoticity or regularity of the processes in
real object.

In Fig. 7 the power spectra of TCF µ0(ν)
and the three junior memory functions µi(ν), i =
1, 2, 3 for chaotic dynamics for one of cycles of so-
lar activity are submitted. The frequency spectra
of initial TCF µ0(ν) are submitted in doubly log-
arithmic scale. Fractal dependence of the power
spectra has been collapsed by the small burst on
the frequency ν = 4 ∗ 10−2f.u. (the 25-27 day
period of the rotation of the Sun as viewed from
Earth). The power spectra of three junior mem-
ory functions µi(ν), i = 1, 2, 3 are submitted in a
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FIG. 6. The time dependence of local kinetic (λ1, λ2,
λ3) and relaxation (Λ1, Λ2) parameters. The anal-
ysis of the time dependence of the located kinetic
parameter λ1(t) allows to show the six most signifi-
cant changes. The behavior of the parameters sharply
changes in case of an ascertainment of minima of so-
lar activity. Equidistance and periodicity of similar
changes follows from here. The behavior of other pa-
rameters is similar.

usual frequency scale. In the field of low frequen-
cies a few consistently going bursts are discov-
ered, among which the greatest attention is nec-
essary for giving of the first burst at frequency
0.04f.u. The amplitude of the zero burst (at zero
frequency) displays amplitude of the first peak of
a maximum of solar activity.

The complex structure of power spectra ap-
pears in frequency dependence of the first three
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FIG. 7. The power spectra of the TCF µ0(ν) and the
first three junior memory functions µi(ν), i = 1, 2, 3
for chaotic dynamics for one of cycles of solar activ-
ity - 18. The frequency spectra initial TCF µ0(ν) are
given in doubly logarithmic scale. Fractal dependence
of the power spectra is broken small burst on the fre-
quency ν = 4 ∗ 10−2f.u. In the field of high frequen-
cies a condensation of spectral lines is appreciable.
The power spectra of three junior memory functions
µi(ν), i = 1, 2, 3 are submitted in a usual frequency
scale. In the field of low frequencies a few consistently
going bursts are discovered (among which the great-
est attention is necessary for first burst at frequency
0.04f.u.). The amplitude of the zero burst (at zero
frequency) displays amplitude of the first peak of a
maximum of solar activity.

points of the statistical spectrum non-Markovity
parameter εi(ν), i = 1, 2, 3, see Fig. 8. On
the zero frequency appreciable amplification of
Markov effects is observed in non-Markovity pa-
rameter ε1(ν). The amplitude of this burst de-
fines the greatest amplitude of the first maximum.
The greater is the amplitude of the first point, the
great becomes amplitude of the first maximum of
solar activity. At the greater value of amplitude
of the first point of non-Markovity parameter on
zero frequency the amplitude of the first maxi-
mum of solar activity also accept greater value.
On the frequency ν = 0.04f.u. the small peak
which reflects the appropriate low-frequency con-
tribution to the power spectra of initial TCF ap-
pears (the 25-27 day period). The structure of the
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spectrum of non-Markovity parameter for the sec-
ond point ε2(ν) reflects the structure of the power
spectrum of the first memory function µ1(ν). In
the field of low frequencies there are peaks with
maxima which are coincided with the appropri-
ate maxima of bursts in the power spectra of the
memory function µ1(ν). In the frequency behav-
ior of the third point of non-Markovity parameter
ε3(ν) one can discover the crest with amplitude
corresponding to the amplitude of burst in the
power spectrum of the second memory function
µ2(ν).
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FIG. 8. The spectra of the first three points of the
non-Markovity parameter εi(ν), i = 1, 2, 3 for chaotic
dynamics of one of the cycles of solar activity. From
the dependence of the non-Markovity parameter ε1(ν)
(a) near to zero frequency the appreciable amplifica-
tion of Markov effects is observed. The amplitude of
this burst defines the most significant amplitude of the
first peak of a maximum of solar activity. The greater
amplitude of the first point of non-Markovity param-
eter on zero frequency corresponds to the greater am-
plitude of the first peak of solar activity. The fre-
quency behavior of the second and third points of
non-Markovity parameter reflects frequency structure
of power spectra of the first and second memory func-
tions.

4.3 The definition of chaoticity and
regularity of the processes
proceeding on the Sun

Phase clouds in six plane projections of dynamic
orthogonal variables for typical year of maximum
(1947) (Figs. 9 (A-F)) and year of minimum

(1986) (Figs. 9 (a-f)) of solar activity are sub-
mitted on Fig. 9. The represented diagrams are
characteristic for all years with the maximal and
minimal solar activity. Thus further analysis will
be is made only for these typical cases. The phase
points in the case of a maximum forms a nucleus
in the form of the oval curve(Fig. 9 (A)). In com-
parison with other years of the cycle the interval
of scattering of the phase points along the hori-
zontal axis is maximal and equal to 280 τ . The
phase points per year with a minimum of solar ac-
tivity (Fig. 9 (a)) are dissipated from the center.
On the left side of the phase cloud in a plane
(W0,W1) the phase points are built along two
lines which form the certain blunt angle. These
lines appear in the phase clouds two - three years
prior to a minimum of solar activity. On the fol-
lowing phase clouds of a point are built clearly
along a direct line. The rest of phase points are
distributed in the right half-plane concerning this
direct line. On the last three phase portraits the
phase points form symbolic ”Dinara’s Crosses”
with the center in the beginning of coordinates.
These crosses, the distinctive for the one year
with the minimal solar activity, has received the
name ”Dinara’s Crosses”, in honor of the girl -
student who was the first to discover this phe-
nomena. We have revealed that the such kind
of the phase clouds is characteristic for any year
with the minimum of solar activity.

At observation of the phase clouds in the same
scale the following picture appears. For any year
with the greatest solar activity phase points are
scattered on a phase plane as much as possible. In
the following year the phase points gather closer
to the center and occupies a more correct circu-
lar area of a plane. The next year points are
grouped even more around the center. Per year
of the minimum of solar activity the phase points
create an almost ideal circle as much as possible
compressed to the center.

In Fig. 10 the first three points of the non-
Markovity parameter εi(ν), where i = 1, 2, 3 on
the zero frequency for all time interval is shown.
Thus parameter ε1(0) gets special physical value.
This point is the original ”indicator” of manifes-
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FIG. 9. The phase clouds in six plane projections of dynamic orthogonal variables for typical year with maximum
of solar activity (1947) (A-F) and with minimum of solar activity (1986) (a-f). In the case of maximum the phase
points are formed as a nucleus in the form of oval (A). The straggling of the phase points along abscissa axes is
maximal as compared with other years of the cycle. The phase points for one year with minimum of solar activity
(a) are approached to the center. On the left side of the phase cloud in a plane (W0,W1) the phase points are
built along two lines which form the certain blunt angle. On the last three phase portraits the phase points form
symbolical ”Dinara’s Crosses” with the center in the beginning of coordinates.

tation of chaoticity or regularity. The values of
this point are minimal within maxima and min-
ima years of solar activity and may range from 4
to 8. Per years appropriate growth phases and re-
cession of solar activity, parameter ε1(0) achieves
value 15-26. At the same time, this parameter
defines the quantitative measure of the chaoticity
of the processes on the Sun. The greater numer-
ical value is of this parameter, the greater is a
chaoticity. Thus, with removal from the mini-
mum or the maximum of solar activity the ran-
domness of the processes on the Sun amplifies.
It is connected to the greater variability of set of

the various processes on the Sun. Specifically, the
following years: 1956 (ε1(0) =26.1), 1984 (26.3),
1988 (24.3), 1992 (20.1), 1998 (19.6) differ by the
greatest chaoticity. These years correspond to
years of phases of growth or slump for solar activ-
ity. It means, that most suggestive events during
solar cycle occur in these phases. The greatest
robustness and appreciable non-Markovity effects
are characteristic for the next years: 1954 (4.78),
1958 (3.7), 1964 (4.8), 1968 (3.98), 1980 (3.8). If
to compare these dates with those in table of the
solar activity cycles (Ishkov, 2001) then one can
note, that minimum of 18 cycle was in 1954 year,
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FIG. 10. The first three points of non-Markovity parameter εi(ν = 0) where i = 1, 2, 3, on zero frequency
are calculated for the one year sampling and in aggregate for all time interval are given. The first point of
non-Markovity parameter is original ”indicator” of display of randomness or regularity. The values of this point
within maxima and minima of solar activity are minimal. Per years which are sandwiched between maxima and
minima of the solar activity, numerical values of size ε1(0) are maximal. The greater is numerical value of this
parameter, the greater is a chaoticity. Thus, chaoticity of the processes on the Sun, with removal from minimum
or maximum of solar activity intensifies.

20th maximum was in 1968 year etc. The com-
plex frequency structure of the first point of non-
Markovity parameter is reflected in frequency de-
pendence ε2(0), ε3(0) also.

5 Conclusions

In this paper a method of the correlation analysis
of dynamics of solar activity on the basis of the
theory discrete non-Markov processes is offered.
The developed method allows for discreteness of
various processes on the Sun, effects of long-range
memory and aftereffect, and also effects of dy-
namic alternation. It enables us to visualize and
consider a series of the regularities which arise
owing to periodicity and cyclicity of the solar ac-
tivity. The regularities connected with cyclicity
of solar activity, are reflected in the phase por-
traits of the first four dynamic orthogonal vari-

ables. The characteristic compression and the ex-
pansion of the phase clouds, recalling a pulsation
of heart is observed at that. The phase clouds,
the most dense in minimum, are increased on vol-
ume in 3-4 times at a period of the maximum of
solar activity.

The physical non-Markovity parameter εi(ν)
where i = 1, 2, 3 represents the quantitative mea-
sure of chaoticity and a regularity of the random
processes on the Sun. Per years between min-
ima and maxima the chaoticity of the stochastic
processes connected to solar activity, is maximal.
It is connected with greater variability of vari-
ous dynamic states of system. It corresponds to
years of reconstruction of dynamic state of the
Sun. The analysis of fluctuations in the spectra of
memory functions and frequency dependencies of
the first three points of statistical non-Markovity
parameter testifies an opportunity of use of our
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method for forecasting of solar activity. Points of
the first phase portraits per years with the min-
imal solar activity generate two lines forming a
blunt angle. Distinctive Dinara’s Crosses which
can be considered as a predictors of the appear-
ance of minimum of solar activity appear in the
phase clouds just at this period. The similar con-
struction of the phase clouds emerges as two -
three years prior to a minimum of solar activity.
The dynamic peaks on the zero frequency at fre-
quency spectrum of the time correlation function
µ0(ν) and frequency behavior of the first point
of the non-Markovity parameter ε1(ν), determine
the amplitude of the first dynamic peak per year
with the maximal solar activity.

The locally averaged kinetic and relaxation pa-
rameters of chaotic dynamics of solar activity al-
low to study statistical features of the processes
connected to solar activity in more details. The
local time series reflect internal features of cyclic-
ity of solar activity that helps to study the reg-
ularity afforded by solar activity. The offered
method allow to find the features inherent in any
cycle of solar activity at the big volume of experi-
mental data. Physical feature of the local param-
eters is that the any irregularity arising in the
initial time series, is instantly reflected in local
time behavior of studied parameters. Procedure
of local averaging allows to find out properties of
system which are latent for the usual correlation
analysis. Because of use of the given procedure
the structure of any cycle of solar activity be-
comes more obvious. It means an opportunity
of the calculation of the detailed quantitative pa-
rameters of various dynamic modes of solar activ-
ity. We plan to use this technique for the studying
of other manifestations the solar activity on the
Earth.
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