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Brownian motors: Current fluctuations and rectification efficiency
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With this work, we investigate an often neglected aspect of Brownian motor transport, namely, the role of
fluctuations of the noise-induced current and its consequences for the efficiency of rectifying noise. In doing
so, we consider a Brownian inertial motor that is driven by an unbiased monochromatic, time-periodic force
and thermal noise. Typically, we find that the asymptotic, time-, and noise-averaged transport velocities are
small, possessing rather broad velocity fluctuations. This implies a corresponding poor performance for the
rectification power. However, for tailored profiles of the ratchet potential and appropriate drive parameters, we
can identify a drastic enhancement of the rectification efficiency. This regime is marked by persistent, unidi-
rectional motion of the Brownian motor with few back-turns only. The corresponding asymmetric velocity
distribution is then rather narrow, with a support that predominantly favors only one sign for the velocity.
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I. INTRODUCTION librium is based on the ratio of the wotkr powe) done by

The channeling of particles by harvesting the thermalthe particle against an external load and the input energy

noise gives rise to a diffusive transport of particles. In peri-(iNPut powey. With this working definition, the load force is

odic potentials, the second law of thermodynamics implieém':'\/it""bl.y included; in particular, this yields the result'that
that no net transport occurs. The situation changes drastii® €fficiency assumes zero value whenno load force is

cally, however, in the presence of unbiased nonequilibriunfcing- o

noise which acts additionally on such systems. Then, the Alternative proposals for efficiencies have been proposed
concept of Brownian motorfl] does provide the possibility as well[5—7]: Sqmg of t'hese proposals do prowdegm;ero

for directed, noise-induced transport. The phenomenon ha lue for a vanishing bias force. Yet another possibility con-

widespread applications in physics, chemistry, and in the bio_§|sts in characterizing the rectification power of the transport

logical sciences, where it can be put to work for shuttlingIn terms of thg so-called Eec[et num_ber, L€ the quotient of

. o ) . the drift velocity and the diffusion. This notion has been used
reliably and efficiently particles on the microscale, or eVeNiy continuous state Brownian motor transpf8t, and also
on the nanoscalgd]. _ for discrete motor model§10]. The concept is related in

The vast majority of works on Brownian motors concen-gpirit to a Fano factor measufél] of the velocity fluctua-
trate on the behavior and the selective control of the emergjons used, for example, to characterize molecular motors
ing directed transport as a function of control parameters; 2,
such as the temperatufie an external loadr (yielding the In this work, we shall follow the reasoning of Suzuki and
load-current characteristigsor some other control variable. Munakata[7], in order to characterize the efficiency of rec-
In contrast, the role of the fluctuations of the directed currentification in the absence of external bias forces. Typically,
has not attracted much attention in the literature. A notablehere occurs a competition between two mechanisms: a “gi-
exception is the first work on an inertigbcking) ratchet[2] ant enhancement” of diffusiof®,13-16 and an optimally
wherein the higher-order, statistical cumulant properties ofarge, (uni)directional transport velocity16-18. The first
the stochastic position variable have been explored. Here, wgerspective aims at controlling the magnitude of the effective
fill this gap and focus in more detail on tlieictuating be-  diffusion independently of the temperature. It thus carries a
havior of the Brownian motor current. The average drift mo- rich potential for technological separation devices. The sec-
tion together with its fluctuation statistics are salient feature®nd facet attempts to achieve a maximal “coherence” for the
when characterizing thenodus operandiof a particular transport. Such a coherence is of relevance for Brownian
Brownian motor. motors modeling biophysical molecular motgd<9].

It is intuitive that the fluctuations of the drift variable do ~ Most of the Brownian motors and the majority of appli-
impact the overall “efficiency” of the transport under consid- cations studied in the prior literature operate in the so-called
eration. The objective of an optimal operation of a Brownianoverdamped Brownian motion regime. For specific applica-
motor machine can be formulated in a variety of ways, e.g.tions, the role of inertial effects can become, however, of
see in[3]. In close analogy to heat-engine machines, one casalient importancg2,14,20-29. The overdamped dynamics
define a generalizechonequilibriumefficiency of a Brown- is a valid approximation for many physical applicatidis.
ian motor. There exists no universally agreed upon definitiorit is also particularly well suited to describe the motion of
of this notion[4—7]—for a recent review on the efficiency of molecular motorg1,19. In other situations, however, the
Brownian motors, see R€f8]. The most common definition inertial effects cannot be neglected. An exemplar is the dif-
of the efficiency of a Brownian motor operating at nonequi-fusion of atoms on a crystal surfag®0]. There, the dynam-
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ics may be underdamped, exhibiting long correlated hopping). The dynamics is additionally subjected to thermal noise.
among binding sites. This physics has been verified experithe Brownian motor dynamics is thus governed by the
mentally by use of scanning tunneling microscgf¥], field  Langevin equatiorj38]

ion microscopy[32], or for quasielastic helium-atom scatter- o JE—

ing [33]. mX+ yx =—=V'(x) + A cogQt) + V29kTE(L), (GD)]

The inclusion of inertia adds significant complexity to the yhere the prime denotes a differentiation with respect to the
problem. This is so, because a periodically rocked, singlg,.qument of/(x). The parametey is the friction coefficient,
degree of freedom with nonzero mass possesses a thréfenotes temperature, akds the Boltzmann constant. The
dimensional phase space that can exhibit a chaotic dynamigg; et potential/(x) = V(x+L) has the period. and a barrier
[2,21,23. This is in contrast to the case of rocked, Over'height AV. Thermal fluctuations are modeled by the zero-

damped Browr_1ian motor534—31_. W_hile the chaqtic dY' . meand-correlated Gaussian white noi§g). This noise term
namics of a driven-damped particle in a symmetric periodic

- . ) . obeys the Einstein relation with the noise correlation given
potential has been investigated thoroughly during the 1980%y <)§/(t)§(s)>=b‘(t—s). We next introduce dimensionless \?ari-

the (chao$-induced, directed transport of an asymmetric, in- o .

ertial Brownian motor was pioneered only much latef2h abtler.']s.t'l'he ?atgr?l I(_err;]gthdscale IS given by the petiod th? i

There, it was demonstrated that the corresponding dynami&g1 chet potential. € dynamics possesses several lime
cales. We introduce the characteristic tirgeas determined

features a rich structure, possessing many intriguing curre SN
reversals. In the deterministic case, different asymptotic So’_ormally from the Newton equatiomix=-V'(x), by balanc-

lutions can coexist, e.g., running and locked states. Moren9 the two forcesnL/rézAV/L,yleldmg TS:mLZ/AV' The
over, the onset of diffusive behavior due to chaotic dynamicSCc@led variables thus read

has been investigated in terms of the second moment of the Xt

particle position diffusion. This first study was followed up X=r, b= (2

with more detailed investigation®1], where it has been 7o

shown, for example, that the transport may reverse the directhe dimensionless Langevin dynamics consequently as-
tion at the transition from a chaotic to a regular motion.sumes the form

Additionally, intermittent trajectories have been observed. In L R R

such cases, the system follows for a certain time a regular X+ yx=-V'(X) + acogwt) + V2YDy&(D), 3
orbit, but then suddenly switches to a sticking orbit. The . - - .
resulting average flux depends on the time which the particl(‘—.“’h,ere(') the rescaled fngﬂqn goefﬂmer&:(y/m)ro is the
spends in a particular state, and the system may exhibit sijatio of the two characteristic time scales, and the relax-
perdiffusive behavior. In related work25], the inertial ation time scale of theAvelocny degree of freedom, iz.,
Brownian motor dynamics in a regime of adiabatic driving=m/7; (ii) the potentialV(x)=V(x)/AV assumes the period
has been investigated. These authors focused on the onsetifand the barrier height equals unity; iA\A/:l; (iii ) the
the diffusive transport as the damping coefficient decreasesirive has the rescaled force strengthAL/AV with the di-

In this work, we concentrate on the connection betweenmensionless angular frequeney=Qm; and (iv) the res-
the dlrgcted transport and its fluctl.Ja'_uon'characten'sgcs.. Th'ﬁaled, sero-mean Gaussian white noise foréés obey
study is of relevance for the optimization of rectification: ~ .~ o . . . .

The directed current should not become swamped with thé€(Dé(8)=6(t=5) with a rescaled noise intensityDo
unavoidable fluctuations of the transported quantity. Our in=KT/AV. _ S
vestigation is based on an inertial, noise-driven rocking In the following, mostly for the sake of simplicity, we
ratchet. We shall analyze quantities such as the long-timghall only use dimensionless variables and shall omit the
averaged velocity, its velocity fluctuations, the fluctuations of hat” notation in all quantities. For the asymmetric ratchet
for rectification. two (or even thregspatial harmonicgsee in Sec. Y, i.e.,

The paper is organized as follows. In the next section, we
present the Brownian motor model. In Sec. Ill, we elaborate
on the problem of the efficiency for rectifying noise in con- whereinV, normalizes the maximal barrier height to unity,
nection with the fluctuation behavior of the Brownian motor and the parameters andc, characterize the spatial asym-
current. In Sec. IV, we describe our numerical findings for ametry.
generic set of parameters, while in Sec. V, we elucidate the
optimal working conditions for rectification and directed
transport.

V(x) = Vg[sin (2mX) + c;Sin (4mX) + c,sin(6mx)],  (4)

IIl. FLUCTUATION AND RECTIFICATION MEASURES

Throughout the following, we focus on the asymptotic,
periodic regime after effects due to the influence of initial
conditions and transient processes have quieted down. Then,

To start, we consider the motion of a classical particle ofthe main statistical quantifiers of the driven stochastic pro-
massm moving in the periodic, asymmetric ratchet potential cessx(t) can be described in terms of time and ensemble
V(x). The particle is driven by an unbiased time-periodic,averages. For a given quantitgx(t)), its time-homogeneous
monochromatic force of strengthand an angular frequency statistical properties are obtained only in the long-time limit

Il. MODEL
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after transients have died out and after both the average ovéren generally destroys the complex fine structure of their
the temporal period of the driving and the correspondingohase space and tends to smooth out their characteristic re-

ensemble average are perforni&8)]. In this asymptotic re-
gime, the time-independerisingle-timg quantities are ob-

sponse function.
There are two classes of states of the driven system dy-

tained by a double averaging procedure over both the nois@amiCS: the locked states, in which the particle stays inside

and the period of driving, i.e.,

t+27lw

(fy= lim — < f(x(s)) >ds, (5)
2

t—oo

t

wherein (---) indicates the average over teise realiza-
tions (ensemble average

The most salient transport quantity is the average, di-

rected velocity(v) of the driven Brownian particle. Here
=v(t) denotes the stochastic process in Eq. (3). Of equal
importance are, however, the fluctuationsuvéf) around its
mean(v) in the long-time regime, i.e., the variance
0'5 =% - (v). (6)
The Brownian motor moves with current value§) that
range typically within
v(t) € [{(v) = 0, v) + 7, ]. (7)

If o,>(v), and even more so if, > (v), the Brownian mo-

one potential well, and the running states, for which the par-
ticle runs over the potential barriers. The first regime is char-
acteristic for small driving strengths. When the amplitude of
the external force is made sufficiently large, we find that
running states appear. These running states can either be cha-
otic (diffusive) or regular.

A. Numerical schemes

We have carried out extensive numerical studies in order
to identify generic properties of the noise-induced transport.
Applying a small but finite noise strengtB,>0, we have
integrated the Langevin equatié8) by employing the Euler
method with a time step di=10"3. For the initial condition
of the coordinatex(t), we used a uniform distribution over
the dimensionless peridd=1 of the ratchet potential. Like-
wise, the(scaled starting velocity has been chosen at ran-
dom from a symmetric, uniform distribution over the interval
[—1,1]. All guantities of interest were averaged over 250
different trajectories. Each single trajectory evolved over
45x 10° periods. The transient regime usually relaxed al-

tor can possibly move for some time in the opposite directiof€@dy long before 500 periods of the driven dynamics had

of its average valuév). The question thus arises: Is an effi-
cient directed transport still feasible?

elapsed. For the cases of very weak noise and weak driving,
we extended the corresponding time span to ensure that the

To answer this challenge we shall introduce a measure fdfansient dynamics has quieted down completely. In the lim-

the efficiencyy of the rectification of thermal noise, a quan-
tity directly related to the velocity fluctuations. Here, we
follow the reasoning of Suzuki and Munakaf@], which

yields a nonvanishing rectification efficiency also in the ab-
sence of an external bias. This efficiency of rectification fol-

lows from an energy balance of the underlying inertial
Langevin dynamics. When specialized to our situatigns
given by the ratio of the dissipated powev)? associated
with the directed motion of the motor against friction, and
the input power from the time-periodic forcing. The result
assumes the explicit forigsee the Appendix

~ (v)?
77w+ 2Dy’

_ ()?

“[0®-Dy ®

iting deterministic case, i.eQy=0, we used the Runge-Kutta
algorithm of order 5. In this case, the averages were calcu-
lated over 18 differing trajectories, each trajectory evolving
over 1@ periods.

B. Numerical results: Current fluctuations versus
driving strength

We start to study the role of fluctuations by varying the
amplitudea of the sinusoidal driving force. In doing so, we
assume a relatively small temperature, so that the Brownian
motor dynamics is not far from a deterministic behavior as
described in prior work$2,21,253. The average asymptotic
long-time current is shown in Fig.(4). It reveals that for an
amplitudea=1.5, the directedinertial transport sets in be-
fore the lower threshold of the ratchet force is reached. It
assumes a first local maximum near the lower threshold of
the potential force neaa=2.1. Note that in the presence of
small noise, the current is, strictly speaking, never zero. For

It thus follows that for a decreasing variance of the veloc-all practical purposes, however, we can characterize the out-

ity fluctuations, o2, the efficiency of the Brownian motor
increases This is just what one would expect on naive

come of our Langevin simulation as a deterministic, zero-
current result. Below this threshold=1.5, the system

grounds: The transport of a Brownian motor can be Opti.mainly dwells in the locked state. Upon closer inspection, we
mized in regimes of a large, directed average current whictiotice that in the vicinity o= 0.6, the velocity fluctuations

intrinsically does exhibit only small fluctuations. Moreover,
in our study we found numerically th&?)> D, holds true
for any chosen set of the simulation parameters.

IV. FLUCTUATION BEHAVIOR OF CURRENT IN AN
INERTIAL ROCKED BROWNIAN MOTOR

Deterministic inertial Brownian motors exhibit a complex

o, shown in Fig. 1b) undergo a rapid increase. In Figc},

we also display the relative fluctuations of the kinetic energy,

E=v?/2 (the rescaled mass ig;l.e.,
o8 _ (-0
(E)? (v?)?

Around this value of the driving amplitude, this quantity un-

9

dynamics including chaotic regimes. The application of noisedergoes a giant enhancement. Finally, we remark that for the
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0.4

pumped primarily into the kinetic energy of the intrawell

03 :fi) /\ / ] motion and eventually dissipates. Asis increased further,
5 the Brownian motor mechanism starts to work, and some
= . i / \/ ) part of energy contributes to the net motion of the particle.
Tt P - Therefore, less energy remains available to drive intrawell

oscillations and consequently the width of the distribution

° P(v) shrinks; see Fig. (®).
Correspondingly, due to inertia, the mean velocity in-
S I creases, reaching a second maximum before the upper
’ threshold value of the potential for@e=4.28. Above this
® os | driving amplitude, the current starts to decrease because of
I | the weakening influence of the ratchet potential at large rock-
S s B9 e : ing amplitudes.
() The occurrence of multiple reversals of the directed cur-
w Ol ] rent, as it occurs in Fig.(d), is a known, interesting feature
E‘; 4t - of inertial Brownian motors. Several prior studies did eluci-
< Y - ! date in greater detail the corresponding mechanism at work
il \_ : [2,21,23,25,2F Here, we take instead a closer look at the
0 [t H t + current fluctuations. We observe that for the chosen set of
@ i . ; L
0075 | i parameters, the maximal stationary velocity in Figr) Hoes
i ' not exceed the value 0.4. In contrast, its fluctuations keep
= growing as the driving amplitude rises. At large driving, the
0.025 | particle no longer feels the potential and undergoes a rocked,
- 4 ’ free Brownian motion with the velocity fluctuations growing
o [1 2 3 4 § proportional toa, cf. Fig. 1(b).
|' “ On the other hand, the relative fluctuations of the kinetic
o} T M ik M ' M energy do saturate, see Figc)ll These are suppressed to
= I . . Crep
=1 |l values near 1, which lie below the equilibrium value of 2.
ACTA A L A Within this directed transport regime, the efficien@) re-
20 220 220 220 2 mains rather small, cf. Fig.(d). Such small rectification
! efficiency is the rule for this driven inertial Brownian motor.
FIG. 1. (Color onling Fluctuation behavior of an inertial Let us next inspect theurrent probability distribution

Brownian motor vs the driving strength (a) Averaged dimension- P(v). All P(v) curves reported in the following have been
less velocity(v) of the inertial Brownian motor in Eq(3) with normalized so that their maximuge., their highest peaks
rescaled units(b) variance of the corresponding velocity fluctua- set to a fixed, unit value. Only then can we detect the details
tions o,,; () fluctuations of the rescaled kinetic energ§/(E)% (d)  in their shape upon varying the corresponding parameters
rectification efficiency in Eq(8). All quantities have been com- sych as the driving amplituda or the noise strengtiD,,
puted for the rescaled potential V(X)=-Vo[sin2mx)  These probabilities look almost symmetric; however, a finite
+0.25 sirf4mx)], whereVy=0.454 normalizes the barrier height to atchet velocity requires a certain amount of asymmetry in
unity, see the inset ite). The force corresponding to this potential the |gcation and/or the width of the velocity peaks. Here, the
ranges from—2.14 to _4.28. The angular frequencies at the weI_I current results mainly due to a slight symmetry of the
bottom and at the barrier top, respec_tlvel)_/, e_qua_l each other, read'rlglaxima locations.
5.28. Bottom pane(e) shows velocity distributions for selected ppo gt peculiar feature of the current distributions for
driving amplitudes, i.e.a=0.68,1.5,2.14,3.25. All these distribu- h in Fig. () is the emergence of two additional
tions were normalized by setting their maximum to 1. The remain-a.>o'6 shown in =1g. - 9 .
ing rescaled parameters read frictior 0.5, angular driving fre- side peaks Center_ed nezar_il, which eventually domlnat_e
quencyw=3.6, and weak thermal noise of strend@=0.01. P(v) at !arger driving amplltudes. Of course, for'ze.ro erve
P(v) boils down to a single-peaked Maxwell distribution,
equilibrium Maxwell distribution, we find2/(E)?=2, as ex-  strictly symmetric around=0. To investigate the onset of
pected. these two side peaks fa values corresponding to vanish-
Upon further increasing the amplitude of driviraj>1.5,  ingly small currents, we seP(v)=qPy(v-1)+qPy(v+1)
the Brownian motor generates for this set of parameters the (1-2q)Py(v), whereq varies from 0 to 1. IfP, is taken to
desired, directed transport behavior. At the same time, wée a symmetric Gaussian function, then the kinetic energy
observe that the width of the weakly asymmetric, corre-fluctuations can be evaluatediz exhibits the behavior
sponding distributionP(v) slightly decreases, meaning that shown in Fig. 1c).
the velocity fluctuations become smaller. The following ex- What is the origin of those three peaks in the distribution
planation thus applies: A< 1.5, escape jumps between the P(v)? Our first conjecture to connect it with the “running”
neighboring wells are rare, i.e., the average directed currergolutions turned out to be incorrect. This is so because for
is very small(note also the accompanying, very weak asym-a<1, the particle rarely leaves the confining potential well
metry in the velocity distribution The input energy is and thus cannot significantly contribute to the side peaks of

061105-4



BROWNIAN MOTORS: CURRENT FLUCTUATIONS AND... PHYSICAL REVIEW E 70, 061105(2004)

the distribution function. We further checked the outcome for W
the velocity distribution when reflecting barriers were placed bl \ / \
at the maxima of the potential. Under such constraints, the §
three-peak structure is recovered as well. Moreover, the T 025} \ / \
sinusoidally driven damped particle in a harmonic potential =
can exhibit both a singly peaked as well as a doubly peaked 0
averaged velocity distribution, see in RE39]. However, for 025 L .,
the parabolic potential that fits best the wells of our ratchet ()
potential around its minima, we found a single-peakéd). 1}
We therefore do conclude that the characteristic behavior ¢
for the additional side peaks is rooted in the nonlinear, an- 0.5
harmonic character of the corresponding well of the periodic i
asymmetric ratchet profile. g 7R RN 0 N
C. Numerical results: Role of the shape of the underlying & 15}
ratchet potential % ; ;
We next study the influence of the ratchet profila }
force) on the mean velocity and on the corresponding fluc- g —— ——t
tuation behavior of the directed current. We use a stylized el ;
potential shape composed of three spatial higher harmonics 02t
with ¢, # 0; see Eq(4). Note that this potential shape pos- =
sesses an opposite polarity as compared with the ratchet po- 01
tential depicted in the inset of Fig(d). Put differently, the " o Caid
natural direction of the Brownian motor motion is to the left, o\ 1 2 38 /4 56 /
in the direction of the weaker slope; see Figa)2inset. " /
For small driving amplitudes, this inertial motor predomi- @N T AAT T
nantly dwells in a potential well. The directed current is very = |\
small and negativédirected towards the leftif the driving P, e ) O i
amplitude exceeds the upper threshold amplitude of the WA TR 2R
ratchet force ah=4.66, the motor starts to move more regu-
larly, reaching an extremal speed nesx6. Interestingly FIG. 2. (Color online Tailoring the shape of the potentiah)

enough, the motor moves now towapmissitive xvalues. The Averaged dimensionless velociy) of the inertial Brownian motor
resulting transport velocity thus cannot be easily prediated under nonadiabatic driving conditiongy) corresponding velocity
priori in this nonadiabatic driving regime. This is a charac-fluctuations o,; (c) fluctuations of the rescaled kinetic energy
teristic feature of these inertial Brownian motors where theoe/(E) (d) efficiency. All quantities are plotted vs the external
coupling between the deterministic driving forcé(t) drlvmg amplitude a fpr the asymr_netnc ratchet potentia(x)
=acogwt), and the resulting motion of the driven Brownian =Vo[sin(2mx) +0.245 sitt4mx) +0.04si6mx)], where Vo=0.461
particle are coupled loosely, only. Except for a narrow re_normal_lzes the barrier helght_ to unifgee inset in@)]. The forces
gime of sizable values, cf. Fig.(®, the emerging average stemmmg: frc;m SUCh?pOtenr:'al ralr;%e betwee::;s? ?]ndbl's.g' The
velocities are typically very small, yielding no corresponding:\r’]\/0 angular frequencies at the well bottom and at the barrier top are
_ A 2 ) e same, reading 5.34. The corresponding velocity distributions
efficient rectification. Therefore, the efficiency of this more P(v) are displayed in pane®) for the indicated driving amplitudes,
complex Brownian motor mimics again closely the behavior; e.,a=0,4,6.7. All P(v) curves have been normalized by setting
of the average motor velocity; see pace) in Fig. 2. their maximum to 1. The remaining parameters #+.9, ©=4.9,
The velocity fluctuations exhibit a similar behavior to that 5n4p =0.01.
in the case of Fig. 1 discussed above. The variance grows
nearly linearly with increasing driving strength. Typically,
the average velocities are small and the fluctuation behavior D. Numerical results: Current fluctuations versus noise
is similar to the behavior discussed above for the first ratchet strength Dy
potential. Interestingly enough, however, above-threshold
driving induces a distinct peak behavior of the velocity In Fig. 3, we numerically investigate the directed trans-
which is accompanied by a corresponding dip in the behavioport versus the temperatudy. We have chosen a subthresh-
of the velocity fluctuations. This dip in the variance thenold driving strength for which the thermal noise plays a con-
gives rise to a window with appreciable efficiency, cf. Fig. structive role[40] by inducing noise-activated jumps across
2(d). the potential barriers. We sat0.8 and the other parameters
The behavior for the velocity distributions is again ge-remain the same as in Fig. 1. Then, we find a characteristic
neric: Small average velocities exhibit nearly symmetric ve-velocity reversal near the dimensionless temperaiDge
locity distributions, see Fig.(8). Only for the nonadiabatic =kT/AV=1. There, the thermal energy compares with the
peak behavior of the mean velocity does one identify also a@activation energy over the barrier height of the ratchet poten-
appreciable asymmetry for the velocity distribution. tial. A subsequent increase of temperature causes a diminish-
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FIG. 3. (Color onling Fluctuation behavior of an inertial = [

Brownian motor vs the noise strendih. (a) Averaged dimension- 010012 0 2.2 0 é_2 (') P

less velocity(v); (b) the corresponding velocity varianeg,; (c) v

fluctuations of the rescaled kinetic energ%/(E)Z; (d) the corre-

sponding efficiency. Numerical results obtained for the same ratchet FIG. 4. (Color onling Tailoring the shape of the potentiak)
potential as in Fig. 1. In the bottom parie), the velocity distribu- Averaged dimensionless velocity) of the inertial Brownian motor
tion P(v) is shown forDy=0.01,0.1,2,10. AllP(v) curves are nor- uUnder nonadiabatic driving conditiongy) corresponding velocity

malized as in Fig. 1. The remaining rescaled parametersyare fluctuations o,; (c) fluctuations of the rescaled kinetic energy

=0.5, w=3.6, anda=0.8. o'%/(E)Z; (d) efficiency. All quantities are plotted vs the driving
amplitude a for the asymmetric ratchet potential of Fig. 2. The

corresponding velocity distributior¥(v) are shown in panek) for

ing role of the asymmetric ratchet potential and, Conse'selected driving amplitudes, i.@=0,3.25,3.5,4. 5. AIP(v) curves
quently, the directed transport degrades.

- . L are normalized as in Fig. 2. The remaining parametersya@.9,
Moreover, the time-averaged velocity distribution ap- _4 andDy=0.001.

proaches the equilibrium velocity distributig®]. It is re-

markable that within a certain range of temperatures, thenat the directed current should proceed in a persistent man-
fluctuations of the kinetic energy exceed the relevant valuger with very few, occasional back-turns only. This in turn
for the Maxwellian equilibrium distribution, cf. Fig.(8). A cayses small fluctuations in the velocity and, additionally,

shallow, local minimum occurs for the velocity fluctuations provides a dominating asymmetry of the velocity distribu-
where the average current itself is maximal. These fluctuaggp,.

tions are, however, nota_bly three orders of magniﬂa_ld@er Such a behavior can be realized by a combined tailoring
than the small-valued, directed current. Not surprisingly, theyt the asymmetry of the ratchet potential together with the
rectification efficiency shown in Fig.(8) is quite small. 56 of appropriate driving conditions. In the quest for achiev-

Again, the Brownian motor is not operating optimally. ing such a favorable situation we use the three-harmonics
ratchet potential plotted in the inset of FigaR Our hope is
V. TAILORING RECTIFICATION EEFICIENCY that upon minimizing the noise further, we can achieve a

substantial improvement of the efficiency.

Thus far, changing the ratchet profiles did not lead to a At very weak noisend large, nonadiabatic rocking fre-
large enhancement of the rectification efficiency. What isquencies, this inertial Brownian motor starts moving effi-
needed in achieving a large rectification efficiency is a sizciently near the upper threshold of the ratchet foae
able Brownian motor current which is accompanied by smalk=4.66, see Fig. @). Because the directed velocity becomes
current fluctuations only; see E(B). This scenario implies maximal and simultaneously its fluctuations are locally mini-
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mal [see Fig. 4b)], we indeed find the desired enhancementeg 386 (P.H.,P.T), and the collaborative research grant
of the rectification efficiencysee Fig. 4d)]. The fluctuations SFB 486.

of the kinetic energy grow slightly; nevertheless, these are

still strongly suppressed in comparison to the equilibrium

value 2. APPENDIX
We have studied several other ratchet potentials by vary- . . o
ing the parameters, andc, in Eq. (4) and still found re- With this appendix, we present the derivation of the ex-

gimes where the inertial ratchet works with a high efficiencypression(8) for the rectification efficiency. We combine the
(not shown. In all these cases, we found that the velocityarguments ir{5-7] and establish the efficiency as
distribution has a support concentrated mainly on one of the

semiaxes. Strongly asymmetric velocity distributions are de- A

picted with Fig. 4e). In contrast, with the mode, set to zero n=—-.

(see the inset in Fig.)Lwe could not identify such an opti- |Pin|
mal regime for rectification of noise. The shape of these

distributions just corroborates the fact that large rectificationin the denominatorP;, denotes the rate of the energy input
efficiencies are the result of persisteriniydirectional  to the system. There is no overall consensus on the numera-
Brownian motor motion, accompanied by a strong asymmetor A [4-7). If A denotes the rate of work done on the fluid

(A1)

try of the current statistics. by the Brownian motor motion, then the corresponding effi-
ciency 7 is not an appropriate measure because (v?).
VI. CONCLUSION This quantity can be relatively large even if there occurs no

transport of the motor, i.e., even {{)=0! More suitable
With this work, we have elucidated directed Brownian jnformation on the efficiency of the transport is gained when
motor transport in rocked rachet potentials in the presence qf 6], A~ (v). Following the reasoning if5—7], we use for

regimes and studied by numerical means the operation of th'\?elocity, i.e., A=(y)v). To calculateP,, let us recast Eq.
massive ratchet machine. In particular, we investigated th@s) into the form

variation of the average current versus driving amplitade

and the temperature strengiy,. Our main objective has

been the behavior of the accompanying current fluctuations dx=v dt, (A2)

as a function of these transport parameters. These fluctua-

tions crucially impact the rectification behavior, as measured

by the rectification efficiency in Eq8). dv=- [YU +V’ (x,t)]dt+ \umdw(t), (A3)
Typically, the current values and the corresponding veloc-

ity fluctuations are such that no appreciable rectification . )

e)r/nerges in these inertial, rocked B?gwnian motors. ThergvhereV(x,t)zV(x)z— axcogt) andW(t) is the Wiener pro-

exist, however, tailored regimes of ratchet profiles and driv-C€SSL(W(1)=0 (WD) =t].

ing parameters for which an enhancement of rectification and Now, we evaluate the ensemble and temporal averages of

optimal transport does occur. These regimes are marked bytBe rescaled kinetic energy(v) =v?/2, v=v(t). To this aim,

large Brownian motion transport with few back-turns only. first we apply Ito’s differential calculus to the functi@(v)

This in turn implies a narrow, asymmetric velocity statisticsto obtain

with dominantly, one-sided support of either positive- or

negative-valued velocities. 214\ _ 2 , |
g1]'hese novel findings for the fluctuation statistics of d(v¥2) = = [y0? + vV (1) = yDo]dt+ \2yDowdW1).

Brownian motor velocities can be put to use in diverse tech- (A4)

nological devices that pump and separate efficiently and re-

liably Brownian particles in corresponding physical and bio-The ensemble averagee., the average over all realization

logical systemg$19]. Moreover, the results derived herein for ¢ ihe \Wiener process denoted by--->) for the rate of
such driven inertial Brownian motors can be applied as We'khange of the kinetic energy results in

to the phenomenon of stochastic resonafw@ in corre-
sponding underdamped regimes.

d
= <v2> =—[y<v®> + <vV'(x) >
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— 2
<Ev2> = < pt+2mlw) > - <vXt)> =0. (A6) 0=-A %~ Dol + P (A8)
dt where the combined averad®,=(v(t)a cos(wt)) is the in-
Likewise, for the contribution put energy to the system per unit time. Thus, upon combin-
ing Egs.(Al) and(A8), the relation in Eq(8) emerges. We
WV'(X))= < V[x(t+ 2mw)] > - < V[x(t)] > =0. also emphasize here that our scheme for the efficiency of

(A7) rectification at zero bias imdependenbf the transport fric-
tion coefficienty. This feature is in agreement with the cor-
Consequently, we obtain responding result by Suzuki and Munak§fé.
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