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Ratchet transport for a chain of interacting charged particles
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We study analytically and numerically the overdamped, deterministic dynamics of a chatmaafed
interacting particles driven by a longitudinal alternating electric field and additionally interacting with a smooth
ratchet potential. We derive the equations of motion, analyze the general properties of their solutions and find
the drift criterion for chain motion. For ratchet potentials of the form of a double-sine and a phase-modulated
sine it is demonstrated that both, a so-called integer and fractional transport of the chain, can occur. Explicit
results for the directed chain transport for these two classes of ratchet potentials are presented.
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[. INTRODUCTION general analysis of this system in Sec. lll. Specifically, we
] ] introduce a class of its steady-state solutions, analyze the
During the last decade, much attention was devoted to thgnain dynamics in the inverted potential, and derive the drift
study of the so-called ratchet effect, i.e., the rectifying ofcriterion of a chain. In Sec. IV, we study analytically and
nondirectional stochastic or deterministic driving forces i”tonumerically the overdamped transport of a chain in the
directional motion ofquasihparticles(for comprehensive re- - gouple-sine ratchet potential. Concluding remarks are con-
views, see, for example, Refd—5]). This phenomenon is of tained in Sec. V, and the phase-modulated sine potential is
prominent practical importance and constitutes a theoreticahtroduced in the Appendix.
basis for Brownian motor§4,5], particle segregatiof6,7],
reduction of a vortex density8], smoothing of a crystalline
surface[9-11], and many other§l,2.5. Il. EQUATIONS OF MOTION

There exists a large variety of systems that exh_|b|t the We study a chain of charged particles of identical masses
ratchet effect. Thqse of them where tr_ansported part|_cles AR that interact among each other via the Coulomb interac-
exposed to a driving force and move in an asymmetric peri

! . F="tion, a repulsive interaction, and additionally with(sub-
odic (ratchej potential form a class of so-called rocking stratg ratchet potentiaV(x) having the periodi. Moreover,
ratchets[12]. In turn, stochastic and deterministic rocking

ratchets are distinguished, depending on whether they ar:?e particles are driven by a longitudinal alternating electric

. o, . eld E(t) of a temporal period 2. Therefore, the total poten-
driven only deterministically, or whether they are subjected.. . . . .
. : . ‘tial energy of a chailV,y includes the interaction enerd,,
also to stochastic forces. The fluctuating noise component in

turn allows for activated escape evelifs3] even at sub- and th_e potential energiey, and Ve, formed by a ra_tchet
threshold driving. The stochastic situation has been studie otential and an electric field, respectively. Assuming that
ving. 1N . . ny neighboring particles have opposite charges, @&,
for both noninteracting12,14,1% and interacting[16—19 _ _ T .
) . ; % =-q; and|g|=q, and a repulsive interaction depends on the
particles, and the strong influence of the interparticle inter-

. ) o Ty () !
actions was revealed. In contrast, the deterministic case hénterpartlcle distance a, XJ| [%=%(1) is the coordinate

been investigated primarily for noninteracting particIes?ragi)'rgho?EgtéﬂZirihlezg]?ﬁrgepre;r?gtjft&i l:gg c;t;r;](lerd ngr}
[20—-24. At variance with earlier work25] focusing on the b P gy

transport of driven linear defectge., elastic chainswhich be written as follows:

diffuse on asymmetric substrates at finite temperatures, the 1w, Q0 bw, 1
objective of this study is to investigate the transport proper- int = < —J—|X_ —x| + 5= X — x|’
ties of a chain oftharged interacting particles in determin- LA b
istic rocking ratchets. This model can be used for the inves- (2.1
tigation of one-dimensional crystals in carbon nanotBés Vo= 2 V(%), Ve=-> gxE(t).
I I

and ion transport through synthetic nanopdi2§g.

h Th% pap(;ar IS orgaryzed as folllows.hln iec. l.lb’ Wehde(;'veHere b is a dimensioned parameter characterizing the
the reduced system of two equations that describes the det&lfangih of the repulsive interaction, and the primes on the
ministic, overdamped motion of a chain. We carry out theg, 1 +oiion signs imply that |.

Along with the potential force #V,,/ dx; on theith par-
ticle a friction force -\x; (\ is a damping coefficiepis also
*Electronic address: denisov@sumdu.edu.ua acting. Then the equation of motion of each, individual par-
TElectronic address: hanggi@physik.uni-augsburg.de ticle reads
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y4 ~ 1 -D" (r+1in2
Bn="3 3 t 2 | (2.4)
<3 .8 vl InP Z0)n|
UQ‘ @\ gAW ®-W-S /‘“‘ s (D) =[rZ()/In 2]M0Y a=ly(r), and {(r)=="_,n" is the
YO Yl Riemann zeta function. Note that Eq2.3) are valid if the
n= n=

condition |x;— x| <a holds for alln andm. It provides the
applicability of the harmonic approximation and, as can be
shown readily, it does not prohibit the existence of un-
. . Nt boundedatt— ) solutions of these equations that describe
MX; + \X; + Pyl gE() +f(x), (220 the chain transport.

! The system of equation(®.3) constitutes a theoretical ba-
where f(x)=-V'(x) (here and below, the prime denotes thesis for the study of ratchet transport of ionic chains within
derivative with respect to the argument of the funcfima  the harmonic approximation for the interparticle interactions.
force field generated by a ratchet potential. The set of equajnfortunately, at present there are no methods to find and
tions (2.2) is very complicated for a detailed analysis of the analyze its unbounded solutions. Since this system contains
chain motion because they are coupled and contain the noRp, jnfinite number of coupled nonlinear equations, the devel-
linear termsiV;,/ x; andf(x,). Nevertheless, the problem of opment of such methods is a very complicated problem
coupled ratchets does possess a very rich behavior, such #Pich, in general, can be solved only approximately. How-

anomalous hysteresis, self-oscillations, absolute negativger, e will show that, in a particular case, the chain trans-
mobility, etc.[28], and thus is demanding to analyze. Since, .t can he studied in detail without approximations.

our aim is to §tudy a ratchet mechanism of the chain trans- More specifically, we consider the case when the equilib-
port, the nonlinear nature of the raichet for) must be rium chain perioda in absence of the ratchet potentiék) is

taken into account, while the nonlinearity of the interactiona whole integer of the potential periakdi.e..a=Ld, whereL
force dVi,/ 9x; seemingly is not so essential. Therefore, in. 9 P P oo

order to partially simplify the problem, we restrict ourselves'S @ ”.at“fa' number. Although th|§ commensurability as-

to a harmonic approximation fov,.. This approximation is SuMmption is rather restrictivesmall discrepancy betweem

valid if during the period Z of the action of the electric field @nd Ld violates the chain periodicity in presence of the

E(t) the particle displacements are much less than the equi@tchet potentig) it permits us to reduce the infinite system

librium distancea [at V(x)=0 andE(t)=0] between the near- (2-3 to the system of only two equations. Indeed, if the

est particles. initial conditionsx;(0)=x. andx;(0)=v. (x. andv, are the
According to the findings irf29], a periodic chain with initial displacements and velocities of the positive and nega-

equidistant particles exists only if>r,~2.799; in the op- tive chargeshold for all n, then all positively charged par-

posite case the minimum &f,,, occurs for a chain with in- ticles and all negatively charged particles move identically.

finite period. Assuming that the conditian>r, holds, it is  Designating in this casg;=x*, from Egs.(2.3) we get

convenient to introduce the coordinaterazx; and (2n

+1a+x, [n(n=0,%1,..) numbers the chain cells which ) 1

contain two particlegsee Fig. ] of positive and negative X"+ 20,X" + sz(l)(x* - X7) = Ah(t) + Rg(x"),

charges, respectively. The equations of motion for the dis-

placementsx’ =x'(t) andx,=x,(t) of these particles from the (2.5

equilibrium positions follow from Eq(2.2). Using the har- K+ 20, + lwz(l)(x_ —x*) = - Ah(t) + RgX),

monic approximation forVy,, [29] and the notation€E(t) 2

=Eh(t) and f(x)=fyg(x), whereE is the amplitude ofE(t),

fo=|min f(x)|, andh(t) andg(x) are the dimensionless elec-

) . . . herewz(l):2022m§2m_l is the squared frequency of opti-
tric .and ratchet force fields, respectively, the equations 0\ﬁlal vibrations of chain particles that corresponds to the di-
motion assume the form

mensionless wave number1 [29]. Note that Eqs(2.5) are
K5+ 20,50+ 02 B, em-106 = X3 derived from Eqgs.(2.3) without approximations and they
m precisely describe the chain dynamics in the examined case.
o P . However, since a nonlinear oscillator driven by a periodic
+022 Ban-m (X = X) = AN(t) + RY(x,), force can exhibit chaotic behavior that is characterized by
m=n strong sensitivity to initial conditiong30], the chain dynam-
ics governed by Egqg2.3) and(2.5) can be quite different if

FIG. 1. Schematic representation of the ionic chain.

o+ 20,56 + Q2 Bonmysa (K = X the corresponding initial conditions slightly differ. With in-
m creasing damping constant the chaotic domain in the param-
+02> B (= x0) = — Ah(t) + RAOXCO). eter space is reduced, therefore we exgant this is con-
gn 20-m (X = X (0 + Rgxx,) firmed by simulationgthat it vanishes in the overdamped

limit (), — ). In other words, the chain dynamics in this

23 limit is expected to be regular and predictable.
Here Q,=\/2M, Q?=g?/MI3, |=(b/?)¥V is the length Introducing the dimensionless time=t/2T and the di-
scale,A=qE/M, R=fy/M, mensionless particle displacementsw(7)=x"(2T7)/d and
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u=u(7)=x(2T7)/d, from Egs.(2.5 we obtain in the over- Ill. GENERAL RESULTS
damped limit A. Periodicity analysis
X(;—W:¢H(r)—}(w—u)+ue(w), In order to exclude from consideration transient pro-
T 2

cesses, we need to examine the asymptotic, steady-state so-
(2.6 lutions of Eqs.(2.6). These solutions depend on many fac-
_ 1 tors, such as the form of a ratchet potential, characteristics of
Xg, =~ ¢H(D ~ Su-w) + uG(). a chain, initial conditions, etc., and consequently can be stud-
ied in detail only numerically. However, using the periodicity
Here x=0,/Tw*(1) and $=A/dw?(1) are the dimensionless of H(r) andG(x), it is possible to introduce different classes
parameters characterizing the electric field frequency angs the steady-state solutions. One particular such class is gen-

amplitude, respectivelyH(r)=h(2T7), u=R/dw*(1) is the  erated by those periodic solutions of E¢2.6) that asymp-
dimensionless parameter characterizing the ratchet force antically r— o obey

plitude, G(x)=g(dx), x=x/d is the dimensionless coordinate,
and according to Eq2.4)

In2 3/(r-1)
(1) = Qz<—)

w(r+Kk) =w(7) +K, u(r+k)=u(7)+K, (3.1

r{(r) wherek andK are natural and integer numbers, respectively,
{r+2) that have no common factors. In this case, the periodicity
X [4 IN21-2"?)(r+1)>=——-7,3)|. and increment of the functions(7) andu(r) are described
{(r) by the pair{k,K} which atK# 0 corresponds to the drift

(2.7) state of a chain. Since the reduced chain displacemant
=lim,_[w(7+k)—w(7)]/k that occurs during one period of

Assuming that all particles d@t=0 are in equilibrium(their e — ; -
equilibrium positions are those in absence of the ratchet poH(T) is given by Aw=K/k (note that the harmonic approxi

tential), the initial conditions for Eqs(2.6) are written as mation is vaIio_I if|K|/k<L), we shall f_erm th? _chain trans-
w(0) :Du(0)=0. The system of equati?)m(z.g))provides avery port gharac?enzed by the pak, K} as “integer” ifk=1, and
useful tool for studying the transport properties of ionic fracnonal_ it k=2. - .
chains. Indeed, on the one hand, it is a rather simple set of ACCO(dlng to the pondmong&l), the average velocity of
only two coupled, ordinary differential equations of first or- *_ g?;_ll_nl_ or drn;t .velodcny dv_(d/ZT)“me w(n)/
der and, on the other hand, it accounts for the interparticldl=(d/2Dlim-_.. u(7)/ 7] is reduced to

interactions and the action of the ratchet force.

By the definitions, the functionl(7) and G(x) have unit d . wr+k —w(7)
periods,H(7+1)=H(7) and G(x+1)=G(x), and zero mean v= oT lﬁ‘c K ' (3.2)

values, [§H(ndr=0 and [3G(x)dx=0. The latter condition

shows that the total work, delivered by the ratchet force field . ) _ ) _
f(x) on any interval of lengtil, equals zero. In general, the Which, in tum, yieldsv=vou, wherev,=dw(1)/2Q, andv
functionsH(7) andG(x) can be both, continuous and discon- =XX/K is the dimensionless drift velocity. Taking into ac-
tinuous. But here, to simplify the numerical solution of Eqs.Count .that the periodicity and drift parametdrandK de-
(2.6), we consider them as smooth, differentiable functions.P€Nd: in general, on all parameters of E@s6), we conclude

In what follows, to find the drift criterion of a chain, we thatu is a discc_mtinuous Iipear function gf
shall use the dimensionless potential enetgyU(w,u,7) We emphaS|ze_ that this class does not exhaust all the
that reduces Eq$2.6) to the form steady-state solutions of Eq&.6). Moreover, the symmetry

approach does not permit us to find their unique steady-state
dw d du d solution in each concrete case. Therefore, to study the trans-
XE = &_NU’ XE_ =" %U- (2.8 port properties of a chain, it is necessary to numerically find
the solution of Eqs(2.6) (with zero-valued initial condi-
Introducing the representatiovi(x) =VoW(x), whereV,>0  tions) and examine its long-time behavior depending on the
andW(x) is the dimensionless ratchet potential, and by use oform of a ratchet potential, the electric field characteristics,
the definitions off(x) and f,, we getfo=(Vy/d)maxwW’ (x) and the chain parameters.

and
G(X) = - W (X)/maxW'(X). (2.9 B. Chain dynamics in the inverted potential
Finally, from the inspection of the right-hand sides of Egs. e now consider the chain dynamics in the inverted po-
(2.6) and(2.8) we obtain tential Vi,(X)=V(-x) that generates the reduced force field
1 Gin(x). According to Egs(2.6), in such a potential the dis-
U=-¢sin2m7r)(w-u)+ Z(W_ u)? placementsw;,(7) and u,,(7) of positively and negatively
charged patrticles from their equilibrium positions are gov-
+ u[W(w) + W(u) J/maxW' (x). (2.10 erned by the equations of motion
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W dw 1
Xg, = RO = SW=-u)+uGWw),
T 2
(3.9
\ d
0 Xd_r(W+ w) = u[G(w) + G(u)],
where the second equation is obtained by sumnig). If
ulx—0, then it reduces to the equatiaiiw+u)/dr=0,
GE® which with w(0)=u(0)=0 yieldsw(7)=-u(7). Using this re-
Y lation and the condition thai/x— 0, the first equation in
! (3.4) takes the formydw/d7r+w=¢H(7). Its solution
u, |l -
A U ¢ (7 :
ot | w(7) = —f H(r-7)e " xdr (3.5
e I XJo
ol Lk shows that
FIG. 2. Form of the reduced ratchet potentiix), part(a), and b 1 -
the corresponding force fiel@(x), part(b), that are under consid- w(r+1) =w(7) + ;e ™| H(=7)emXd7, (3.6
0

eration in this work.

and sow(7+1)=w(7) for 7—cc. This means that the drift

dwi, _ 1 state of a chain does not existf/ y— 0. Since the param-
Xdr ~ PH(7) - E(Wi”_ Uin) + 1Gin(Win), eter y is proportional to the electric field frequency, its de-
(3.3 crease leads to an increase of the maximal particle displace-
duy, 1 ments, yielding v[,-0=0 if v],=0=0. The last condition is
Xq, =~ PH(7) - é(uin = Win) + uGis(Uj) violated if the amplitude parametekis large enough. There-

fore, to find the drift criterion of a chain, we need to consider
its dynamics ay— 0.
According to Egs(3.4), in the stationary regiméy— 0)

[Win(0)=Uin(0)=0]. Taking into account thatGy(-X)=  he chain dynamics is described by the system of nonlinear
-G(x), one can show from Eqg%2.6) and (3.3) that wi,(7) equations

=-u(7) andu;,(7)=-w(7). This implies that if the chain dy-
namics is known for the ratchet potenti&lx), then it is also 1

known for the corresponding inverted potenth}(x) as ¢H(T)_§(W_u)+“G(W):0'

well. In particular, if a chain in the potentig(x) drifts along 3.7
the x-axis, then in the inverted potenti},(x) it drifts in the G(w) + G(u) = 0. '
opposite direction with the same average velocity, vg,,

=-v. We emphasize that in reflection-symmetric potentialsif for each time the chain energy has a minimum value,
the drift state of a chain, i.e., a chain state witi# 0, does i.e., if in virtue of Eqgs.(3.7) the conditions

not exist. Indeed, as it is shown above, the general condition

vin=—v must hold. On the other hand, ¥(-x)=V(x), then +FU ~o FUFU | FU 2> 0 (3.8
Vin(X)=V(x) and so the condition;,=v also must hold. It is M2 Toaw? au \ awau '
obvious that both conditions are met simultaneously only if

v=0. hold, then v|,-,=0. The latter condition in3.8), G'(w)

The above mentioned features of the chain dynamics per:G’(u)-2uG'(W)G'(u) <0, is weaker than the former,
mit us to study the overdamped transport of ionic chains onl)2uG'(w)—-1<0. Hence, it is violated first under increasing
in those ratchet potentials that induce the chain drift, saypf the parametep. Let ¢, be the critical value of the pa-
with positive velocityv. In the following we consider the rameter¢ such that, forgp= ¢, the latter inequality ir(3.9)
simple-structured ratchet potentials. We assume that the rés reduced to equality at some instant of time. It is obvious
duced potentialsM(x) and the corresponding force fields that this occurs for the first time at 7, wherer,(<1) is the
G(x) have only one maximum and one minimum on unit minimal solution of the equatioki(7)=1. Then, using the
period and, in addition, ma@&(x) > 1, (see Fig. 2 first equation in(3.7), we obtain

l(Wgr = Ug) — uG(wy), (3.9

d’cr: 2

C. Drift criterion

To find the conditions that lead to the drift state of a chain,wherew,=w(r;—0) andu_=u(7;—0) are defined by the sys-
we rewrite EQs(2.6) as tem of equations
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G’ (W) + G’ (ug) — 2uG' (W,)G'(ug) =0, _ 1 V1+325-1
(3.10 4= arccos——————. (4.2
. T 874

G(wg,) + G(ug) =0. .
_ _ _ [Yet another ratchet potential that possesses the same prop-
Al ¢= ¢ and 7=, +0 the chain particles instantly move erties asv(x) is introduced in the AppendikFor these con-
to the new equilibrium positionsv, =w(m;+0) and uy  ditions, we find that ma¥V,(X)=2m(1-27y), minW;(X)
=u(m,+0), which are defined by another system of equations= (1 +2y,), fou=2m(1 - 279)Vod/d,

e — }(Wgr —ul) + uGw) =0, Gy(X) = {cog 27(x + Xg)] + 2974 cog 4mr(X + Xg) |}
2 011 X(1- 2997, 4.3
G(w},) +G(u}) = 0. ' Gu(Xy) =min Gy(x)=~1 if X;=3~Xg, Gy(X)=G4(0)=0 if X,

: - L - =1-2Xg,  Gg(xs)=maxGy(x)=(1+279)/(1-279) if X4
As Fig. 2 illustrates, in this case the positively charged par-:l_yd, and Gy(xs) = Gy(xg) =1 if

ticles pass into the next potential wells, while the negatively

charged particles do not leave their own wells. A detailed _ _ 1 Vi+16p4-1
analysis shows that during the second and each following X35=1=Xg+ afCCOSB—Ud, (4.4

period ofH(7) both types of particles instantly move into the

next potential wells twice. In other words, during each periodwhere the upper and lower signs correspond to the indexes 3

of an alternating electric field a chain in the steady-state reand 5, respectively.

gime is displaced by two periods of a ratchet potential. To calculate¢,,, we proceed as follows. First, instead of
Thus, the drift criterion of a chain, that leads to the con-the second equation i(8.10, we introduce the two equa-

dition v|,-0#0, has the form¢> . As ¢p— ¢ and y  tions G(wg)=—p and G(Uy)=p(-1<p=<1). Then, taking

—0 a chain exhibits the integer transport with the drift pa-into account the conditions, <w, <Xz andxs—1<ug,<Xq,

rameterK =2 and with an average velocity=2y. According  we find their solutions

to Egs.(3.9) and (3.10), to calculated,, it is necessary to _ 141 1 2+ 1
know the explicit form of a ratchet potential. However, tak- (WC ) =X F — arccosﬁ, (4.5)
ing into account that fow=x; andu=xs—1 the conditions Ug, 2 2 874

c(i;iglc\)/);G(u):O and U|X=0:0 hold, we find the general con- whereZ(p):\/1—16:7dp+3277§(1+p), and, using Eqs4.3)

and(4.5), we reduce the first equation (8.10) to the form

1 _
bor > E(Yl—x5+1)+,u, (3.12 ony(1 = 27y -7 4.6
> Z(op)\64n5—[Z(op) - 1> 2

which can be used for approximate estimationggf ) . .
Note also that, because for noninteracting particles théo=%1). Since the left-hand side of Eq4.6), L(p), is a

chain energy2.10) does not contain the tertw—u)?/4, the ~ Monotonic odd function and(p) — asp— 1, this equation

drift criterion of free particles assumes the foep> . The ~ @lways has a unique solution with respecftdf that solu-

main distinction between the drift states of interacting andion is known, then from Eqs(3.9) and (4.5) we get the
noninteracting particles thus is the result that in the lattedesired formula

caseK—x as y—0. 1 1 Z -1
b=+ up— 2 arccos2 271 49
2 AT 874

IV. DOUBLE-SINE POTENTIAL

According to Eqs(4.6) and(4.7), ¢, is a universal function

of u and 74 A corresponding 3-D plot, obtained via the
We examine the chain dynamics in the asymmetric ratchetumerical solution of Eqi4.6), shows(see Fig. 3that ¢, is

potential composed of two spatial harmon[d®]. This so- an almost linear function of these variables.

A. Analytical results

called double-sine potential is defined ¥g(x)=VqWy(X), An analytical solution of Eq(4.6) is possible only in
whereVyq is a positive constant and some special cases. Specifically7if— 0, then, calculating
- . _ . _ the leading term of.(p), Eq. (4.6) gives
Wy(X) = = si2m(x+Xxg)] - 7 si4m(x +xg)]. (4.) 5 o2
Here, the parameteny(>0) characterizes the form of the M S (4.9

232 =T

reduced potentia,(X), and the paramete;=x4/d defines (1=p%) T

the positions of its extrema. The functidy(x) and the cor- At u/7ny3—o its approximate solution readsp=1
responding reduced force fielG()=-Wy(x)/maxWy(X)  —(5q/ mp)?3/2, and Eq(4.7) yields ¢, =3 +u. Another ex-
[fa(X)=f04Ga(X), fog=(Voa/ d)maxW(x)] both have qualita- ample corresponds to the limit— 0. Becausd.(0)=0, the
tively the same forms as those depicted in Fig. 2, i.e., theyolution of Eq.(4.6) tends to zero ag.— 0, and Sod’cr:%
have only two extrema per unit period and mif(x) X, We emphasize that the casgs=0 andx=0 are degen-
=Wy(0), if 7y< WOd:% and erate. This means that faj;=0 andw=0 the drift state of a
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0 1 2 T

FIG. 5. Plots of the particle displacemens7) and u(7) for
$=3, u=2, andy=10"4,

accordance with the analytical results],-o=2 at ¢= ¢,
To illustrate fory<<1 the chain dynamics in the drift state,
the time dependence of the particle displacemerits and

. ) . o . u(7) and the phase trajectory of the chain motion are shown
chain never exists, while fopy# 0 andu # 0 it is realizable. ;. Figs. 5 and 6 foky=3 andu=2. Since a chain reaches the

The reason lies in the breakdown of the spatial symmetry. steady state only it> y (the relaxation time is of the order
of x), the functionsw(7) andu(r) represent the steady-state
solution of Eqgs.(2.6), which satisfy the conditions/(7+1)
) o N =w(7)+4 andu(7+1)=u(7)+4, atr= 1. Finally, the increase
We solved Eqs(2.6) with zero initial conditions by the  of y Jeads to the stepwise decreasekoand a smoothing of
fourth-order Runge-Kutta method fdd(7)=sin(277) and  \(7) andu(7).
G(X)=Gy(x). The analysis shows that each steady-state solu- Solving Eqs(2.6) for y e (x5, x3), we discovered that the
tion of Egs.(2.6) satisfies the condition€3.1). At ¢> ¢,  chain dynamics is characterized by the pdksk} with k
the typical dependence of the dimensionless chain displace=2 andK # 0. In this case a fractional transport of a chain is
mentAw on y is depicted in Fig. @&). The changes oAw  realized. The number of the intervalg;, x3) equals K|~
occur in a very narrow intervalyi, x3) (the indexs labels  (s=1,2, ... K|,-) and their width grows withs. Within
these intervalgsof the y-axis. We found that if the parameter each such interval the chain displacemant=K/k assumes
X does not belong to these intervals, thenl, and the chain  a stepwise function of that satisfies the conditioks—1
dynamics is characterized by the pajfisK}. According to  <K/k<Kg, whereK¢= K|,-o—s+1 is the drift parameter to
our terminology, a chain exhibits an integer transporKif the left of the intervalx$, x3). If x approaches its boundaries
#0. Its main features are as follows. First, the chain velocityon the inside, therk is strongly increasedk/k— K as x
v=Ky is a piecewise linear function of that has a number _,,* andK/k—Ks-1 asy— x5. Table | illustrates these
of local maxima[see Flg Qb)] These maxima occur due to properties for the case represented in F|g 4(3t(X‘11-X‘21)1
the discrete character of the drift paraméteSecond.Kl,-o  where y~0.4693877 ang4~0.4732787. To illustrate the
is an increasing, step-like function @f that equals zero if - chain dynamics aj e (x4, x3), the time dependence of the
¢ < ¢ and takes even numbers ¢f> ¢ Specifically, in haricle displacements(7) andu(r) and the phase trajectory
of the chain motion are depicted in Figs. 7 and 8, respec-

FIG. 3. 3-D plot of ¢, as a function ofw and 7.

B. Numerical results

Aw ) T @ tively. If x> x5, then a drift of the chain does not exist and
4 T the phase trajectory explores a finite region of the phase
st J plane.
I
2 ' w '
i s
1} I: !
0 F— : 8
Vo (b)
04} :: ] >
I
4t
02}
0.0 L .
0.0 0.2 0.4 y4 0 . .
_ ] 5 10 n
FIG. 4. Plots ofAw, part(a), andv, part(b), vs y for ¢=3 and
u=2. The intervals(x;,x3) (s=1,...,4 are not visible on this FIG. 6. Phase trajectory of the chain motion for the same pa-
scale. rameters as in Fig. 5.
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TABLE I. The numbersk andK vs. x for x e (x7,x3)-
X k K X k K
0.46938773 135 134 0.472 2 1
0.4693878 39 38 0.473 9 2
0.469388 21 20 0.4732 8 1
0.46939 7 6 0.47327 47 2
0.4694 3 2 0.473278 82 1
0.47 3 2 0.4732785 150 1
The fractional transport occurs also for noninteracting 0 1 2 u

particles. But they-intervals, where such a transport exists,
are much more narrow as compared to those observed in tlpg
interacting case. In particular, according to the above results
X3—Xx1=3.9x 107, while for noninteracting particles the , , , _
width of the corresponding interval approximately equalsSolutions of Eqs(2.6) obtained numerically in the cases of
1.4X 1074, the double-sine and phase-modulated sine potentials belong
Note that in the phase-modulated sine potential, introl0 this class. Studying the chain dynamics in the original
duced in the Appendix, the ionic chain exhibits qualitatively "a(chet potential and in its inverted realization, we have
the same features. We expect, therefore, that the results of t§80Wn that, depending on the parameter regime, a chain ei-

overdamped ionic chain dynamics are typical and robust fofher does not drift at all for both realizations, or it has a finite
the considered class of ratchet potentials. drift velocity v which is opposite in value, and correspond-

ingly —v, for the inverted ratchet potential. Considering the
chain dynamics in the stationary regime, we have derived the
V. CONCLUSIONS drift criterion of a chain. Accordingly, the drift state of a

We h . . dth d d fach chain takes place if during the first half-period of an alternat-
e have investigated the overdamped transport of a ¢ a'fﬁg electric field the chain particles perform stick-slip transi-
of charged, interacting particles driven by a longitudinal aI-tions

ternating electric fie'ld thqt qdditionally interact with a Applying analytical and computational methods for analy-
smooth, honsymmetric, periodic ratchet potential. Assumln%iS of the chain dynamics in the double-sine and phase-

th_at_ the equilibrium partic_le positions  coincide With Fh_e modulated sine ratchet potentials, we have shown that the
minima of a ratchet potential, we have reduced Fhe infinite hain displacement, which occurs during one full period of
SKSt.e",: c;fh equa?ons ]Ehtat descn?es thi.dk)]/na;fmmt; cif 3‘30 alternating electric field, is a monotonically decreasing,
chain o the system of two equations which etiectively e'stepwise function of the electric field frequency. This func-
scribe the dynamics Qf only two, positively and negatlvelyti n, scaled by the ratchet potential period, takes on only
chargt_ed, rgpreshenta'f[lr\]/ € pgrt'd?s‘ Th? krjeduced ?_ystlen? teger and fractional values. Therefore, only two types of
equa lons (2.6) 1as the advantagé of being particulanly yq cpain transport, namely integer and fractional, do exist.
simple because it consists of two ordinary differential equag types occur for tailored frequency intervals: the fre-

tions .Of first order, Wh.'Ch. are driven by the'external for(;e. quency intervals, however, that correspond to the fractional
Using the time-periodicity of an alternating electric field

M. > - transport are much more narrow than those corresponding to
and the space-periodicity of a ratchet potential, we have inz,. . .

. ; . the integer transport.
troduced a wide class of corresponding steady-state solutions
of Egs.(2.6). The mathematical structure corresponds to the

drift state of the ionic chain. Particularly, all the steady-state

FIG. 8. Phase trajectory of the chain motion for the same pa-
meters as in Fig. 7.
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w(t)-1
21 u@)-2

1 APPENDIX: PHASE-MODULATED SINE POTENTIAL

W . ] We define a new ratchet potenth)(x), which we call the
0 5 10 T phase-modulated sine potential, ‘agx):vopwp&j, where

Vop is @ positive constant and
FIG. 7. Plots of the particle displacementgr) and u(r) for

¢=3, u=2, andy=0.473. W,(X) = = sim{27(x + Xg) + 77, sif2(x + xp) [} (A1)
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The dimensionless potentid,(x) and the corresponding di- In this case, maWé&j:Zw(l—np), min Wé&jZ—Zw(l
mensionless ~ force Gp(})=-W,(x)/maxWy(x)  [f(x)  +m,), fop=27(1=7,)Vop/d,
=f0sGp(X) , fop=(Vop/ d)maxW,(x)] both have only two ex-

trema on the unit period if the phase amplitugig>0) sat-

isfies the condition Tp< @pxo.31176_7, and _miNVp&j Gy(X) = cog2m(X + X;) + 77, S 27(X + X)) I}
=W,,(0) if the parametex, [xp € (O,Z)] is a solution of the _ .
equation X{1 + m, cod2m(x+ X)) (1 - 7)™,  (A3)

Gp(x1)=—1 if X;=3 =%, Gp(X) =G,(0)=0 if X,;=1-2x,, and
27Xy + 71 SIN(27X) = 77/2. (A2)  Gp(xg)=maxGy(x)=(1+mp)/(L-mp) if X;=1-X,.
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