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With this work, we investigate an often neglected aspect of Brownian motor transport, namely, the role of
fluctuations of the noise-induced current and its consequences for the efficiency of rectifying noise. In doing
so, we consider a Brownian inertial motor that is driven by an unbiased monochromatic, time-periodic force
and thermal noise. Typically, we find that the asymptotic, time-, and noise-averaged transport velocities are
small, possessing rather broad velocity fluctuations. This implies a corresponding poor performance for the
rectification power. However, for tailored profiles of the ratchet potential and appropriate drive parameters, we
can identify a drastic enhancement of the rectification efficiency. This regime is marked by persistent, unidi-
rectional motion of the Brownian motor with few back-turns only. The corresponding asymmetric velocity
distribution is then rather narrow, with a support that predominantly favors only one sign for the velocity.
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I. INTRODUCTION

The channeling of particles by harvesting the thermal
noise gives rise to a diffusive transport of particles. In peri-
odic potentials, the second law of thermodynamics implies
that no net transport occurs. The situation changes drasti-
cally, however, in the presence of unbiased nonequilibrium
noise which acts additionally on such systems. Then, the
concept of Brownian motors[1] does provide the possibility
for directed, noise-induced transport. The phenomenon has
widespread applications in physics, chemistry, and in the bio-
logical sciences, where it can be put to work for shuttling
reliably and efficiently particles on the microscale, or even
on the nanoscale[1].

The vast majority of works on Brownian motors concen-
trate on the behavior and the selective control of the emerg-
ing directed transport as a function of control parameters
such as the temperatureT, an external loadF (yielding the
load-current characteristics), or some other control variable.
In contrast, the role of the fluctuations of the directed current
has not attracted much attention in the literature. A notable
exception is the first work on an inertial(rocking) ratchet[2]
wherein the higher-order, statistical cumulant properties of
the stochastic position variable have been explored. Here, we
fill this gap and focus in more detail on thefluctuating be-
havior of the Brownian motor current. The average drift mo-
tion together with its fluctuation statistics are salient features
when characterizing themodus operandiof a particular
Brownian motor.

It is intuitive that the fluctuations of the drift variable do
impact the overall “efficiency” of the transport under consid-
eration. The objective of an optimal operation of a Brownian
motor machine can be formulated in a variety of ways, e.g.,
see in[3]. In close analogy to heat-engine machines, one can
define a generalized,nonequilibriumefficiency of a Brown-
ian motor. There exists no universally agreed upon definition
of this notion[4–7]—for a recent review on the efficiency of
Brownian motors, see Ref.[8]. The most common definition
of the efficiency of a Brownian motor operating at nonequi-

librium is based on the ratio of the work(or power) done by
the particle against an external load and the input energy
(input power). With this working definition, the load force is
inevitably included; in particular, this yields the result that
the efficiency assumes azero value whenno load force is
acting.

Alternative proposals for efficiencies have been proposed
as well[5–7]: Some of these proposals do provide anonzero
value for a vanishing bias force. Yet another possibility con-
sists in characterizing the rectification power of the transport
in terms of the so-called Peclet number, i.e., the quotient of
the drift velocity and the diffusion. This notion has been used
in continuous state Brownian motor transport[9], and also
for discrete motor models[10]. The concept is related in
spirit to a Fano factor measure[11] of the velocity fluctua-
tions used, for example, to characterize molecular motors
[12].

In this work, we shall follow the reasoning of Suzuki and
Munakata[7], in order to characterize the efficiency of rec-
tification in the absence of external bias forces. Typically,
there occurs a competition between two mechanisms: a “gi-
ant enhancement” of diffusion[9,13–16] and an optimally
large, (uni)directional transport velocity[16–18]. The first
perspective aims at controlling the magnitude of the effective
diffusion independently of the temperature. It thus carries a
rich potential for technological separation devices. The sec-
ond facet attempts to achieve a maximal “coherence” for the
transport. Such a coherence is of relevance for Brownian
motors modeling biophysical molecular motors[19].

Most of the Brownian motors and the majority of appli-
cations studied in the prior literature operate in the so-called
overdamped Brownian motion regime. For specific applica-
tions, the role of inertial effects can become, however, of
salient importance[2,14,20–29]. The overdamped dynamics
is a valid approximation for many physical applications[1].
It is also particularly well suited to describe the motion of
molecular motors[1,19]. In other situations, however, the
inertial effects cannot be neglected. An exemplar is the dif-
fusion of atoms on a crystal surface[30]. There, the dynam-
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ics may be underdamped, exhibiting long correlated hopping
among binding sites. This physics has been verified experi-
mentally by use of scanning tunneling microscopy[31], field
ion microscopy[32], or for quasielastic helium-atom scatter-
ing [33].

The inclusion of inertia adds significant complexity to the
problem. This is so, because a periodically rocked, single
degree of freedom with nonzero mass possesses a three-
dimensional phase space that can exhibit a chaotic dynamics
[2,21,22]. This is in contrast to the case of rocked, over-
damped Brownian motors[34–37]. While the chaotic dy-
namics of a driven-damped particle in a symmetric periodic
potential has been investigated thoroughly during the 1980s,
the (chaos)-induced, directed transport of an asymmetric, in-
ertial Brownian motor was pioneered only much later in[2].
There, it was demonstrated that the corresponding dynamics
features a rich structure, possessing many intriguing current
reversals. In the deterministic case, different asymptotic so-
lutions can coexist, e.g., running and locked states. More-
over, the onset of diffusive behavior due to chaotic dynamics
has been investigated in terms of the second moment of the
particle position diffusion. This first study was followed up
with more detailed investigations[21], where it has been
shown, for example, that the transport may reverse the direc-
tion at the transition from a chaotic to a regular motion.
Additionally, intermittent trajectories have been observed. In
such cases, the system follows for a certain time a regular
orbit, but then suddenly switches to a sticking orbit. The
resulting average flux depends on the time which the particle
spends in a particular state, and the system may exhibit su-
perdiffusive behavior. In related work[25], the inertial
Brownian motor dynamics in a regime of adiabatic driving
has been investigated. These authors focused on the onset of
the diffusive transport as the damping coefficient decreases.

In this work, we concentrate on the connection between
the directed transport and its fluctuation characteristics. This
study is of relevance for the optimization of rectification:
The directed current should not become swamped with the
unavoidable fluctuations of the transported quantity. Our in-
vestigation is based on an inertial, noise-driven rocking
ratchet. We shall analyze quantities such as the long-time
averaged velocity, its velocity fluctuations, the fluctuations of
the kinetic energy of the Brownian motor, and the efficiency
for rectification.

The paper is organized as follows. In the next section, we
present the Brownian motor model. In Sec. III, we elaborate
on the problem of the efficiency for rectifying noise in con-
nection with the fluctuation behavior of the Brownian motor
current. In Sec. IV, we describe our numerical findings for a
generic set of parameters, while in Sec. V, we elucidate the
optimal working conditions for rectification and directed
transport.

II. MODEL

To start, we consider the motion of a classical particle of
massm moving in the periodic, asymmetric ratchet potential
Vsxd. The particle is driven by an unbiased time-periodic,
monochromatic force of strengthA and an angular frequency

V. The dynamics is additionally subjected to thermal noise.
The Brownian motor dynamics is thus governed by the
Langevin equation[38]

mẍ+ gẋ = − V8sxd + A cossVtd + Î2gkTjstd, s1d

where the prime denotes a differentiation with respect to the
argument ofVsxd. The parameterg is the friction coefficient,
T denotes temperature, andk is the Boltzmann constant. The
ratchet potentialVsxd=Vsx+Ld has the periodL and a barrier
height DV. Thermal fluctuations are modeled by the zero-
meand-correlated Gaussian white noisejstd. This noise term
obeys the Einstein relation with the noise correlation given
by kjstdjssdl=dst−sd. We next introduce dimensionless vari-
ables. The natural length scale is given by the periodL of the
ratchet potential. The dynamics possesses several time
scales. We introduce the characteristic timet0 as determined
formally from the Newton equation,mẍ=−V8sxd, by balanc-
ing the two forcesmL/t 0

2=DV/L, yieldingt 0
2=mL2/DV. The

scaled variables thus read

x̂ =
x

L
, t̂ =

t

t0
. s2d

The dimensionless Langevin dynamics consequently as-
sumes the form

ẍ̂ + ĝẋ̂ = − V̂8sx̂d + a cossvt̂d + Î2ĝD0ĵst̂d, s3d

where(i) the rescaled friction coefficientĝ=sg /mdt0 is the
ratio of the two characteristic time scales,t0, and the relax-
ation time scale of the velocity degree of freedom, i.e.,tL

=m/g; (ii ) the potentialV̂sx̂d=Vsxd /DV assumes the period

1, and the barrier height equals unity; i.e.,DV̂=1; (iii ) the
drive has the rescaled force strengtha=AL/DV with the di-
mensionless angular frequencyv=Vt0; and (iv) the res-

caled, zero-mean Gaussian white noise forcesĵst̂d obey

kĵst̂dĵsŝdl=dst̂− ŝd with a rescaled noise intensityD0

=kT/DV.
In the following, mostly for the sake of simplicity, we

shall only use dimensionless variables and shall omit the
“hat” notation in all quantities. For the asymmetric ratchet
potentialVsxd, we consider a linear superposition of at least
two (or even three) spatial harmonics(see in Sec. IV), i.e.,

Vsxd = V0fsin s2pxd + c1sin s4pxd + c2sins6pxdg, s4d

whereinV0 normalizes the maximal barrier height to unity,
and the parametersc1 and c2 characterize the spatial asym-
metry.

III. FLUCTUATION AND RECTIFICATION MEASURES

Throughout the following, we focus on the asymptotic,
periodic regime after effects due to the influence of initial
conditions and transient processes have quieted down. Then,
the main statistical quantifiers of the driven stochastic pro-
cessxstd can be described in terms of time and ensemble
averages. For a given quantityf(xstd), its time-homogeneous
statistical properties are obtained only in the long-time limit
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after transients have died out and after both the average over
the temporal period of the driving and the corresponding
ensemble average are performed[39]. In this asymptotic re-
gime, the time-independent(single-time) quantities are ob-
tained by a double averaging procedure over both the noise
and the period of driving, i.e.,

kfl = lim
t→`

v

2p
E

t

t+2p/v

a f„xssd… s ds, s5d

wherein k¯l indicates the average over thenoise realiza-
tions (ensemble average).

The most salient transport quantity is the average, di-
rected velocitykvl of the driven Brownian particle. Herev
=vstd denotes the stochastic processẋstd in Eq. (3). Of equal
importance are, however, the fluctuations ofvstd around its
meankvl in the long-time regime, i.e., the variance

sv
2 = kv2l − kvl2. s6d

The Brownian motor moves with current valuesvstd that
range typically within

vstd [ fkvl − sv,kvl + svg. s7d

If sv. kvl, and even more so ifsv@ kvl, the Brownian mo-
tor can possibly move for some time in the opposite direction
of its average valuekvl. The question thus arises: Is an effi-
cient directed transport still feasible?

To answer this challenge we shall introduce a measure for
the efficiencyh of the rectification of thermal noise, a quan-
tity directly related to the velocity fluctuations. Here, we
follow the reasoning of Suzuki and Munakata[7], which
yields a nonvanishing rectification efficiency also in the ab-
sence of an external bias. This efficiency of rectification fol-
lows from an energy balance of the underlying inertial
Langevin dynamics. When specialized to our situation,h is
given by the ratio of the dissipated powergkvl2 associated
with the directed motion of the motor against friction, and
the input power from the time-periodic forcing. The result
assumes the explicit form(see the Appendix)

h =
kvl2

ukvl2 + sv
2 − D0u

,

=
kvl2

ukv2l − D0u
. s8d

It thus follows that for a decreasing variance of the veloc-
ity fluctuations,sv

2, the efficiency of the Brownian motor
increases. This is just what one would expect on naive
grounds: The transport of a Brownian motor can be opti-
mized in regimes of a large, directed average current which
intrinsically does exhibit only small fluctuations. Moreover,
in our study we found numerically thatkv2l.D0 holds true
for any chosen set of the simulation parameters.

IV. FLUCTUATION BEHAVIOR OF CURRENT IN AN
INERTIAL ROCKED BROWNIAN MOTOR

Deterministic inertial Brownian motors exhibit a complex
dynamics including chaotic regimes. The application of noise

then generally destroys the complex fine structure of their
phase space and tends to smooth out their characteristic re-
sponse function.

There are two classes of states of the driven system dy-
namics: the locked states, in which the particle stays inside
one potential well, and the running states, for which the par-
ticle runs over the potential barriers. The first regime is char-
acteristic for small driving strengths. When the amplitude of
the external force is made sufficiently large, we find that
running states appear. These running states can either be cha-
otic (diffusive) or regular.

A. Numerical schemes

We have carried out extensive numerical studies in order
to identify generic properties of the noise-induced transport.
Applying a small but finite noise strength,D0.0, we have
integrated the Langevin equation(3) by employing the Euler
method with a time step ofh=10−3. For the initial condition
of the coordinatexstd, we used a uniform distribution over
the dimensionless periodL=1 of the ratchet potential. Like-
wise, the(scaled) starting velocity has been chosen at ran-
dom from a symmetric, uniform distribution over the interval
[21,1]. All quantities of interest were averaged over 250
different trajectories. Each single trajectory evolved over
453103 periods. The transient regime usually relaxed al-
ready long before 500 periods of the driven dynamics had
elapsed. For the cases of very weak noise and weak driving,
we extended the corresponding time span to ensure that the
transient dynamics has quieted down completely. In the lim-
iting deterministic case, i.e.,D0=0, we used the Runge-Kutta
algorithm of order 5. In this case, the averages were calcu-
lated over 103 differing trajectories, each trajectory evolving
over 103 periods.

B. Numerical results: Current fluctuations versus
driving strength

We start to study the role of fluctuations by varying the
amplitudea of the sinusoidal driving force. In doing so, we
assume a relatively small temperature, so that the Brownian
motor dynamics is not far from a deterministic behavior as
described in prior works[2,21,25]. The average asymptotic
long-time current is shown in Fig. 1(a). It reveals that for an
amplitudea.1.5, the directed,inertial transport sets in be-
fore the lower threshold of the ratchet force is reached. It
assumes a first local maximum near the lower threshold of
the potential force neara.2.1. Note that in the presence of
small noise, the current is, strictly speaking, never zero. For
all practical purposes, however, we can characterize the out-
come of our Langevin simulation as a deterministic, zero-
current result. Below this thresholda=1.5, the system
mainly dwells in the locked state. Upon closer inspection, we
notice that in the vicinity ofa.0.6, the velocity fluctuations
sv shown in Fig. 1(b) undergo a rapid increase. In Fig. 1(c),
we also display the relative fluctuations of the kinetic energy,
E=v2/2 (the rescaled mass is 1); i.e.,

sE
2

kEl2 =
kv4l − kv2l2

kv2l2 . s9d

Around this value of the driving amplitude, this quantity un-
dergoes a giant enhancement. Finally, we remark that for the
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equilibrium Maxwell distribution, we findsE
2 / kEl2=2, as ex-

pected.
Upon further increasing the amplitude of driving,a.1.5,

the Brownian motor generates for this set of parameters the
desired, directed transport behavior. At the same time, we
observe that the width of the weakly asymmetric, corre-
sponding distributionPsvd slightly decreases, meaning that
the velocity fluctuations become smaller. The following ex-
planation thus applies: Ata,1.5, escape jumps between the
neighboring wells are rare, i.e., the average directed current
is very small(note also the accompanying, very weak asym-
metry in the velocity distribution). The input energy is

pumped primarily into the kinetic energy of the intrawell
motion and eventually dissipates. Asa is increased further,
the Brownian motor mechanism starts to work, and some
part of energy contributes to the net motion of the particle.
Therefore, less energy remains available to drive intrawell
oscillations and consequently the width of the distribution
Psvd shrinks; see Fig. 1(e).

Correspondingly, due to inertia, the mean velocity in-
creases, reaching a second maximum before the upper
threshold value of the potential forcea.4.28. Above this
driving amplitude, the current starts to decrease because of
the weakening influence of the ratchet potential at large rock-
ing amplitudes.

The occurrence of multiple reversals of the directed cur-
rent, as it occurs in Fig. 1(a), is a known, interesting feature
of inertial Brownian motors. Several prior studies did eluci-
date in greater detail the corresponding mechanism at work
[2,21,23,25,26]. Here, we take instead a closer look at the
current fluctuations. We observe that for the chosen set of
parameters, the maximal stationary velocity in Fig. 1(a) does
not exceed the value 0.4. In contrast, its fluctuations keep
growing as the driving amplitude rises. At large driving, the
particle no longer feels the potential and undergoes a rocked,
free Brownian motion with the velocity fluctuations growing
proportional toa, cf. Fig. 1(b).

On the other hand, the relative fluctuations of the kinetic
energy do saturate, see Fig. 1(c). These are suppressed to
values near 1, which lie below the equilibrium value of 2.
Within this directed transport regime, the efficiency(8) re-
mains rather small, cf. Fig. 1(d). Such small rectification
efficiency is the rule for this driven inertial Brownian motor.

Let us next inspect thecurrent probability distribution
Psvd. All Psvd curves reported in the following have been
normalized so that their maximum(i.e., their highest peak) is
set to a fixed, unit value. Only then can we detect the details
in their shape upon varying the corresponding parameters
such as the driving amplitudea or the noise strengthD0.
These probabilities look almost symmetric; however, a finite
ratchet velocity requires a certain amount of asymmetry in
the location and/or the width of the velocity peaks. Here, the
current results mainly due to a slight symmetry of the
maxima locations.

The most peculiar feature of the current distributions for
a.0.6 shown in Fig. 1(e) is the emergence of two additional
side peaks centered nearv= ±1, which eventually dominate
Psvd at larger driving amplitudes. Of course, for zero drive
Psvd boils down to a single-peaked Maxwell distribution,
strictly symmetric aroundv=0. To investigate the onset of
these two side peaks fora values corresponding to vanish-
ingly small currents, we setPsvd=qP0sv−1d+qP0sv+1d
+s1−2qdP0svd, whereq varies from 0 to 1. IfP0 is taken to
be a symmetric Gaussian function, then the kinetic energy
fluctuations can be evaluated;sE exhibits the behavior
shown in Fig. 1(c).

What is the origin of those three peaks in the distribution
Psvd? Our first conjecture to connect it with the “running”
solutions turned out to be incorrect. This is so because for
a&1, the particle rarely leaves the confining potential well
and thus cannot significantly contribute to the side peaks of

FIG. 1. (Color online) Fluctuation behavior of an inertial
Brownian motor vs the driving strengtha. (a) Averaged dimension-
less velocitykvl of the inertial Brownian motor in Eq.(3) with
rescaled units;(b) variance of the corresponding velocity fluctua-
tionssv; (c) fluctuations of the rescaled kinetic energysE

2 / kEl2; (d)
rectification efficiency in Eq.(8). All quantities have been com-
puted for the rescaled potential Vsxd=−V0fsins2pxd
+0.25 sins4pxdg, whereV0.0.454 normalizes the barrier height to
unity, see the inset in(a). The force corresponding to this potential
ranges from22.14 to 4.28. The angular frequencies at the well
bottom and at the barrier top, respectively, equal each other, reading
5.28. Bottom panel(e) shows velocity distributions for selected
driving amplitudes, i.e.,a=0.68,1.5,2.14,3.25. All these distribu-
tions were normalized by setting their maximum to 1. The remain-
ing rescaled parameters read frictiong=0.5, angular driving fre-
quencyv=3.6, and weak thermal noise of strengthD0=0.01.
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the distribution function. We further checked the outcome for
the velocity distribution when reflecting barriers were placed
at the maxima of the potential. Under such constraints, the
three-peak structure is recovered as well. Moreover, the
sinusoidally driven damped particle in a harmonic potential
can exhibit both a singly peaked as well as a doubly peaked
averaged velocity distribution, see in Ref.[39]. However, for
the parabolic potential that fits best the wells of our ratchet
potential around its minima, we found a single-peakedPsvd.

We therefore do conclude that the characteristic behavior
for the additional side peaks is rooted in the nonlinear, an-
harmonic character of the corresponding well of the periodic
asymmetric ratchet profile.

C. Numerical results: Role of the shape of the underlying
ratchet potential

We next study the influence of the ratchet profile(or
force) on the mean velocity and on the corresponding fluc-
tuation behavior of the directed current. We use a stylized
potential shape composed of three spatial higher harmonics
with c2Þ0; see Eq.(4). Note that this potential shape pos-
sesses an opposite polarity as compared with the ratchet po-
tential depicted in the inset of Fig. 1(a). Put differently, the
natural direction of the Brownian motor motion is to the left,
in the direction of the weaker slope; see Fig. 2(a), inset.

For small driving amplitudes, this inertial motor predomi-
nantly dwells in a potential well. The directed current is very
small and negative(directed towards the left). If the driving
amplitude exceeds the upper threshold amplitude of the
ratchet force ata.4.66, the motor starts to move more regu-
larly, reaching an extremal speed neara.6. Interestingly
enough, the motor moves now towardspositive xvalues. The
resulting transport velocity thus cannot be easily predicteda
priori in this nonadiabatic driving regime. This is a charac-
teristic feature of these inertial Brownian motors where the
coupling between the deterministic driving force,Fstd
=a cossvtd, and the resulting motion of the driven Brownian
particle are coupled loosely, only. Except for a narrow re-
gime of sizable values, cf. Fig. 2(a), the emerging average
velocities are typically very small, yielding no corresponding
efficient rectification. Therefore, the efficiency of this more
complex Brownian motor mimics again closely the behavior
of the average motor velocity; see panel(d) in Fig. 2.

The velocity fluctuations exhibit a similar behavior to that
in the case of Fig. 1 discussed above. The variance grows
nearly linearly with increasing driving strength. Typically,
the average velocities are small and the fluctuation behavior
is similar to the behavior discussed above for the first ratchet
potential. Interestingly enough, however, above-threshold
driving induces a distinct peak behavior of the velocity
which is accompanied by a corresponding dip in the behavior
of the velocity fluctuations. This dip in the variance then
gives rise to a window with appreciable efficiency, cf. Fig.
2(d).

The behavior for the velocity distributions is again ge-
neric: Small average velocities exhibit nearly symmetric ve-
locity distributions, see Fig. 2(e). Only for the nonadiabatic
peak behavior of the mean velocity does one identify also an
appreciable asymmetry for the velocity distribution.

D. Numerical results: Current fluctuations versus noise
strength D0

In Fig. 3, we numerically investigate the directed trans-
port versus the temperatureD0. We have chosen a subthresh-
old driving strength for which the thermal noise plays a con-
structive role[40] by inducing noise-activated jumps across
the potential barriers. We seta=0.8 and the other parameters
remain the same as in Fig. 1. Then, we find a characteristic
velocity reversal near the dimensionless temperatureD0
=kT/DV.1. There, the thermal energy compares with the
activation energy over the barrier height of the ratchet poten-
tial. A subsequent increase of temperature causes a diminish-

FIG. 2. (Color online) Tailoring the shape of the potential.(a)
Averaged dimensionless velocitykvl of the inertial Brownian motor
under nonadiabatic driving conditions;(b) corresponding velocity
fluctuations sv; (c) fluctuations of the rescaled kinetic energy
sE

2 / kEl2; (d) efficiency. All quantities are plotted vs the external
driving amplitude a for the asymmetric ratchet potentialVsxd
=V0fsins2pxd+0.245 sins4pxd+0.04sins6pxdg, where V0.0.461
normalizes the barrier height to unity[see inset in(a)]. The forces
stemming from such a potential range between24.67 and 1.83. The
two angular frequencies at the well bottom and at the barrier top are
the same, reading 5.34. The corresponding velocity distributions
Psvd are displayed in panel(e) for the indicated driving amplitudes,
i.e., a=0,4,6,7. All Psvd curves have been normalized by setting
their maximum to 1. The remaining parameters areg=0.9, v=4.9,
andD0=0.01.
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ing role of the asymmetric ratchet potential and, conse-
quently, the directed transport degrades.

Moreover, the time-averaged velocity distribution ap-
proaches the equilibrium velocity distribution[9]. It is re-
markable that within a certain range of temperatures, the
fluctuations of the kinetic energy exceed the relevant value
for the Maxwellian equilibrium distribution, cf. Fig. 3(c). A
shallow, local minimum occurs for the velocity fluctuations
where the average current itself is maximal. These fluctua-
tions are, however, notably three orders of magnitudelarger
than the small-valued, directed current. Not surprisingly, the
rectification efficiency shown in Fig. 3(d) is quite small.
Again, the Brownian motor is not operating optimally.

V. TAILORING RECTIFICATION EFFICIENCY

Thus far, changing the ratchet profiles did not lead to a
large enhancement of the rectification efficiency. What is
needed in achieving a large rectification efficiency is a siz-
able Brownian motor current which is accompanied by small
current fluctuations only; see Eq.(8). This scenario implies

that the directed current should proceed in a persistent man-
ner with very few, occasional back-turns only. This in turn
causes small fluctuations in the velocity and, additionally,
provides a dominating asymmetry of the velocity distribu-
tion.

Such a behavior can be realized by a combined tailoring
of the asymmetry of the ratchet potential together with the
use of appropriate driving conditions. In the quest for achiev-
ing such a favorable situation we use the three-harmonics
ratchet potential plotted in the inset of Fig. 2(a). Our hope is
that upon minimizing the noise further, we can achieve a
substantial improvement of the efficiency.

At very weak noiseand large, nonadiabatic rocking fre-
quencies, this inertial Brownian motor starts moving effi-
ciently near the upper threshold of the ratchet forcea
.4.66, see Fig. 4(a). Because the directed velocity becomes
maximal and simultaneously its fluctuations are locally mini-

FIG. 3. (Color online) Fluctuation behavior of an inertial
Brownian motor vs the noise strengthD0. (a) Averaged dimension-
less velocitykvl; (b) the corresponding velocity variancesv; (c)
fluctuations of the rescaled kinetic energysE

2 / kEl2; (d) the corre-
sponding efficiency. Numerical results obtained for the same ratchet
potential as in Fig. 1. In the bottom panel(e), the velocity distribu-
tion Psvd is shown forD0=0.01,0.1,2,10. AllPsvd curves are nor-
malized as in Fig. 1. The remaining rescaled parameters areg
=0.5, v=3.6, anda=0.8.

FIG. 4. (Color online) Tailoring the shape of the potential.(a)
Averaged dimensionless velocitykvl of the inertial Brownian motor
under nonadiabatic driving conditions;(b) corresponding velocity
fluctuations sv; (c) fluctuations of the rescaled kinetic energy
sE

2 / kEl2; (d) efficiency. All quantities are plotted vs the driving
amplitude a for the asymmetric ratchet potential of Fig. 2. The
corresponding velocity distributionsPsvd are shown in panel(e) for
selected driving amplitudes, i.e.,a=0,3.25,3.5,4. 5. AllPsvd curves
are normalized as in Fig. 2. The remaining parameters areg=0.9,
v=4.9, andD0=0.001.
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mal [see Fig. 4(b)], we indeed find the desired enhancement
of the rectification efficiency[see Fig. 4(d)]. The fluctuations
of the kinetic energy grow slightly; nevertheless, these are
still strongly suppressed in comparison to the equilibrium
value 2.

We have studied several other ratchet potentials by vary-
ing the parametersc1 and c2 in Eq. (4) and still found re-
gimes where the inertial ratchet works with a high efficiency
(not shown). In all these cases, we found that the velocity
distribution has a support concentrated mainly on one of the
semiaxes. Strongly asymmetric velocity distributions are de-
picted with Fig. 4(e). In contrast, with the modec2 set to zero
(see the inset in Fig. 1), we could not identify such an opti-
mal regime for rectification of noise. The shape of these
distributions just corroborates the fact that large rectification
efficiencies are the result of persistent,(uni)directional
Brownian motor motion, accompanied by a strong asymme-
try of the current statistics.

VI. CONCLUSION

With this work, we have elucidated directed Brownian
motor transport in rocked rachet potentials in the presence of
inertia and thermal noise. We focused on several parameter
regimes and studied by numerical means the operation of this
massive ratchet machine. In particular, we investigated the
variation of the average current versus driving amplitudea
and the temperature strengthD0. Our main objective has
been the behavior of the accompanying current fluctuations
as a function of these transport parameters. These fluctua-
tions crucially impact the rectification behavior, as measured
by the rectification efficiency in Eq.(8).

Typically, the current values and the corresponding veloc-
ity fluctuations are such that no appreciable rectification
emerges in these inertial, rocked Brownian motors. There
exist, however, tailored regimes of ratchet profiles and driv-
ing parameters for which an enhancement of rectification and
optimal transport does occur. These regimes are marked by a
large Brownian motion transport with few back-turns only.
This in turn implies a narrow, asymmetric velocity statistics
with dominantly, one-sided support of either positive- or
negative-valued velocities.

These novel findings for the fluctuation statistics of
Brownian motor velocities can be put to use in diverse tech-
nological devices that pump and separate efficiently and re-
liably Brownian particles in corresponding physical and bio-
logical systems[19]. Moreover, the results derived herein for
such driven inertial Brownian motors can be applied as well
to the phenomenon of stochastic resonance[40] in corre-
sponding underdamped regimes.
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APPENDIX

With this appendix, we present the derivation of the ex-
pression(8) for the rectification efficiency. We combine the
arguments in[5–7] and establish the efficiencyh as

h =
A

uPinu
. sA1d

In the denominator,Pin denotes the rate of the energy input
to the system. There is no overall consensus on the numera-
tor A [4–7]. If A denotes the rate of work done on the fluid
by the Brownian motor motion, then the corresponding effi-
ciency h is not an appropriate measure becauseA,kv2l.
This quantity can be relatively large even if there occurs no
transport of the motor, i.e., even ifkvl=0! More suitable
information on the efficiency of the transport is gained when
[5,6], A,kvl. Following the reasoning in[5–7], we use for
the output power the average friction force times the average
velocity, i.e.,A=kgvlkvl. To calculatePin, let us recast Eq.
(3) into the form

dx= v dt, sA2d

dv = − fgv + V8sx,tdgdt + Î2gD0dWstd, sA3d

whereVsx,td=Vsxd−axcossvtd andWstd is the Wiener pro-
cessfkWstdl=0,kW2stdl= tg.

Now, we evaluate the ensemble and temporal averages of
the rescaled kinetic energyGsvd=v2/2, v=vstd. To this aim,
first we apply Ito’s differential calculus to the functionGsvd
to obtain

dsv2/2d = − fgv2 + vV8sx,td − gD0gdt + Î2gD0vdWstd.

sA4d

The ensemble average(i.e., the average over all realization
of the Wiener process denoted bya¯s) for the rate of
change of the kinetic energy results in

d

dt
a v2/2 s = − fg a v2 s + a vV8sxd s

− a va cossvtd s − gD0g , sA5d

where we exploited the(Ito)-martingale property(for the part
containing the Wiener process). Next, we average over the
temporal period as in Eq.(5) (periodic time dependence of
asymptotic probability). In doing so, we evaluate
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K d

dt
v2L = a v2st + 2p/vd s − a v2std s = 0. sA6d

Likewise, for the contribution

kvV8sxdl = a Vfxst + 2p/vdg s − a Vfxstdg s = 0.

sA7d

Consequently, we obtain

0 = −gfkv2l − D0g + Pin, sA8d

where the combined averagePin=kvstda cossvtdl is the in-
put energy to the system per unit time. Thus, upon combin-
ing Eqs.(A1) and (A8), the relation in Eq.(8) emerges. We
also emphasize here that our scheme for the efficiency of
rectification at zero bias isindependentof the transport fric-
tion coefficientg. This feature is in agreement with the cor-
responding result by Suzuki and Munakata[7].
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