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Fundamental aspects of quantum Brownian motion
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With this work we elaborate on the physics of quantum noise in thermal equilibrium and in
stationary nonequilibrium. Starting out from the celebrated quantum fluctuation-dissipation theorem
we discuss some important consequences that must hold for open, dissipative quantum systems in
thermal equilibrium. The issue of quantum dissipation is exemplified with the fundamental problem
of a damped harmonic quantum oscillator. The role of quantum fluctuations is discussed in the
context of both, the nonlinear generalized quantum Langevin equation and the path integral ap-
proach. We discuss the consequences of the time-reversal symmetry for an open dissipative quan-
tum dynamics and, furthermore, point to a series of subtleties and possible pitfalls. The path integral
methodology is applied to the decay of metastable states assisted by quantum Brownian noise.
© 2005 American Institute of PhysidDOI: 10.1063/1.1853631

This work deals with the description of quantum Brown-
ian motion in linear and nonlinear quantum systems that
exhibit frictional influences. The symmetries of thermal
equilibrium impose severe constraints on the time evolu-
tion properties of open quantum systems. These lead to a
quantum generalization of the classical Einstein relation
that connects friction with the strength of thermal quan-
tum fluctuations. There exist a variety of theoretical
roadways to model quantum dissipation. Here, we discuss
the topic for the prominent case of a damped harmonic
oscillator upon combining thermodynamics and linear re-
sponse theory. A dissipative nonlinear quantum dynamics
can be dealt with a generalized quantum Langevin equa-
tion, a path integral formulation, or in terms of a gener-
alized quantum master equation for the corresponding
reduced dynamics. We illustrate the situation for the
problem of the dissipative decay out of a metastable state.
Furthermore, we point out a series of subtleties, pitfalls
and shortcomings that one must be aware of when con-
fronted with the world of quantum noise driven
phenomena.

I. INTRODUCTION

the substitution of the enerdgT from the classical equipar-
tition law* by the thermally averaged quantum enefgut
leaving out the zero point energy contributjoof the har-
monic oscillator. Nyquist's remark thus constitutes a precur-
sor of the celebrated work by Callen and Weftavho gen-
eralized the relations by Einstein, Nyquist, and Johnson to
include quantum effects: In their work they put forward a
generally valid connection between the response function
and the associated quantum fluctuations in equilibrium, the
quantum fluctuation-dissipation theorem.

Without doubt, quantum fluctuations constitute a promi-
nent noise source in many nanoscale and biological systems.
For example, the tunnelling and the transfer of electrons,
quasiparticles, and alike, is assisted by noise for which the
quantum naturecannot be neglected. The features of this
noise change drastically as a function of temperature: At suf-
ficiently high temperatures a crossover does occur to classi-
cal Johnson—Nyquist noise.

With this work we shall present various methods and
schemes of modelling quantum Brownian motion from first
principles. In particular, the thermal noise must at all times
obey the quantum version of the fluctuation-dissipation theo-

Albert Einstein explained the phenomenon of Brownian€M (& la Callen-Weltoh This latter property is necessary in

motion in hisannus mirabilisof 1905 by use of statistical

order to be consistent with the second law of thermodynam-

methods which he ingeniously combined with the laws ofics and the principle of(quantum detailed balance. We

thermodynamic$. In this pioneering work he as well pro-

elaborate on several alternative but equivalent methods to

vided a first link between the dissipative forces and the imdescribe quantum noise and quantum Brownian motion per

peding thermal fluctuations, known as tBenstein relation

se: These are the functional integral method for dissipative

which relates the strength of diffusion to the friction. This quantum systenis and time-dependent driven quantum
intimate connection between dissipation and related fluctuasystems, the quantum Langevirioperatoy approach, sto-

tions was put on a firm basis much later when Ny(fuimd

chastic scheme®;* or the concept of stochastic Schrodinger

Johnsoft considered the spectral density of voltage- andequations? In doing so, we call attention to distinct differ-

current-fluctuations.

ences to the classical situation and, as well, identify a series

What role do quantum mechanics and the associatedf delicate pitfalls which must be observed when making
guantum fluctuations play in this context? After the birth of even innocent looking approximations. Such pitfalls involve,
guantum mechanics in the early 1920's we can encounter iamong others, the rotating-wave approximation, the use of
the very final paragraph of the 1928 paper by Nyquist for thequasiclassical Langevin forces, the quantum regression hy-
first time the introduction of quantum mechanical noise viapothesis and/or the Markov approximatifi*3
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II. THE QUANTUM FLUCTUATION-DISSIPATION =Y(w)5V(w) where the admittanc¥(w) is identical to the
THEOREM AND ITS IMPLICATIONS susceptibilityy,o(w). As a consequence d)f-Q, the symme-

As already mentioned, in 1951 Callen and Weltontrized power spectrum of the current fluctuations is given by
proved a pivotal relation between equilibrium fluctuationsSi(@)=i®Sq(w) so that we obtain
and dissipative transport coefficients. Note also that this
quantum fluctuation-dissipation relation holds true indepen-

dent of particle statistics. The following cornerstone achieve- S, (@) =hw cotl—< ho )ReY(w)
ments can be found in this primary wotk: 2kgT
(1) The generalization of the classical Nyquist's formula to _,| e how
the quantum case; =2 e ReY(w). 6)

(2) the quantum mechanical proof that susceptibilities are

related to the spectral densities of symmetrized correla- N the high temperature limkgT>fiw, we recover the
tion functions. results of Nyquist and Johnson, i.8;(w)— 2kgT ReY(w).

For the Markovian limit of an Ohmic resistor, wheWw)
For a single degree of freedorimear response theory =1/R, this result simplifies to read (w)=2kgT/R. The
yields for the change of the expectation value of an operatorquantum version was already anticipated by Nyquist in the
valued observabl® due to the action of &classical force last paragraph of his 1928 pagerowever, he made use of

F(t) that couples to the conjugate dynamical operétor the original expression of Planck which yields only the sec-
. ond contribution present in the lower line @). Nyquist
<5B(t)>:f dsxea(t— 9F(S). (1) thus missed the first term arising from the vacuum energy
o Whicq4already appears in a paper by Planck published in
1911.

Here, 6B(t):B(t)—<_B>o_denotes the d_iﬁerence with respect On the other hand, in the extreme quantum likiT
to the thermal equilibrium averag8), in the absence of the <hw, we find thatS,(w) — e ReY(w). In particular, this
force. The reaction of the system is contained in the responsgpjies that atzero frequencyhe spectral weight of the cur-

function xga(t) with a so-called dissipative part rent fluctuations vanishes in the generic case where the ad-
1 mittance does not exhibit an infrared divergence.
Xaat) = E[XBA(t) - xas(— D] (2 We cannot emphasize enough that the quantum

fluctuation-dissipation relatiofb) and corresponding impli-
The Fourier transform ong(t) will be denoted byyga(w). It cations hold true for any isolated, closed quantum system.
is worth noting here that only wheA=B does this part in Thus, upon contracting the dynamics in full phase space onto
fact coincide with the imaginary part of the complex-valueda reduced description of an open quantum system exhibiting

susceptibility g a(w). dissipation these relations hold true nevertheless. Therefore,
The fluctuations are described by the equilibrium correcare must be taken when invoking approximations in order to
lation function avoid any violation of these rigorous relations. We next con-
sider the role of quantum dissipation for an exactly solvable
Cealt) =(8B(1) 5A(0))4 ©) situation: the damped quantum harmonic oscillator dynam-

at inverse temperatur@=1/kgT. The correlation function is CS-
complex-valued because the operat®( andA(0) in gen-
eral do not commute. While the antisymmetric parGaf(t)
is directly related to the response function by linear response
theory, the power spectrum of trymmetrizectorrelation !l QUANTUM DISSIPATION: THE DAMPED
function HARMONIC OSCILLATOR
Ssa(t) = 5(8B(t) SA(0) + 6A(0) 5B(1)) @ A. Equilibrium correlation functions
. o Let us next consider the most fundamental case of a
depends on the F(_)urler_ transform of the dissipative part Ogimple open quantum system, namely, the damped harmonic
the response function via oscillator. This problem could be tackled by setting up a
ho \_g microscopic model describing the coupling to environmental
ﬂ)XBA(w)- (5)  degrees of freedom to which energy can be transferred irre-
versibly, thus giving rise to dissipation. Such an approach
This result is the quantum version of the fluctuation-will be introduced in Sec. IV A. On the other hand, the lin-
dissipation theorem as it relates the fluctuations described bsarity of the damped harmonic oscillator allows us as alter-
Ssa(w) to the dissipative pa&gA(w) of the response. native to proceed on a phenomenological level. This ap-
In the spirit of the work by Nyquist and Johnson we proach is closely related to the usual classical procedure
consider as an example the response of a cudetiirough  where damping is frequently introduced by adding in the
an electric circuit subject to a voltage changé This im-  equation of motion a force proportional to the velocity.
pliesB=I and, because the voltage couples to the ch@ge Classically, the motion of a harmonic oscillator subject
A=Q. The response of the circuit is determined 8y w) to linear friction is determined by

Salw) =h cott’(
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t ] tion. Quantum corrections to this term are relevant at tem-
Mg+M f dsy(t—8)g(s) + Mwgq =0. () peratures of the ordérw,/ks or below, and these corrections

s may be obtained from weak coupling theories like the quan-
In the example of an electric circuit mentioned in the previ-tum master equation approath?’ However, there is an-
ous section, a damping kerng(t) with memory would cor-  other regime at temperatures beléw/4mkg. Here, the sec-
respond to a frequency-dependent admittance. In the speciahd term may initially be small, but nevertheless it may
case of ohmic friction corresponding t¥(w)=1/R, the  dominate the long-time behavior of the correlation function.
damping force is proportional to the velocity of the harmonic This becomes particularly apparent in the limit of zero tem-

oscillator, so that the equation of motion reads perature where the exponential functions in the second term
) . ) in Eq. (10) sum up to an algebraic long-time behavior, i.e.,
Mg+ Myq+Mawgg=0. (8)  §,()=—(hy/ ™Myt 2 Its relevance for the dynamical evo-

lution of the damped harmonic oscillator depends on the de-

In (7) and(8) the mass, frequency, and position of the OSCII_tails of the initial preparatioﬁ? Although the algebraic decay

lator are denoted b, wy, andq, respectively. Due to the its f th ¢ i limit it Iso be ob
Ehrenfest theorem, the equation of moti@h s still valid in resufts from the zero temperature imit it can also be ob-
served at low, but finite temperatures during intermediate

the quantum regime if we repla its expectation value. . A
g g placeby P es before an exponential decay with time consigraets

As a consequence, the quantum mechanical dynamic suscep-,; Th ¢ additional fi les besiceat
tibility agrees with the classical expresston® n.** The occurrence of additional time scales besig

low temperatures leads to shortcomings with the quantum
1 1 regression hypothesis and allows for the decay of correla-

w)=— , 9 : 3
Xqq(®) M =~ 2= lo3(0) + ol (9 tions on time scales longer than

where(w) denotes the Fourier transform of the dampingB. The reduced density matrix and the partition
kernel y(t). function
As mentioned before, the response function directly

yields the antisymmetric part of the position autocorrelation In the previous se_ct|on, we have seen that the dynam!cs
function Coq(t). It therefore suffices to discuss the s mme_of a damped harmonic oscillator can be fully described in
qa\- Yy

terms of the position autocorrelation functighO) and its
time derivatives as well as thelassical response function.
. . : ¥ one is interested only in equilibrium expectation values of
Gaussian process so that all higher order correlation func- , . L .
: : .arbitrary operators acting in the Hilbert space of the har-
tions may be expressed in terms of second order correlation ~ . ; o ey )
T i s ) . monic oscillator, it is sufficient to know the reduced density
functions:> In addition, equilibrium correlation functions . :
o ..~ matrix. By means of arguments analogous to the dynamic
containing momentum operatgoan be reduced to position . . . )
. . ) : case presented in the previous section, the reduced density
correlation functions by means gE=Mq. The dynamics of : "
. . . matrix can only depend on second moments of position and
the damped harmonic oscillator can therefore entirely be de- 5 5 . N
. S . momentum,(q°); and (p)s, respectively. The equilibrium
scribed by the response function, i.e., the Fourier transform ~ . . .
6,15,16 density matrix then necessarily takes the form
of (9) and S4(t).
In the case of Ohmic dampingyw)=1, the position N
autocorrelation can be explicitly evaluated from the ppa,q') = (2m(gP) Y2
fluctuation-dissipation theorent5). The inverse Fourier ' )
transform into the time domain is determined by the poles on <expl - (@+q)° (P)g
the right-hand side. The dissipative part of the dynamic sus- 8<q2>ﬂ h?
ceptibility leads to four poles at=*(w*iy/2) with ©
=(w3—7214)Y2 which contribute to the correlation function

(@-9)%. (1D

The second moments are found to read

Si((t) at all temperatures. At sufficiently low temperatures, 1 = 1
the poles of the hyperbolic cotangent @t iy, with the (@P)p= M3 7 2 . (12)
Matsubara frequencies,=27n/A3 become important as Br=m @+ vt [l | vil)
well. After performing the contour integration i), one  gnd
arrives at*>1°
M < _ @t vl A
i y Pp=—" 2 55 (13)
Sqq(t) = m exp(— §|t|> B = wgt vyt |Vn|7(|Vn|)

where we have introduced the Laplace transform of the

o sinh(f Bw)coq wt) + sin(7iBy/2)sin(wlt|) damping kernel

coshBw) — coghBvy/2)

v, expl— vlt)) 10 Y2) = fo dtexp(- zt) y(t). (14)

_ 2y _mexp it
MBA2 (1 + wp)? = Vrf . i i
We note that for strictly Ohmic damping the second mo-

In the limit of high temperatures the second term van-ment of the momentungl3) exhibits a logarithmic diver-
ishes and the first term yields the classical correlation funcgence which can be removed by introducing a finite memory

Downloaded 21 Jun 2005 to 137.250.81.48. Redistribution subject to AIP license or copyright, see http:/chaos.aip.org/chaos/copyright.jsp



026105-4 P. Hanggi and G.-L. Ingold Chaos 15, 026105 (2005)
0 - T r v 6 [ T T ]
—025 E
| 8 4 E
4 -05 E 2
L 9 L
-0.75 | E
-1 " 1 1 1 N 0 1 1
0 0.5 1 1.5 2 0 5 10 15
kaT/huwo (E — o) /T

FIG. 1. The weak coupling correction, to <q2>ﬁ according to(16) is
depicted as a function of the temperatdreFor ksT>fiwg, the correction
becomes negligible.

FIG. 2. The density of states defined by inversion of the relati@ for a
weakly damped harmonic oscillator wigh=0.1w, exhibits broadened peaks
close to the energies+nfwy. A delta function at the ground state enekgy

is not shown explicitly. The dotted line represents the average density of
states.

to the damping mechanism. For finite coupling to the envi-

ronment, i.e., for finite damping strengih the reduced den-

sity matrix (11) obviously does not agree with the canonical

density matrix exp-BHg) at the same temperature, whéte

denotes the Hamiltonian of the undamped harmonic oscilla-

tor. , o This leads to the product representation of the partition func-
In order to get an idea of the deviation of the true re-tion, i.e.,

duced density matrix from the canonical one, we consider

the leading corrections to the second moment of the position

due to the finite coupling to the environment. Expanding in .

orders of the damping strengtl, we obtain for Ohmic 1 vﬁ

1 d
(@)p=——————1In(2). a7

M,Bwo dwo

. Z= . 18
damping ﬁﬂwog Ve + v Y(vy) + 0§ o

2
(a24(y) —1+LAq+O(y2)

The properties of this partition function become more
transparent if one relates it to a density of stats) accord-

= 15 i 23
(P a(y=0) Two (15 ing to
with
2(p) = f dEp(E)exp(— BE). (19
/(- ﬁﬁw0> 0
Imy'\i——
_TBwg 2w

A= 2 hifwy) (16)  The factor(%Bwp) "t in (18) can then be interpreted in terms

COW( 2 ) of the average density of statésw,)* indicated in Fig. 2 as

a dotted line. We further note that the partition function di-

Here, ¢/ denotes the first derivative of the digamma func-verges for strict Ohmic damping. However, it can be shown
tion. The correction, is depicted in Fig. 1 as a function of that this divergence is entirely due to a divergence of the
temperature. We find that the leading corrections are particuground state energye, in the presence of Ohmic
larly important in the quantum regim&gT<#%w,, while in  dissipatior?® In contrast, for a bath with a spectral density
the classical regime the corrections to the canonical densitgossessing a high-frequency cutoff, emerges to be finite
matrix are negligible. [see Eq(1.19) in Ref. 24]. For large cutoff frequencies, the

As we have already mentioned, a finite memory time ofpoles of the partition function, which determine the density
the damping kernel or, equivalently, a finite cutoff frequencyof states, can then be determined from the condimﬁn
wp for the environmental mode spectrum is needed in ordet yvn+w§=0. These poles give rise to a density of states
to keep the second moment of the moment3y) finite. If ~ which for weak damping exhibits narrow peaks whose width
wp> wg, v, the corrections to the canonical density matrixis in agreement with the result from Fermi’s Golden Rule.
for weak coupling will only be small if the temperature is Figure 2 depicts an example fa/ wy=0.1. In view of the
larger than the cutoff frequency, i.&gT> 7 wp. remark made before, the density of states is shifted by the

The differences between the correct reduced density maground state energy. In addition, a delta peak at the ground
trix (11) and the canonical one are also reflected in the parstate energy has been omitted. With increasing damping
tition function. Without specifying a microscopic model for strength, the peaks broaden so that for sufficiently strong
the environment, the partition functiog for the damped damping a rather featureless density of states results which
harmonic oscillator can be obtained by the requirement thadlecreases with increasing energy to the average density of
it generates the second moment of position accordifty to  states(cf. Fig. 3 in Ref. 23.
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IV. DISSIPATION IN NONLINEAR QUANTUM that this model is also applicable to strongly damped systems
SYSTEMS: THE GENERALIZED QUANTUM LANGEVIN and may be employed to describe, for example, dissipative
EQUATION (QLE) tunnelling in solid state physics and chemical physfcs.

A. Bath of oscillators One may convince oneself that the Hamilton{@0) in-

) ) ) [deed models dissipation. Making use of the solution of the
For nonlinear systems the arguments given in the previgeisenberg equations of motion for the external degrees of

ous section no longer apply. In particular, second-order COrfeeqoni? one derives a reduced system operator equation of
relation functions are not sufficient anymore to completely,otion  the so-called generalized quantum Langevin
describe the damped system. An alternative approach t@quatic;r?

quantum dissipative systems starting from a Hamiltonian at
first sight does not seem feasible because the absence of

t

time-dependept forces implies energy _conservatipn.. qu- M{(t) + Mf dsy(t-9)g(s) + av(g,t) = &(t) (21)
ever, as we will see below, once it is realized that dissipation to dg
arises from the coupling to other degrees of freedom, it is . .
straightforward to model a damped quantum system in term\évIth the damping kernel
of a Hamiltonian. N

A well known technique to describe a statistical dynam- 1 Ci
ics governed by fluctuations is given by the method of gen- A)=A-1)= Mz mu,iZ codaxt) (22)

eralized master equations and the methodology of general-
ized Langevin equations. This strategy is by now welland the quantum Brownian force operator
developed foithermal equilibrium systemslere the projec-

tor operator techniqdé2**®yields a clear-cut method to ob- N

tain the formal equations, either thgenerally nonlinear &t) = - Myt —to)q(to) + > ci<xi(to)cos(wi[t—t0])
generalized quantum Langevin equati@LE) or thegener- i=1

alized quantum master equatiof@QME) for the rate of pi(ty) .

change of the reduced density matrix. + Mo Sln(wi[t—to]))- (23

Already for the case of relaxation towards a unique ther-
mal equilibrium specified by a single temperatufe the  The generalized quantum Langevin equati@i) appears
equivalence between the two approaches is not verfirst in a paper by Magalinski who started from(20) in the
transparent® A crucial role is played by the fluctuational absence of the potential renormalization term.
force which explicitly enters the equivalence, such as corre-  The force operatof23) depends explicitly on the initial
sponding cumulant averages to an arbitrary high order. Thisonditions at time, of the bath position operatosg(ty) and
fact is not appreciated generally, because one often restrictgith momentap;(t). The initial preparation of the total sys-
the discussion to the first two cumulants only, namely theem, which fixes the statistical properties of the bath opera-
average and its autocorrelation. It is a fact that little is knowntors and the system degrees of freeedom, turns the &tce
about the connection of the generalized master equation aridto a random operator. Note that this operator depends not
the corresponding generalized Langevin equation in a nonenly on the bath properties but as well on the initial system
linear situatiorf®?’ position q(ty). To fully specify the reduced dynamics it is

A popular model for the dynamics of a dissipative quan-thus of importance to specify the preparation procedure. This
tum system subject to quantum Brownian noise is obtainedh turn then also fixes the statistical properties of the quan-
by coupling the system of interest to a bath of harmonictum Brownian noise. Clearly, in order to qualify as a stochas-
oscillators. Accordingly, we write for the total Hamiltonian tic force the random forcé(t) should not be biased,; i.e. its

average should be zero at all times. Moreover, this Brownian
2

H= P +V(gt) guantum noise should constitutestationary process with
2M ' time-homogeneous correlations.
N 2 m 2 . f'Le(tj lés also introduce the auxiliary random forggt),
+ S 052 — gox + gr— 20 efined by
|21 om T e AL (20
7(t) = &(t) + Myt = to)q(to) (24)

where the first two terms describe the system as a particle of
mass M moving in a generally time-dependent potential which only involves bath operators. In terms of this new
V(q,t). The sum contains the Hamiltonian for a setMf random force the QLE21) no longer assumes the form of an
harmonic oscillators which areilinearly coupled with  ordinary generalized Langevin equation: it now contains an
strengthc; to the system. Finally, the last term, which de- inhomogeneous term(t-t,)q(t,), the initial slip term?*2’
pends only on the system coordinate, represents a potentidhis term is often neglected in the so-called “Markovian
renormalization term which is needed to ensure Wat,t) limit” when the friction kernel assumes the Ohmic form
remains the bare potential. This Hamiltonian has been study(t) —2y4&(t). For a correlation-free preparation, the initial
ied since the early 1960's for systems which are weaklytotal density matrix is given by the produpt=ps(to) Phath
coupled to the environmental degrees of freeddfi?®2831  wherepg(t,) is the initial system density matrix. The density
Only after 1980, it was realized by Caldeira and Leg3§ett matrix of the bath alone assumes canonical equilibrium, i.e.,
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D B. Consequences of time-reversal symmetry
: (25

1 S op?
Poath™= "y €XP ~ Bz {R e Let us now discuss some further properties of this QLE.
If the potentialV(q,t) in (20) doesnot explicitly depend on
with A/ denoting a normalization constant. timet, the dynamics of the full Hamiltoniaf20) obeys time
The statistical properties of the random forgét) then  reversal symmetry. It is thus an immediate consequence that

follow immediately: 7(t) is a stationaryGaussian operator  the reduced dynamics must be invariant under time reversal

noiseobeying as well. This must hold true despite the fact that the QLE has
been constructed to allow for a description of quantum dis-
(7)., =0, (26)  sipation. It is thus instructive to see how the validity under

time reversal emerges from the contracted description in
1 terms of the QLE in21).
Syt =9) = 2O 7S) + 7S 7(V)), Given the time of preparatioty, reversing the time
amounts to substituting time by ty—(t—tg) =2t;—t. Using

N2
= ﬁz S cogwt- s))coth( o ) (27)  again the random force(t) we can recast the QLE dynamics
2is1 Moy 2kgT after the time reversal into the form
Being an operator-valued noise, its commutator does not ) 2t _ dV(qg)
vanish Mg(2to—1t) + M f dsy(2to=t=9)q(s) + =5~
to
o =E2t-1) = 92— 1) = W2~ t=1to)q(ty).  (30)
(70, 7(9)]=-1h2 —— sin(wi(t-9)). (28) . . .
i=1 Mo, Setting next x(t)=q(2t,—t) and observing thatx(t)

=-q(2ty—t),X(t)=q(2t,—t), we find after the substitution of
the integration timau=2ty—s from (30) the result

t
duy(u—t)x(u) + d\(;(qq)

Setting for the initial position operatay(ty) =qo, the last
expression in27) is also valid for the noise correlaticB(t)
of the noise forceé(t) provided the average is now taken .
with respect to a bath density matrix which contains shifted MX(D) + M Jt
oscillators. The initial preparation of the bath is then given 0

by the new density matrigpa; = (2t = 1) = (2t — 1) = ¥t = OX(to). (31
(29) ——pi(ty) for the noise forces the relationg2ty—t) = 7(t)

- 1 P miwi2< Ci
-——e - — + —(x -
Pbath N Xp{ BEI [Zmi 2 X miwizqo
and &(2ty—t) =&(t). We conclude that the time reversed mo-

In some physical situations a microscopic model for thetion x(t)=q(2t,—t) indeed obeys again a QLE of the form
external degrees of freedom is availablé? Examples are (21). This even holds true in the Markovian limit where
the electromagnetic modes in a resonator acting as a reseyt—s)=2y4d(t—s) as one can convince oneself by smearing
voir or the dissipation arising from quasiparticle tunnelling out the delta function symmetrically. The QLE then reads for
through Josephson junctior”ﬁ;]n the case of an electrical all timest
circuit containing a resistor one may use the classical equa-
tion of motion to obtain the damping kernel and model the  \jg(t) + sgr(t - ty) My(t) + avia = &(1), (32
environment accordingly. This approach has been used, e.g., dq
to model Ohmic dissipation in Josephson junctions in orde
to study its influence on tunnelling procesggand to de-
scribe the influence of an external impedance in the charg
dynamics of ultrasmall tunnel junctiorié.

argument, y(u—t)=y(t-u), and thatx(ty)=q(ty), we find
upon changing all signs of the initial momenfa(ty)

)2}} Noting that the damping kernel is an even function of its

vhere sgfx) denotes the sign of.
The dissipation is reflected by the fact that for tintes
gto the reduced dynamics fog(t) exhibits a damped

uantumjybehavior on a time scale given by the Poincaré
This scheme of the QLE can also be extended to th @ ) 9 y

> S . ecurrence timé**the latter reaches essentially infinity for
nonequilibrium case with the system attached to two baths o

diff ft wurd A " " licati dd g\ll practical purposes if only the bath consists of a sizable
ierent tlemperatur€. A most recent application addresses ,, yper of path oscillator degrees of freeddritt

the problem of the thermal conductance through molecular
wires that are coupled to leads of different temperature. The?:
the heat current assumes a form similar to the Landauer for-
mula for electronic transport: The heat current is given in  The use of the generally nonlinear QI(El) is limited in
terms of a transmission factor times the difference of correpractice for several reasons. Moreover, the application of the
sponding Bose functions. QLE bears some subtleties and pitfalls which must be ob-
Furthermore, the QLE concept can also be extended teerved when making approximations. Some important fea-
fermionic systems coupled to electron reservoirs and whichfures are: The QLE21) is an operator equation that acts in
in addition, may be exposed to time-dependent dri\?ﬂ"lg. the full Hilbert space of system and bath. The coupling be-
The corresponding Gaussian quantum noise is now contween system and environment also implies an entanglement
posed of fermion annihilation operators. upon time evolution even for the case of an initially factor-

. Subtleties and pitfalls
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izing full density matrix. Together with the commutator S.(t)=S,,(t)
property of quantum Brownian motion, see E2g), we find

that the reduced, dissipative dynamics of the po;ition opera- - Mf do ReH(-iw+ 0+)hwcotr<h—w)cos(wt).

tor q(t) and momentum operatgi(t) obey the Heisenberg 7T Jo 2kgT

uncertainty relation for all times. (35)
This latter feature is crucial. For example, the non-

Markovian (colored Gaussian quantum noise with real- In the classical limit this relation reduces, independent of

valued correlationS,(t)=S,(-t) cannot simply be substi- the preparation of the bath wighor p, to the non-Markovian
tuted by aclassical non-Markovian Gaussian noise force Einstein relatiorS;«(t)=MkgTy(t). The relation(35) is by no
which identically obeys the correlation properties(@auss- means obvious: It implies that a modelling of quantum dis-
ian) quantum noise&(t). An approximation of this type sjpation is possible in terms of macroscopic quantities such
clearly would not satisfy the commutator property for posi- a5 the friction kerneh/(t) and the temperatur&. For other

tion and conjugate momentum of the system degrees of fregspling schemes between system and bath we generally can
dom. no longer express the correlation of quantum noise exclu-

The_ Iltf[erattl:]re IS futll offvatrlous battempts wh(cja_rem olne 24\(/ely in terms of macroscopic transport coefficients. As an
approximates the quantum features by corresponaing colore ample we mention the coupling of the system to a bath of

classical noise sources, e.g., see Refs. 43—45. Such schemes .
; ) 2446 two-level systemgspin bath rather than to a bath of har-
work at best near a quasiclassical liffi® but even then ; ] 18
care must be exercised. For example, for problems that extone oscillators. . . . :
hibit an exponential sensitivity, as, e.g., the dissipative decay Note, also thg following dllfference.s to the classical S'u,"
of a metastable state discussed in the next section, such 4H°N Of & generalized Langevin equation: The quantum noise
approach gives no exact agreement with the quantum dissg(t) 1S correlated with the initial position operatofty).
pative theory’>**1t is only in the classical high temperature This feature thatq(to)é(t)); #0 follows from the explicit
limit, where the commutator structure of quantum mechanic$orm of the quantum noisg(t). The correlation function van-
no longer influences the result. Perfect agreement is onlishes only in the classical limit. Note also that the expecta-
achieved in the classical limit. tion value of the system—bath interaction is finite at zero
The study of quantum friction in a nonlinear quantum temperature. These features reflect the fact that at absolute
system by means of the QL®R1) is plagued by the fact that zero temperature the coupling induces a nonvanishing deco-
the nonlinearity forbids an explicit solution. This solution, herence via the zero-point fluctuations.
however, is needed to obtain the statistical properties such as Moreover, the initial slip termy(t—to)q(t,) appears also
mean values and correlation functions. Thisknown non- in the absence of the potential renormalization in the Hamil-
linear response function also determines the derivation of thgynian (20). With this initial value contribution being ab-
rate pf change of the reduced density operator, i.e. the QMEqphed into the quantum fluctuatidit), these become sta-
and its solution for the open quantum system. tionary fluctuations with respect to the initial density

tThe ve(;y fac_t that thte ?LE ac(tjs ilullleiI(;).etr.t spgcr(]a gff r%perator of the bathy,, given by (29). Note, however, that
systém and environment aiso needs fo be distinguished oy, respect to an average over the bare, nonshifted bath

the classical case of a generalized Langevin equation. Thergénsity operatop the quantum fluctuationg(t) would
the stochastic dynamics acts solely on the state space of the bath

. . . : . . become nonstationary.
system dynamics with thé&lassical noise properties speci- . ; . L
figd a prigri.‘” © 9 prop P It is also worthwhile to point out here that this initial

The quantum noise correlations can, despite the expliciYaIue term in the QLE should not be confused with the initial
microscopic expression given {@7), be expressed solely by Value term that enters the corresponding QMEB' In the
the macroscopic friction kernekt). This result follows upon ¢@se of a classical reduced dynamics it is always

noting that the Laplace transfori(z) of the macroscopic POssible—by use of a corresponding projection operator—to
friction assumes with Re>0 the form formally eliminate this initial, inhomogeneous contribution

in the generalized master equatl‘gr?.0 This in turn renders

N the time evolution of the reduced probability a truly linear

if(z)=i2 Ci [ 1 + 1 } (33) dynamics. This property no longer holds for the reduced
2M S me?|l z-iw  z+iw quantum dynamics' For a non-factorizing initial prepara-

tion of system and bath this initial value contribution in the

With help of the well known relation Xx+i0")=P(1/x)  QME generally is finite and presents a true nonlinearity for

—imd(x) we find that the time evolution law of the open quantum dynamics!
There exist even further subtleties which are worthwhile
Rey(z=—-iw+0") to point out. The friction enters formally the QLE just in the
N same way as in the classical generaliz;;i La;ngevin equation.
__T Ci o ‘ In particular, a time-dependent potentM(q,t) leaves this
Y et miwiz[(s(w @) + dw+ )] 39 fiction kernel invariant in the QLE. In contrast to the clas-
sical Markovian case, however, where the friction enters the
By means of(27) we then find the useful relation corresponding Fokker—Planck dynamics independent of the
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time scale of driving, this is no longer valid for the general- 1 (9®@B)=q 1
ized quantum master equation dynamics of the correspond-  Pp(,d") = 7 , Daexp - gSE[qﬁ' (37)
ing reduced density matrf¢:>® A~ a0=a
The solution of the QLE involves the explicit time- where Z; is the partition function. This integral is called
dependence of both the friction and the potential forcesimaginary-time path integral in contrast to the real-time path
These in turn determine the statistical properties of the dernintegral (36). Note that in(37) the actiong ] has been re-
sity matrix. As a consequence, the friction force enters theplaced by the so-called Euclidean acti§fiq] which is ob-
QME in a rather complex manner. This can already be veritained by changing the sign of the potential term as a conse-
fied explicitly for a parametric dissipative oscillator dynam- quence of the transition to imaginary times. In imaginary
ics, where the time-dependent driving enters the diffusiveime we therefore have to consider the motion in the inverted
kinetic evolution law of the reduced density operator or itSpotential.
equivalent Wigner transfornf:>* The connection between classical and quantum mechan-
For the bilinear system—bath interaction with the bathics becomes particularly apparent in the path integral formu-
composed of harmonic oscillators it was possible to integratéation. The dominant contribution to the integrals(86) and
out the degrees of freedom of the bath explicitly. Does thig37) arise from the stationary points of the action, i.e., the
hold as well for other interactions? The elimination of theclassical paths. Quantum effects have their origin in fluctua-
bath degrees of freedom is still possible for a nonlinear coutions around the classical paths. Therefore, it is useful to
pling to a bath of harmonic oscillators if the system part ofdecompose a general path into the classical path and a fluc-
the coupling is replaced by a nonlinear operator-valued functuation around it. Expanding the action in powers of the fluc-
tion of either the momentum or position degree of freedomuations the second order term yields the leading quantum
of the system as long as the bath degrees of freedom appeesrrections. Higher order terms are often neglected within a
linearly. The resulting friction kernel then appears as a nonsemiclassical approximation which becomes exact for linear
linear friction but the influence of the bath degrees of free-systems.
dom still is obtained in exact forr. In the previous section we have derived an effective
Yet another situation for which one can derive an exacikequation of motion for the system variable by eliminating the
QLE is when a nonlinear system, such as a spin degree @fxternal degrees of freedom. The same procedure may of
freedom, interacts with a collection of quantiBose oscil-  course also be carried out within the path integral
lators in such a way that the interaction Hamilton@m-  formalism®31**%8The influence of the environment is then
muteswith the system Hamiltonian, thus constituting a quan-contained in an effective action which has to be added to the
tum nondemolition interaction. This case corresponds to puraction of the system and which in imaginary time is given
dephasing and was addressed by tuczka for the problem offa/®3134
spin in contact with a thermal heat bathit has since been
rederived many times, see, e.g., Ref. 55. 1 (8 hp
We end this subsection by mentioning also the coupling  S.{q]=- —J dq-f dok(r-o)[q(n) - q(0)]?, (39
of a system to a bath of independent fermions with infinitely 4Jo 0
many excitation energies. A suitable transformation then aly o
lows to map the dissipation onto a bosonic environment with
an appropriate coupling strength?®>®

+oo
M R .
Chby: 2 |valwvahexplivyr) (39
n=-o
V. PATH INTEGRALS AND EFFECTIVE ACTION . .
_ . and y(z) denotes the Laplace transform of the damping ker-
A. Nonlocal effective action nel y(t). The effective actiori38) is clearly nonlocal and can

A most effective approach to describe dissipation isthus not be expressed in terms of a potential. If the potential
based on the path integral formulation of quamumrenormalization term in the Hamiltoniai20) would be ab-
mechanics’ In the path integral formulation of quantum S€Nt there would have been a local contributioi38). The
mechanics the propagator is expressed as selfinteraction of the paths induced K§8) via the kernel

(39) decays for Ohmic damping only algebraically:a$ and
. A=y ) therefore represents a long range interaction.
i i
<qf|exp<- %Ht>|qi>= f Dq exp(%S[q]), (36)
q(0)=q;

B. Application: The dissipative decay of a metastable

where the integral runs over all possible paths starting at state

and ending after timé at g;. The paths are weighted with a
phase factor which contains the classical actby). A local potential minimum may be metastable due to the

For the description of quantum dissipative systems it isenvironmental coupling and quantum effects. Correspond-
important to realize the analogy between the propagator anitigly, there are two escape mechanisms: thermal activation
the equilibrium density matrix. The latter is obtained by re-which dominates at high temperatures and quantum tunnel-
placingt by -i# 8. We thus obtain fronf36) the path integral ling which becomes important at low temperatures. To be
representation of the equilibrium density matrix definite, we consider the cubic potential
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Vv stant solutiong1=0 in the well andg,=2q,/3 at the barrier.
- Below a temperature given by the positive solution of
1
vi+ [l Alml) - 05 =0 (4D
o q a second fluctuation mode becomes unstable, thereby indi-

~—r \ cating a new classical solution which performs an oscillation
| around the barrié This new solution is associated with
quantum tunnelling. Thereforg41) defines the crossover

FIG. 3. Cubic potential as defined in E@0). temperature which for Ohmic damping is given5?)y
i 1/2
To= [(fﬂuﬁ) -7 (42)
M, q 27kg| \ 4 2
V(@) =S oia|{1-— (40) _ .
2 Qo As discussed above, stronger damping leads to a lower cross-

over temperature and smaller quantum regime. It thus makes
the system more classical. A distinct feature of the dissipa-
tive quantum decay in the low temperature regime is its al-
gebraic enhancement of the decay rate with temperilture.
For the case of an Ohmic environment with a constant fric-
afion behavior at low frequencies one finds a universal

2. i -
regime on the left-hand side and the quantum regime on thz enha_ncement of both, th? pr_efactor and the effe_:cnve ac
tion, with the latter dominating the exponential rate

right-hand sid&€® Furthermore, we observe that the thermal o .67
regime is larger for stronger damping, i.e., the system pegNnancemernt.

comes more classical.
While a real time approach to dissipative decay isVI- SUNDRY REMARKS AND CONCLUSIONS

feasible®®*a simpler alternative is provided by an imagi-

nary time calculation where the partition functidp is con-

which is depicted in Fig. 3. The barrier height is given by
V,=(2/27Mw3g3 and, in this special case, the barrier angu-
lar frequencyw, equals the well angular frequenay.

In Fig. 4, the decay rate is shown in an Arrhenius plot.
At the so-called crossover temperatlig see Eq.(42) be-
low, there is a rather distinct transition between the therm

With this work we elucidated the topic of quantum
) X i _ Brownian noise which drives the dynamics of open dissipa-
sidered. Since the potentigd0) is not bounded from below, 0 qiantum systems. We have emphasized the strong im-
Itis no surprise that _stnctly_speaknﬂgg dqes not exist. From plications that thermal equilibrium and time-reversal symme-
the path integral point of view there exists an unstable ﬂuc—try (leading to detailed balance symmetignposes on the
tuation mode around the barrier which leads to a saddle po"}%duced system dynamics. We also pointed out the advanta-
in function space. One can circumvent this difficulty by per-geous use of the path integral scheme for the case of nonlin-

forming the integration in the direction of steepest descentearity and strong friction.

The partition function and as a consequence also the free This method seemingly is superior to any perturbative

energy then acquire an imaginary part which may be related peme hat treats the system—-bath coupling to low orders
to the decay ratét32 For details of this relation we refer the only, such as the weak coupling master equation
reaqrehr to the_ohsm;)ssmn n I?]ef. 65:' g _ methodology’° There are recent developments in the
e transition between thermal and quantum regime Caltrong friction regime, where an alternative description in
be well understood within the path integral picture by con-i. .o of 4 quantum Smoluchowski equation is promi&fhg,

sidering the possible classical paths of duratigh in the  geq 4156 the contribution by Grabert, Ankerhold, and Pechu-
inverted cubic potential. For high temperatures or shoq(as in this Focus Issue

imaginary times: 8 the only classical solutions are the con- A consequent use of the so-called rotating-wave approxi-

mations also may entail some danger. It safely can be applied
only in the weak coupling regime for resonant situations. We
remark that the use of the rotating-wave approximation im-
plies a violation of the Ehrenfest theorem in the order of
y2,13'69 which is clearly small only in the weak coupling
regime, i.e., fory<< wg, with wal denoting some typical time
scale of the system dynamics. The same remarks apply to the
failure of the quantum regression theoréi?*Again, the
effect might be small fofi) very weak dampinggii) not too

low temperatures obeyinkgsT>7%1v, and (iii) not too short
evolution times.

In(T/wo)

-120 L ' The generalized quantum Langevin equation discussed
0 20 40 60 in Sec. IV is formally exact for nonlinear quantum systems.
hawo/kpT Its practical use is typically restricted, however, to linear

FIG. 4. Arrhenius plot for the decay rate of a metastable state. The dampini?yStemS_mr which the respon_se can be evalu.ated in closed
strength varies from the upper to the lower curveyé8w,=0,0.5, and 1 10rM. Th's holds true even fqr t!me-dependent linear Systgms
(data taken from Ref. 60 for which the response is still linear although the evaluation
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