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We study analytically and numerically the overdamped, deterministic dynamics of a chain ofcharged,
interacting particles driven by a longitudinal alternating electric field and additionally interacting with a smooth
ratchet potential. We derive the equations of motion, analyze the general properties of their solutions and find
the drift criterion for chain motion. For ratchet potentials of the form of a double-sine and a phase-modulated
sine it is demonstrated that both, a so-called integer and fractional transport of the chain, can occur. Explicit
results for the directed chain transport for these two classes of ratchet potentials are presented.
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I. INTRODUCTION

During the last decade, much attention was devoted to the
study of the so-called ratchet effect, i.e., the rectifying of
nondirectional stochastic or deterministic driving forces into
directional motion of(quasi-)particles(for comprehensive re-
views, see, for example, Refs.[1–5]). This phenomenon is of
prominent practical importance and constitutes a theoretical
basis for Brownian motors[4,5], particle segregation[6,7],
reduction of a vortex density[8], smoothing of a crystalline
surface[9–11], and many others[1,2,5].

There exists a large variety of systems that exhibit the
ratchet effect. Those of them where transported particles are
exposed to a driving force and move in an asymmetric peri-
odic (ratchet) potential form a class of so-called rocking
ratchets[12]. In turn, stochastic and deterministic rocking
ratchets are distinguished, depending on whether they are
driven only deterministically, or whether they are subjected
also to stochastic forces. The fluctuating noise component in
turn allows for activated escape events[13] even at sub-
threshold driving. The stochastic situation has been studied
for both noninteracting[12,14,15] and interacting[16–19]
particles, and the strong influence of the interparticle inter-
actions was revealed. In contrast, the deterministic case has
been investigated primarily for noninteracting particles
[20–24]. At variance with earlier work[25] focusing on the
transport of driven linear defects(i.e., elastic chains) which
diffuse on asymmetric substrates at finite temperatures, the
objective of this study is to investigate the transport proper-
ties of a chain ofcharged, interacting particles in determin-
istic rocking ratchets. This model can be used for the inves-
tigation of one-dimensional crystals in carbon nanotubes[26]
and ion transport through synthetic nanopores[27].

The paper is organized as follows. In Sec. II, we derive
the reduced system of two equations that describes the deter-
ministic, overdamped motion of a chain. We carry out the

general analysis of this system in Sec. III. Specifically, we
introduce a class of its steady-state solutions, analyze the
chain dynamics in the inverted potential, and derive the drift
criterion of a chain. In Sec. IV, we study analytically and
numerically the overdamped transport of a chain in the
double-sine ratchet potential. Concluding remarks are con-
tained in Sec. V, and the phase-modulated sine potential is
introduced in the Appendix.

II. EQUATIONS OF MOTION

We study a chain of charged particles of identical masses
M that interact among each other via the Coulomb interac-
tion, a repulsive interaction, and additionally with a(sub-
strate) ratchet potentialVsxd having the periodd. Moreover,
the particles are driven by a longitudinal alternating electric
field Estd of a temporal period 2T. Therefore, the total poten-
tial energy of a chainVtot includes the interaction energyVint
and the potential energiesVr and Vel formed by a ratchet
potential and an electric field, respectively. Assuming that
any neighboring particles have opposite charges, i.e.,qi+1
=−qi and uqiu=q, and a repulsive interaction depends on the
interparticle distance asuxi −xju−r [xi =xistd is the coordinate
of the ith particle,r .1 since it prevents the unbounded con-
traction of a chain], these three parts of the total energy can
be written as follows:

Vint =
1

2o
i,j

8
qiqj

uxi − xju
+

b

2o
i,j

8
1

uxi − xjur
,

s2.1d
Vr = o

i

Vsxid, Vel = − o
i

qixiEstd.

Here b is a dimensioned parameter characterizing the
strength of the repulsive interaction, and the primes on the
summation signs imply thati Þ j .

Along with the potential force −]Vtot/]xi on the ith par-
ticle a friction force −lẋi (l is a damping coefficient) is also
acting. Then the equation of motion of each, individual par-
ticle reads
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Mẍi + lẋi +
]Vint

]xi
= qiEstd + fsxid, s2.2d

where fsxd=−V8sxd (here and below, the prime denotes the
derivative with respect to the argument of the function) is a
force field generated by a ratchet potential. The set of equa-
tions (2.2) is very complicated for a detailed analysis of the
chain motion because they are coupled and contain the non-
linear terms]Vint /]xi and fsxid. Nevertheless, the problem of
coupled ratchets does possess a very rich behavior, such as
anomalous hysteresis, self-oscillations, absolute negative
mobility, etc. [28], and thus is demanding to analyze. Since
our aim is to study a ratchet mechanism of the chain trans-
port, the nonlinear nature of the ratchet forcefsxid must be
taken into account, while the nonlinearity of the interaction
force ]Vint /]xi seemingly is not so essential. Therefore, in
order to partially simplify the problem, we restrict ourselves
to a harmonic approximation forVint. This approximation is
valid if during the period 2T of the action of the electric field
Estd the particle displacements are much less than the equi-
librium distancea [at Vsxd=0 andEstd=0] between the near-
est particles.

According to the findings in[29], a periodic chain with
equidistant particles exists only ifr . r2<2.799; in the op-
posite case the minimum ofVint occurs for a chain with in-
finite period. Assuming that the conditionr . r2 holds, it is
convenient to introduce the coordinates 2na+xn

+ and s2n
+1da+xn

− [nsn=0, ±1, . . .d numbers the chain cells which
contain two particles(see Fig. 1)] of positive and negative
charges, respectively. The equations of motion for the dis-
placementsxn

+=xn
+std andxn

−=xn
−std of these particles from the

equilibrium positions follow from Eq.(2.2). Using the har-
monic approximation forVint [29] and the notationsEstd
=Ehstd and fsxd= f0gsxd, whereE is the amplitude ofEstd,
f0= umin fsxdu, andhstd andgsxd are the dimensionless elec-
tric and ratchet force fields, respectively, the equations of
motion assume the form

ẍn
+ + 2Vlẋn

+ + V2o
m

B̃2sn−md−1sxn
+ − xm

− d

+ V2 o
mÞn

B̃2sn−mdsxn
+ − xm

+ d = Ahstd + Rgsxn
+d,

ẍn
− + 2Vlẋn

− + V2o
m

B̃2sn−md+1sxn
− − xm

+ d

+ V2 o
mÞn

B̃2sn−mdsxn
− − xm

− d = − Ahstd + Rgsxn
−d.

s2.3d

Here Vl=l /2M, V2=q2/Ml3, l =sb/q2d1/sr−1d is the length
scale,A=qE/M, R= f0/M,

B̃n =
1

g1
3srdF2

s− 1dn

unu3
+

sr + 1dln 2

zsrdunur+2 G , s2.4d

g1srd=frzsrd / ln 2g1/sr−1d, a= lg1srd, and zsrd=on=1
` n−r is the

Riemann zeta function. Note that Eqs.(2.3) are valid if the
condition uxn

±−xm
± u!a holds for alln andm. It provides the

applicability of the harmonic approximation and, as can be
shown readily, it does not prohibit the existence of un-
bounded(at t→`) solutions of these equations that describe
the chain transport.

The system of equations(2.3) constitutes a theoretical ba-
sis for the study of ratchet transport of ionic chains within
the harmonic approximation for the interparticle interactions.
Unfortunately, at present there are no methods to find and
analyze its unbounded solutions. Since this system contains
an infinite number of coupled nonlinear equations, the devel-
opment of such methods is a very complicated problem
which, in general, can be solved only approximately. How-
ever, we will show that, in a particular case, the chain trans-
port can be studied in detail without approximations.

More specifically, we consider the case when the equilib-
rium chain perioda in absence of the ratchet potentialVsxd is
a whole integer of the potential periodd, i.e.,a=Ld, whereL
is a natural number. Although this commensurability as-
sumption is rather restrictive(small discrepancy betweena
and Ld violates the chain periodicity in presence of the
ratchet potential), it permits us to reduce the infinite system
(2.3) to the system of only two equations. Indeed, if the
initial conditionsxn

±s0d=x± and ẋn
±s0d=v± (x± andv± are the

initial displacements and velocities of the positive and nega-
tive charges) hold for all n, then all positively charged par-
ticles and all negatively charged particles move identically.
Designating in this casexn

±=x±, from Eqs.(2.3) we get

ẍ+ + 2Vlẋ+ +
1

2
v2s1dsx+ − x−d = Ahstd + Rgsx+d,

s2.5d

ẍ− + 2Vlẋ− +
1

2
v2s1dsx− − x+d = − Ahstd + Rgsx−d,

wherev2s1d=2V2omB̃2m−1 is the squared frequency of opti-
cal vibrations of chain particles that corresponds to the di-
mensionless wave numberk=1 [29]. Note that Eqs.(2.5) are
derived from Eqs.(2.3) without approximations and they
precisely describe the chain dynamics in the examined case.
However, since a nonlinear oscillator driven by a periodic
force can exhibit chaotic behavior that is characterized by
strong sensitivity to initial conditions[30], the chain dynam-
ics governed by Eqs.(2.3) and(2.5) can be quite different if
the corresponding initial conditions slightly differ. With in-
creasing damping constant the chaotic domain in the param-
eter space is reduced, therefore we expect(and this is con-
firmed by simulations) that it vanishes in the overdamped
limit sVl→`d. In other words, the chain dynamics in this
limit is expected to be regular and predictable.

Introducing the dimensionless timet= t /2T and the di-
mensionless particle displacementsw;wstd=x+s2Ttd /d and

FIG. 1. Schematic representation of the ionic chain.
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u;ustd=x−s2Ttd /d, from Eqs.(2.5) we obtain in the over-
damped limit

x
dw

dt
= fHstd −

1

2
sw − ud + mGswd,

s2.6d

x
du

dt
= − fHstd −

1

2
su − wd + mGsud.

Herex=Vl /Tv2s1d andf=A/dv2s1d are the dimensionless
parameters characterizing the electric field frequency and
amplitude, respectively,Hstd=hs2Ttd, m=R/dv2s1d is the
dimensionless parameter characterizing the ratchet force am-
plitude,Gsx̄d=gsdx̄d, x̄=x/d is the dimensionless coordinate,
and according to Eq.(2.4)

v2s1d = V2S ln 2

rzsrd
D3/sr−1d

3F4 ln 2s1 − 2−r−2dsr + 1d
zsr + 2d

zsrd
− 7zs3dG .

s2.7d

Assuming that all particles att=0 are in equilibrium(their
equilibrium positions are those in absence of the ratchet po-
tential), the initial conditions for Eqs.(2.6) are written as
ws0d=us0d=0. The system of equations(2.6) provides a very
useful tool for studying the transport properties of ionic
chains. Indeed, on the one hand, it is a rather simple set of
only two coupled, ordinary differential equations of first or-
der and, on the other hand, it accounts for the interparticle
interactions and the action of the ratchet force.

By the definitions, the functionsHstd andGsx̄d have unit
periods,Hst+1d=Hstd and Gsx̄+1d=Gsx̄d, and zero mean
values,e0

1Hstddt=0 and e0
1Gsx̄ddx̄=0. The latter condition

shows that the total work, delivered by the ratchet force field
fsxd on any interval of lengthd, equals zero. In general, the
functionsHstd andGsx̄d can be both, continuous and discon-
tinuous. But here, to simplify the numerical solution of Eqs.
(2.6), we consider them as smooth, differentiable functions.

In what follows, to find the drift criterion of a chain, we
shall use the dimensionless potential energyU=Usw,u,td
that reduces Eqs.(2.6) to the form

x
dw

dt
= −

]

]w
U, x

du

dt
= −

]

]u
U. s2.8d

Introducing the representationVsxd=V0Wsx̄d, whereV0.0
andWsx̄d is the dimensionless ratchet potential, and by use of
the definitions offsxd and f0, we get f0=sV0/ddmaxW8sx̄d
and

Gsx̄d = − W8sx̄d/maxW8sx̄d. s2.9d

Finally, from the inspection of the right-hand sides of Eqs.
(2.6) and (2.8) we obtain

U = − f sins2ptdsw − ud +
1

4
sw − ud2

+ mfWswd + Wsudg/maxW8sx̄d. s2.10d

III. GENERAL RESULTS

A. Periodicity analysis

In order to exclude from consideration transient pro-
cesses, we need to examine the asymptotic, steady-state so-
lutions of Eqs.(2.6). These solutions depend on many fac-
tors, such as the form of a ratchet potential, characteristics of
a chain, initial conditions, etc., and consequently can be stud-
ied in detail only numerically. However, using the periodicity
of Hstd andGsx̄d, it is possible to introduce different classes
of the steady-state solutions. One particular such class is gen-
erated by those periodic solutions of Eqs.(2.6) that asymp-
totically t→` obey

wst + kd = wstd + K, ust + kd = ustd + K, s3.1d

wherek andK are natural and integer numbers, respectively,
that have no common factors. In this case, the periodicity
and increment of the functionswstd and ustd are described
by the pair hk,Kj which at KÞ0 corresponds to the drift
state of a chain. Since the reduced chain displacementDw
=limt→`fwst+kd−wstdg /k that occurs during one period of
Hstd is given byDw=K /k (note that the harmonic approxi-
mation is valid if uKu /k!L), we shall term the chain trans-
port characterized by the pairhk,Kj as “integer” ifk=1, and
“fractional” if kù2.

According to the conditions(3.1), the average velocity of
a chain or drift velocity v=sd/2Tdlimt→` wstd /
tf=sd/2Tdlimt→` ustd /tg is reduced to

v =
d

2T
lim
t→`

wst + kd − wstd
k

, s3.2d

which, in turn, yieldsv=v0v̄, wherev0=dv2s1d /2Vl and v̄
=xK /k is the dimensionless drift velocity. Taking into ac-
count that the periodicity and drift parametersk and K de-
pend, in general, on all parameters of Eqs.(2.6), we conclude
that v̄ is a discontinuous linear function ofx.

We emphasize that this class does not exhaust all the
steady-state solutions of Eqs.(2.6). Moreover, the symmetry
approach does not permit us to find their unique steady-state
solution in each concrete case. Therefore, to study the trans-
port properties of a chain, it is necessary to numerically find
the solution of Eqs.(2.6) (with zero-valued initial condi-
tions) and examine its long-time behavior depending on the
form of a ratchet potential, the electric field characteristics,
and the chain parameters.

B. Chain dynamics in the inverted potential

We now consider the chain dynamics in the inverted po-
tential Vinsxd=Vs−xd that generates the reduced force field
Ginsx̄d. According to Eqs.(2.6), in such a potential the dis-
placementswinstd and uinstd of positively and negatively
charged particles from their equilibrium positions are gov-
erned by the equations of motion
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x
dwin

dt
= fHstd −

1

2
swin − uind + mGinswind,

s3.3d

x
duin

dt
= − fHstd −

1

2
suin − wind + mGinsuind

fwins0d=uins0d=0g. Taking into account thatGins−x̄d=
−Gsx̄d, one can show from Eqs.(2.6) and (3.3) that winstd
=−ustd anduinstd=−wstd. This implies that if the chain dy-
namics is known for the ratchet potentialVsxd, then it is also
known for the corresponding inverted potentialVinsxd as
well. In particular, if a chain in the potentialVsxd drifts along
thex-axis, then in the inverted potentialVinsxd it drifts in the
opposite direction with the same average velocity, i.e.,vin
=−v. We emphasize that in reflection-symmetric potentials
the drift state of a chain, i.e., a chain state withvÞ0, does
not exist. Indeed, as it is shown above, the general condition
vin=−v must hold. On the other hand, ifVs−xd=Vsxd, then
Vinsxd=Vsxd and so the conditionvin=v also must hold. It is
obvious that both conditions are met simultaneously only if
v=0.

The above mentioned features of the chain dynamics per-
mit us to study the overdamped transport of ionic chains only
in those ratchet potentials that induce the chain drift, say,
with positive velocityv. In the following we consider the
simple-structured ratchet potentials. We assume that the re-
duced potentialsWsx̄d and the corresponding force fields
Gsx̄d have only one maximum and one minimum on unit
period and, in addition, maxGsx̄d.1, (see Fig. 2).

C. Drift criterion

To find the conditions that lead to the drift state of a chain,
we rewrite Eqs.(2.6) as

x
dw

dt
= fHstd −

1

2
sw − ud + mGswd,

s3.4d

x
d

dt
sw + ud = mfGswd + Gsudg,

where the second equation is obtained by summing(2.6). If
m /x→0, then it reduces to the equationdsw+ud /dt=0,
which with ws0d=us0d=0 yieldswstd=−ustd. Using this re-
lation and the condition thatm /x→0, the first equation in
(3.4) takes the formxdw/dt+w=fHstd. Its solution

wstd =
f

x
E

0

t

Hst − t8de−t8/xdt8 s3.5d

shows that

wst + 1d = wstd +
f

x
e−t/xE

0

1

Hs− t8de−t8/xdt8, s3.6d

and sowst+1d=wstd for t→`. This means that the drift
state of a chain does not exist ifm /x→0. Since the param-
eter x is proportional to the electric field frequency, its de-
crease leads to an increase of the maximal particle displace-
ments, yieldinguvux.0=0 if uvux=0=0. The last condition is
violated if the amplitude parameterf is large enough. There-
fore, to find the drift criterion of a chain, we need to consider
its dynamics asx→0.

According to Eqs.(3.4), in the stationary regimesx→0d
the chain dynamics is described by the system of nonlinear
equations

fHstd −
1

2
sw − ud + mGswd = 0,

s3.7d
Gswd + Gsud = 0.

If for each time the chain energyU has a minimum value,
i.e., if in virtue of Eqs.(3.7) the conditions

]2U

]w2 . 0,
]2U

]w2

]2U

]u2 − S ]2U

]w]u
D2

. 0 s3.8d

hold, then uvux=0=0. The latter condition in(3.8), G8swd
+G8sud−2mG8swdG8sud,0, is weaker than the former,
2mG8swd−1,0. Hence, it is violated first under increasing
of the parameterf. Let fcr be the critical value of the pa-
rameterf such that, forf=fcr, the latter inequality in(3.8)
is reduced to equality at some instant of time. It is obvious
that this occurs for the first time att=t1, wheret1s,1d is the
minimal solution of the equationHst1d=1. Then, using the
first equation in(3.7), we obtain

fcr =
1

2
swcr

− − ucr
− d − mGswcr

− d, s3.9d

wherewcr
− =wst1−0d anducr

− =ust1−0d are defined by the sys-
tem of equations

FIG. 2. Form of the reduced ratchet potentialWsx̄d, part(a), and
the corresponding force fieldGsx̄d, part (b), that are under consid-
eration in this work.
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G8swcr
− d + G8sucr

− d − 2mG8swcr
− dG8sucr

− d = 0,

s3.10d
Gswcr

− d + Gsucr
− d = 0.

At f=fcr andt=t1+0 the chain particles instantly move
to the new equilibrium positionswcr

+ =wst1+0d and ucr
+

=ust1+0d, which are defined by another system of equations

fcr −
1

2
swcr

+ − ucr
+ d + mGswcr

+ d = 0,

s3.11d
Gswcr

+ d + Gsucr
+ d = 0.

As Fig. 2 illustrates, in this case the positively charged par-
ticles pass into the next potential wells, while the negatively
charged particles do not leave their own wells. A detailed
analysis shows that during the second and each following
period ofHstd both types of particles instantly move into the
next potential wells twice. In other words, during each period
of an alternating electric field a chain in the steady-state re-
gime is displaced by two periods of a ratchet potential.

Thus, the drift criterion of a chain, that leads to the con-
dition uvux=0Þ0, has the formf.fcr. As f→fcr and x
→0 a chain exhibits the integer transport with the drift pa-
rameterK=2 and with an average velocityv̄=2x. According
to Eqs. (3.9) and (3.10), to calculatefcr it is necessary to
know the explicit form of a ratchet potential. However, tak-
ing into account that forw= x̄1 and u= x̄5−1 the conditions
Gswd+Gsud=0 anduvux=0=0 hold, we find the general con-
dition

fcr .
1

2
sx̄1 − x̄5 + 1d + m, s3.12d

which can be used for approximate estimation offcr.
Note also that, because for noninteracting particles the

chain energy(2.10) does not contain the termsw−ud2/4, the
drift criterion of free particles assumes the formf.m. The
main distinction between the drift states of interacting and
noninteracting particles thus is the result that in the latter
caseK→` asx→0.

IV. DOUBLE-SINE POTENTIAL

A. Analytical results

We examine the chain dynamics in the asymmetric ratchet
potential composed of two spatial harmonics[12]. This so-
called double-sine potential is defined asVdsxd=V0dWdsx̄d,
whereV0d is a positive constant and

Wdsx̄d = − sinf2psx̄ + x̄ddg − hd sinf4psx̄ + x̄ddg. s4.1d

Here, the parameterhds.0d characterizes the form of the
reduced potentialWdsx̄d, and the parameterx̄d=xd/d defines
the positions of its extrema. The functionWdsx̄d and the cor-
responding reduced force fieldGdsx̄d=−Wd8sx̄d /maxWd8sx̄d
ffdsxd= f0dGdsx̄d , f0d=sV0d/ddmaxWd8sx̄dg both have qualita-
tively the same forms as those depicted in Fig. 2, i.e., they
have only two extrema per unit period and minWdsx̄d
=Wds0d, if hd,h0d= 1

8 and

x̄d =
1

2p
arccos

Î1 + 32hd
2 − 1

8hd
. s4.2d

[Yet another ratchet potential that possesses the same prop-
erties asVdsxd is introduced in the Appendix.] For these con-
ditions, we find that maxWd8sx̄d=2ps1−2hdd, min Wd8sx̄d
=−2ps1+2hdd, f0d=2ps1−2hddV0d/d,

Gdsx̄d = hcosf2psx̄ + x̄ddg + 2hd cosf4psx̄ + x̄ddgj

3s1 − 2hdd−1, s4.3d

Gdsx̄1d=min Gdsx̄d=−1 if x̄1= 1
2 − x̄d, Gdsx̄2d=Gds0d=0 if x̄2

=1−2x̄d, Gdsx̄4d=maxGdsx̄d=s1+2hdd / s1−2hdd if x̄4

=1−x̄d, andGdsx̄3d=Gdsx̄5d=1 if

x̄3,5= 1 − x̄d 7
1

2p
arccos

Î1 + 16hd − 1

8hd
, s4.4d

where the upper and lower signs correspond to the indexes 3
and 5, respectively.

To calculatefcr, we proceed as follows. First, instead of
the second equation in(3.10), we introduce the two equa-
tions Gswcr

− d=−r and Gsucr
− d=rs−1ørø1d. Then, taking

into account the conditionsx̄1,wcr
− , x̄3 and x̄5−1,ucr

− , x̄1,
we find their solutions

Swcr
−

ucr
− D =

1 ± 1

2
− x̄d 7

1

2p
arccos

Zs±rd − 1

8hd
, s4.5d

whereZsrd=Î1−16hdr+32hd
2s1+rd, and, using Eqs.(4.3)

and (4.5), we reduce the first equation in(3.10) to the form

o
s

shds1 − 2hdd

ZssrdÎ64hd
2 − fZssrd − 1g2

=
p

2
m s4.6d

ss= ±1d. Since the left-hand side of Eq.(4.6), Lsrd, is a
monotonic odd function andLsrd→` asr→1, this equation
always has a unique solution with respect tor. If that solu-
tion is known, then from Eqs.(3.9) and (4.5) we get the
desired formula

fcr =
1

2
+ mr −

1

4p
o
s

arccos
Zssrd − 1

8hd
. s4.7d

According to Eqs.(4.6) and(4.7), fcr is a universal function
of m and hd. A corresponding 3-D plot, obtained via the
numerical solution of Eq.(4.6), shows(see Fig. 3) thatfcr is
an almost linear function of these variables.

An analytical solution of Eq.(4.6) is possible only in
some special cases. Specifically, ifhd→0, then, calculating
the leading term ofLsrd, Eq. (4.6) gives

rs3 − 2r2d
s1 − r2d3/2 = p

m

hd
. s4.8d

At m /hd→` its approximate solution readsr=1
−shd/pmd2/3/2, and Eq.(4.7) yields fcr=

1
4 +m. Another ex-

ample corresponds to the limitm→0. BecauseLs0d=0, the
solution of Eq.(4.6) tends to zero asm→0, and sofcr=

1
2

− x̄d. We emphasize that the caseshd=0 andm=0 are degen-
erate. This means that forhd=0 andm=0 the drift state of a
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chain never exists, while forhdÞ0 andmÞ0 it is realizable.
The reason lies in the breakdown of the spatial symmetry.

B. Numerical results

We solved Eqs.(2.6) with zero initial conditions by the
fourth-order Runge-Kutta method forHstd=sins2ptd and
Gsx̄d=Gdsx̄d. The analysis shows that each steady-state solu-
tion of Eqs. (2.6) satisfies the conditions(3.1). At f.fcr,
the typical dependence of the dimensionless chain displace-
ment Dw on x is depicted in Fig. 4(a). The changes ofDw
occur in a very narrow intervalssx1

s ,x2
sd (the indexs labels

these intervals) of thex-axis. We found that if the parameter
x does not belong to these intervals, thenk=1, and the chain
dynamics is characterized by the pairsh1,Kj. According to
our terminology, a chain exhibits an integer transport ifK
Þ0. Its main features are as follows. First, the chain velocity
v̄=Kx is a piecewise linear function ofx that has a number
of local maxima[see Fig. 4(b)]. These maxima occur due to
the discrete character of the drift parameterK. Second,uKux=0
is an increasing, step-like function off that equals zero if
f,fcr and takes even numbers iff.fcr. Specifically, in

accordance with the analytical results,uKux=0=2 at f<fcr.
To illustrate forx!1 the chain dynamics in the drift state,
the time dependence of the particle displacementswstd and
ustd and the phase trajectory of the chain motion are shown
in Figs. 5 and 6 forf=3 andm=2. Since a chain reaches the
steady state only ift@x (the relaxation time is of the order
of x), the functionswstd andustd represent the steady-state
solution of Eqs.(2.6), which satisfy the conditionswst+1d
=wstd+4 andust+1d=ustd+4, att*1. Finally, the increase
of x leads to the stepwise decrease ofK and a smoothing of
wstd andustd.

Solving Eqs.(2.6) for xP sx1
s ,x2

sd, we discovered that the
chain dynamics is characterized by the pairshk,Kj with k
ù2 andKÞ0. In this case a fractional transport of a chain is
realized. The number of the intervalssx1

s ,x2
sd equalsuKux=0

ss=1,2, . . . ,uKux=0d and their width grows withs. Within
each such interval the chain displacementDw=K /k assumes
a stepwise function ofx that satisfies the conditionKs−1
,K /k,Ks, whereKs= uKux=0−s+1 is the drift parameter to
the left of the intervalsx1

s ,x2
sd. If x approaches its boundaries

on the inside, thenk is strongly increased,K /k→Ks as x
→x1

s, and K /k→Ks−1 as x→x2
s. Table I illustrates these

properties for the case represented in Fig. 4 atxP sx1
4,x2

4d,
wherex1

4<0.4693877 andx2
4<0.4732787. To illustrate the

chain dynamics atxP sx1
4,x2

4d, the time dependence of the
particle displacementswstd andustd and the phase trajectory
of the chain motion are depicted in Figs. 7 and 8, respec-
tively. If x.x2

4, then a drift of the chain does not exist and
the phase trajectory explores a finite region of the phase
plane.

FIG. 3. 3-D plot offcr as a function ofm andhd.

FIG. 4. Plots ofDw, part (a), andv̄, part (b), vs x for f=3 and
m=2. The intervalssx1

s ,x2
sd ss=1, . . . ,4d are not visible on this

scale.

FIG. 5. Plots of the particle displacementswstd and ustd for
f=3, m=2, andx=10−4.

FIG. 6. Phase trajectory of the chain motion for the same pa-
rameters as in Fig. 5.
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The fractional transport occurs also for noninteracting
particles. But thex-intervals, where such a transport exists,
are much more narrow as compared to those observed in the
interacting case. In particular, according to the above results
x2

4−x1
4<3.9310−3, while for noninteracting particles the

width of the corresponding interval approximately equals
1.4310−4.

Note that in the phase-modulated sine potential, intro-
duced in the Appendix, the ionic chain exhibits qualitatively
the same features. We expect, therefore, that the results of the
overdamped ionic chain dynamics are typical and robust for
the considered class of ratchet potentials.

V. CONCLUSIONS

We have investigated the overdamped transport of a chain
of charged, interacting particles driven by a longitudinal al-
ternating electric field that additionally interact with a
smooth, nonsymmetric, periodic ratchet potential. Assuming
that the equilibrium particle positions coincide with the
minima of a ratchet potential, we have reduced the infinite
system of equations that describes the dynamics of each
chain to the system of two equations which effectively de-
scribe the dynamics of only two, positively and negatively
charged, representative particles. The reduced system of
equations (2.6) has the advantage of being particularly
simple because it consists of two ordinary differential equa-
tions of first order, which are driven by the external force.

Using the time-periodicity of an alternating electric field
and the space-periodicity of a ratchet potential, we have in-
troduced a wide class of corresponding steady-state solutions
of Eqs.(2.6). The mathematical structure corresponds to the
drift state of the ionic chain. Particularly, all the steady-state

solutions of Eqs.(2.6) obtained numerically in the cases of
the double-sine and phase-modulated sine potentials belong
to this class. Studying the chain dynamics in the original
ratchet potential and in its inverted realization, we have
shown that, depending on the parameter regime, a chain ei-
ther does not drift at all for both realizations, or it has a finite
drift velocity v which is opposite in value, and correspond-
ingly −v, for the inverted ratchet potential. Considering the
chain dynamics in the stationary regime, we have derived the
drift criterion of a chain. Accordingly, the drift state of a
chain takes place if during the first half-period of an alternat-
ing electric field the chain particles perform stick-slip transi-
tions.

Applying analytical and computational methods for analy-
sis of the chain dynamics in the double-sine and phase-
modulated sine ratchet potentials, we have shown that the
chain displacement, which occurs during one full period of
an alternating electric field, is a monotonically decreasing,
stepwise function of the electric field frequency. This func-
tion, scaled by the ratchet potential period, takes on only
integer and fractional values. Therefore, only two types of
the chain transport, namely integer and fractional, do exist.
Both types occur for tailored frequency intervals; the fre-
quency intervals, however, that correspond to the fractional
transport are much more narrow than those corresponding to
the integer transport.
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APPENDIX: PHASE-MODULATED SINE POTENTIAL

We define a new ratchet potentialVpsxd, which we call the
phase-modulated sine potential, asVpsxd=V0pWpsx̄d, where
V0p is a positive constant and

Wpsx̄d = − sinh2psx̄ + x̄pd + hp sinf2psx̄ + x̄pdgj. sA1d
FIG. 7. Plots of the particle displacementswstd and ustd for

f=3, m=2, andx=0.473.

FIG. 8. Phase trajectory of the chain motion for the same pa-
rameters as in Fig. 7.

TABLE I. The numbersk andK vs. x for xP sx1
4,x2

4d.

x k K x k K

0.46938773 135 134 0.472 2 1

0.4693878 39 38 0.473 9 2

0.469388 21 20 0.4732 8 1

0.46939 7 6 0.47327 47 2

0.4694 3 2 0.473278 82 1

0.47 3 2 0.4732785 150 1
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The dimensionless potentialWpsx̄d and the corresponding di-
mensionless force Gpsx̄d=−Wp8sx̄d /maxWp8sx̄d ffpsxd
= f0pGpsx̄d , f0p=sV0p/ddmaxWp8sx̄dg both have only two ex-
trema on the unit period if the phase amplitudehps.0d sat-
isfies the condition hp,h0p<0.31767, and minWpsx̄d
=Wps0d if the parameterx̄p fx̄pP s0, 1

4
dg is a solution of the

equation

2px̄p + hp sins2px̄pd = p/2. sA2d

In this case, maxWp8sx̄d=2ps1−hpd, min Wp8sx̄d=−2ps1
+hpd, f0p=2ps1−hpdV0p/d,

Gpsx̄d = cosh2psx̄ + x̄pd + hp sinf2psx̄ + x̄pdgj

3h1 + hp cosf2psx̄ + x̄pdgjs1 − hpd−1, sA3d

Gpsx̄1d=−1 if x̄1= 1
2 − x̄p, Gpsx̄2d=Gps0d=0 if x̄2=1−2x̄p, and

Gpsx̄4d=maxGpsx̄d=s1+hpd / s1−hpd if x̄4=1−x̄p.
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