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We address the objective of the generation of finite magnetic flux out of unbiased thermal current fluctua-
tions in a collection of identical mesoscopic cylinders which are coupled via mutual inductances. The in-
fluence of thermal Nyquist fluctuations are described in terms of a set of Langevin equations or a corre-
sponding Fokker–Planck equation, respectively. In the limit of infinitely many constituents, the steady-
state of the system is determined by an effective, nonlinear Fokker–Planck equation. The system exhibits 
in this thermodynamic limit a second-order phase transition: the average flux through each cylinder 
changes continuously from zero to non-zero value and the phase diagram depicts a critical line. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Due to their intermediate size between the macro- and micro-world mesoscopic systems exhibit a rich 
variety of phenomena that are both of quantum and classical origin [1]. Herein, we elaborate on the phe-
nomenon of finite flux generation out of current fluctuations of zero average in a system of interacting 
mesoscopic cylinders. More specifically, we consider a linear chain of coaxial mesoscopic cylinders that 
are coupled by mutual inductances. Recently, the idea of a flux phase state has been proposed in the 
context with both superconductivity and the topic of non-transport ground state currents in a mesoscopic 
normal metal samples [1, 2] of multiply connected mesoscopic cylinders, rings or even carbon nanotubes 
[3]. The flux state [2] is characterized by a non-vanishing selfsustaining current in the system. Because 
of thermal equilibrium fluctuations (Nyquist noise) these selfsustaining currents in mesoscopic cylinders 
are – although long lasting – only metastable states of the system (in the sense that the averaged current 
in an equilibrium state vanishes). Due to the time-reversal symmetry, the mean flux in a finite system is 
always zero. The situation changes drastically when co-operativity comes into play as is the case with 
noise induced phase transitions within the “thermodynamic limit” of an infinite number of interacting 
cylinders. The model of an infinite chain of mesoscopic cylinders formed of long wires made of single-
wall carbon nanotubes presents an idealized archetype. 
 In mesoscopic systems of the cylindrical symmetry persistent currents can occur [5] due to the quan-
tum size effect resulting in the spatial quantisation of energy levels. Those currents emerge as a result of 
the phase coherence among electrons, the so-called coherent electrons. In the ground state, at tempera-
ture = 0T , the only electrons present in the system are coherent ones possessing a non-dissipative flow. 
At non-zero temperature, > 0T , a part of those electrons become “normal” and their behavior is dissipa-
tive resulting in a decrease of the amplitude of the persistent current. This feature has been confirmed 
experimentally in mesoscopic rings connected to a current source [6]. 
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2 Model 

To start, let us assume that the real 3-dimensional mesoscopic cylinder is modeled as a collection of cN  
one dimensional rings (current channels) stacked along a certain axis. The geometry of cylinder is cho-
sen in order to obtain a thin-wall system with sufficiently large current-amplitude. The coherent current 
is a sum of contributions of single channels which can produce currents being either paramagnetic for an 
even number, or diamagnetic for an odd number eN  of coherent electrons. For simplicity, we assume that 
the probability of finding a channel with an odd number of coherent electrons equals the probability of 
finding a channel with an even number of coherent electrons. Thermal, dissipative conduction causes 
various sources of random fluctuations [7]. There are so-called universal conductance fluctuations that 
arise from the random quantum interference between many electron paths which contribute to the con-
ductance in the diffusive regime. These fluctuations decay algebraically with temperature and can be 
neglected at higher temperatures [8]. There is also a part of the current noise which is called shot noise 
[7], the spectral density of which is proportional to mean current. This noise can be reduced by increas-
ing the size of rings [1]. Thermal motion of charge carriers in any conductor is a source of random fluc-
tuations of current which is called Nyquist noise [7]. This thermal equilibrium noise is universal and 
exists in any conductor. Moreover, this noise increases with temperature. In the following we limit our 
considerations to conditions of relatively high temperature and sufficiently large circumference xl  of the 
cylinder when the only significant source of randomness is Nyquist noise [4]. 
 For a system of N identical mesoscopic cylinders, fluxes and currents in the cylinders (in the absence 
of an externally applied flux) are coupled according to the formula [9, 10] 

 f
=

=Â
1

,
N

i ik k
k

IM  (1) 

where fi and iI  are flux and current in the i -th cylinder, respectively. The coupling coefficients 
=ik kiM M  (forming the matrix M) denote the mutual inductances for πi k  and identical self-

inductances = iiL M  for =i k  [10]. The current in the k -th cylinder consists of two contributions [11]: 
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with the Ohmic (dissipative) current f=

nor
nor ( )k kI I , according to the Ohm’s law and Lenz’s rule assum-

ing the form 
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Herein, R denotes a resistance of a single cylinder [12], Bk  is the Boltzmann constant, and G ( )k t  de-

scribes fluctuations of the current; i.e. thermal Nyquist noise modeled by Gaussian white noise of zero 

average G· Ò =( ) 0k t  and the Dirac d -correlations G G d d· Ò = -( ) ( ) ( )k i kit s t s . Its intensity 0 B2D k T R= /  

is chosen to obey the fluctuation-dissipation theorem. The coherent electrons f= ,
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The characteristic temperature *T  is defined by the relation 2
B * 2Fk T D= / p , where FD  is the energy gap 

at the Fermi surface and Fk  denotes the Fermi momentum. Inserting (2)–(4) into (1) yields 
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where = 1...i N . This set of equations can be inverted to read 
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Introducing the dimensionless flux 0i ix f f= /  and time t= / 0s t , where 0 Rt = /L , from (7) we obtain (the 
dot indicates the derivative with respect to xi) 
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0 0 2L  is the magnetic energy and B 0* * 2D k T e= /  denotes the 
ratio of the characteristic thermal energy to the magnetic energy [4]. Both these characteristic energies 
are of quantum origin: *T  is the temperature corresponding to the energy gap at the Fermi surface and e0  
relates to the magnetic flux quantum f0 . 

3 Fokker–Planck equation 

Due to the symmetry =ik kiM M , the set of Eqs. (8) is a gradient system independent of the specific con-
figuration of the cylinders. The case with = 1N  has been studied previously in [4] for which the potential 
(9) is in general multi-stable. If the so-called flux trapping is absent, the potential (9), which is reflection 
invariant, can be either mono-stable or bistable, depending whether the temperature of the system is 
above or below a critical temperature cT . The maxima of the corresponding probability density can be 
interpreted as self-sustaining fluxes (or currents) in the system. They are long living states, provided the 
time of thermal activation from one maximum to the other is huge in comparison with the decay time in 
the basin of attraction of a single maximum [4, 13]; it is in this sense, that the mean flux or current does 
vanish. The mean flux in a finite chain of mesoscopic cylinders also vanishes, due to the symmetry of the 
potential (9). A non-zero mean flux can occur only in the limit of infinitely many cylinders. We thus 
consider a system of coaxially stacked interacting cylinders in the limit Æ•N . This scheme has suc-
cessfully been used for investigating equilibrium, non-equilibrium and non-thermodynamic phase transi-
tions, see e.g. [14, 15]. The Fokker–Planck equation for the probability density ,({ } )ip x s  of the  
N-cylinder system in Eq. (8) reads [16] 

 
2

1
2

1 ( )

({ } ) ( ) ( ) ({ } ) ({ } )
N

i i ij j i i
i j i ii i

p x s V x T x p x s D p x s
s x x

•

-

= π

È ˘∂ ∂ ∂
, = , + , + , .¢Í ˙

∂ ∂ ∂Î ˚
Â Â ÂL M  (10) 

Integration over all variables except kx  yields the nonlinear, steady-state equation for the 1-dimensional 
probability density [17] 
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where ( ) di k i s i k ix x x p x x x· | Ò = |Ú  is a stationary conditional expectation value of ix  with respect to the 
conditional probability density ( )s i kp x x| . This equation is formally exact. It contains, however, the un-
known quantity · | Òi kx x  which can be determined only via an approximation scheme. Thus, we invoke 
the following approximation: We rewrite the conditional expectation value as i k i ikx x x c· | Ò = · Ò + , 
wherein ik i k ic x x x= · | Ò - · Ò accounts for correlations between i-th and k-th cylinder. In the limit, when 

Æ•N , the system becomes statistically homogeneous so that the stationary average · Ò = · Òkx x  no 
longer depends on the index k. In this limit we shall neglect the correlations, i.e. we put = 0ikc . Follow-
ing [17], we deduce that the stationary probability density for = kx x  satisfies the non-linear Fokker–
Planck equation [14], 
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is the order parameter of the system and 1( )ik
i k

l
-
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= -Â L M  denotes an effective coupling constant. In 

this sum, the index k is fixed and Œ -•,•( )i . However, for the system of infinitely many cylinders, the 
result does not depend on k. Similarly, the parameter ai in the potential (9) does not depend in the index i, 
a = ai (below in all figures we take a = 1). The mutual inductance for the coaxial alignment, which is 
expressed by a complex formula involving elliptic integrals, is positive [9], > 0ikM . The predominant 
non-diagonal elements -1( )ikM  of the inverse matrix -1

M  are negative and as a result the coupling con-
stant is positive, i.e. l > 0. Its value is typically small and for generic cases l < .0 1. We expect, never-
theless a “ferromagnetic” state of the system, characterized by the parallel alignment of the magnetic 
moments induced by the currents flowing in the neighboring cylinders. Indeed, the solution of Eq. (12) 
reads 

 [ ]m m lm= , = - , - / ,0( ) ( ) ( )exp ( ( ) )s sp x p x N V x T x D  (14) 

where m0 ( )N  is the normalization constant and ∫ µ( )D D T T , see below (9). 

4 State equation 

From (13) and (14) one finds the self-consistent steady-state equation 

 m m= ,( )F  (15) 

where 
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 The closed form of this nonlinear equation allows one to study various regimes. The flux state is char-
acterized by the non-vanishing mean flux m = · Ò π 0x . If an external magnetic field is applied then trivi-
ally m π 0 . The non-trivial case emerges when the external flux is zero but m π 0 . Because the potential 

, = - ,( ) ( )V x T V x T , the Eq. (15) has always the solution m = 0 . This solution becomes unstable, how-
ever, when the parameters exceed a critical value: a bifurcation into two stable states characterized by 
m π 0  is then expected. These states are symmetric with respect to the inversion of the current. The  
numerical solution of (15) depicted with Fig. 1 indeed confirms our expectation. Therein, we elucidate 
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both, the role of temperature and the interaction strength for two sets of parameters. The temperature 
affects the system via the ‘single particle potential’ ,( )V x T  and the noise intensity D. The coupling con-
stant l  depends on the distance between cylinders. The dimensionless parameters of the model are cho-
sen so as to yield = . /0 001 *D T T  and =0 1i  (the potential ,( )V x T  then becomes bistable below 
= .1 66 *T T ). 

 We note that the continuous phase transition does occur at the transition point determined by the rela-
tion 
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The critical coupling constant lc  is consequently obtained as 
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The bifurcation diagram obtained from this equation is depicted with Fig. 2. We find that in the vicinity 
of the transition point lc , the order parameter m| | behaves algebraically; i.e. 

 
2

2 2
1

( )
c c

cK T

l l
m l l

l l

Ê ˆ È ˘= - , > ,Á ˜ Í ˙Ë ¯ Î ˚
 (20) 

where the kurtosis 
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characterizes the deviation of the steady state of the non-interacting system from the Gaussian distribu-
tion. It is a monotonically decreasing function of temperature that starts from a positive value at = 0T  
and successively diminishes towards zero as T increases (approaching the onset to the Gaussian regime).  

Fig. 1 Phase transition from disordered (zero flux) 
to ordered (finite flux) states in the coaxial system of 
coupled mesoscopic cylinders. The order parameter is 
the averaged magnetic flux m  through one cylinder. 
The corresponding state of the system is controlled by 
the dimensionless temperature / *T T , or (see the inset) 
by the coupling constant l . 
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From (20) it follows that near the transition point bm l lµ -( )c  for l l> c , where the critical exponent 
b = /1 2, i.e. it assumes the classical value. 

5 Summary 

The studied system of mesoscopic cylinders presents a 3-dimensional many-degree-of-freedom system. 
A related system has been studied in [18]. Here, we have reduced its description to the quasi  
1-dimensional system modeled by a set of Langevin equations (8). The properties of magnetic flux de-
pend on the mutual interplay of quantum coherence and dissipation. Classical dissipation at finite tem-
perature is taken into account via Eq. (3) and quantum mechanically via Eq. (4). The experimental verifi-
cation of this collective behavior can serve as an indirect evidence that the constituents, i.e. single cylin-
ders, are monostable or bistable systems. A wire made of single wall carbon nanotubes (e.g. a long nano-
tube with periodically distributed defects like carbon peapods [19]) or coaxial and uniradial loop-by-loop 
winding of nanobelts [20] are proposed to be suitable test systems. Such systems have potential applica-
tions in investigating fundamental physical phenomena and could be used as “flux guides” or “magnetic 
fibres” in close analogy to wave guides and optical fibres in modern photonics. 
 In conclusion, we have shown that the co-operativity between mesoscopic-sized, coaxially coupled 
cylinders yields critical behavior and phase transitions from the zero mean to the non-zero mean flux 
state. A macroscopic stationary non-zero current can thus flow in absence of external driving. 
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