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We study the current and its noise properties of the electron transport through a
molecular wire modeled by a three tight-binding levels. Within a high-frequency
approximation, the time-dependent transport problem is described by a static
problem with renormalized parameters. The analytical results are in good agree-
ment with an exact numerical solution.
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1. INTRODUCTION

In recent years several suggestions how to set up a single electron
transistor have been made [1,2,3,4]. The development of new methods
to contact molecules or molecule-like systems and control the electron
transport through them [5,6,7] is a major issue in the promising field
of molecular electronics [8,9]. The conventional setup of such a transis-
tor requires a gate in order to trigger via the gate voltage the current
from the source to the drain which correspond to the lead contacts of
the molecular system. In fact, the implementation of a single gate elec-
trode which creates a sufficiently strong field at the molecule is a
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demanding task [2,10,11]. Instead of using the static fields of a gate
electrode, oscillating external fields or an oscillating gate voltage
might be a convenient alternative to control the electrical current
according to a molecular field-effect transistor. Depending on the nano-
system itself, laser fields or microwave radiation are appropriate for this
purpose. As has been shown recently in a theoretical work [12], a switch
can be obtained by applying a coherent monochromatic field. Moreover,
it is even possible to control the corresponding noise level [13].

In the present paper we study current and noise through a tight-
binding system consisting of three sites which are subject to an exter-
nal ac driving. This model describes both molecular wires under the
influence of laser fields and coherently coupled quantum dot systems
[14] irradiated by microwaves. In Section 3, analytical expressions
for the current and zero-frequency noise are derived for the static case.
Turning on an external field, we demonstrate in Section 4 that the dri-
ven system can be approximated in the high-frequency regime by the
static system with renormalized parameters. The article is rounded off
by comparing the analytic expressions with the numerical results of
Ref. [13].

2. THE MODEL

We consider the setup depicted in Figure 1 which consists of three
sites subject to an external oscillating field and coupled to two leads.
It is described by the time-dependent Hamiltonian

HðtÞ ¼ HsystemðtÞ þHleads þHcontacts: ð1Þ

FIGURE 1 Nanoscale conductor consisting of three sites. The terminating
sites are coupled with CL and CR to the respective lead with chemical poten-
tials lL and lR ¼ lLþeV, whereas the intrasite coupling is described by a
hopping matrix element D.
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The Hamiltonian

HsystemðtÞ ¼ �Dðcy1c2 þ cy2c1 þ cy2c3 þ cy3c2Þ þ Aðcy1c1 � cy3c3Þ cosðXtÞ ð2Þ

represents the driven three-site system in the tight-binding descrip-
tion disregarding electron-electron and electron-phonon interactions.
The fermion operators cn and cyn annihilate and create, respectively,
an electron at the level n. Expressed by the second term of the
Hamiltonian (2), the system itself is exposed to an ac field with
frequency X ¼ 2p=s. This field results in a dipole force shifting the
on-site energies periodically. The amplitude A is proportional to the
component of the electric field strength parallel to the system axis.
The dipole approximation is well justified since the wavelength of
the external field we consider in this work is some orders of magni-
tudes larger than the system size of the nanoconductor. Moreover,
the coupling of the nearest neighbor sites is given by a hopping matrix
element D. The electron reservoirs of the leads are described by the
Hamiltonian

Hleads ¼
X
‘;q

e‘qc
y
‘qc‘q; ð3Þ

where cyLqðc
y
RqÞ creates a electron in the left (right) lead with momen-

tum q. For simplicity spin is neglected. The electron distribution in
the leads is assumed to be grand-canonical with inverse temperature
b ¼ 1=kBT and electro-chemical potential lL=R. An applied voltage V
corresponds to lR � lL ¼ eV, where �e is the electron charge. Finally,
the contact between the terminating sites and the leads results in the
tunneling Hamiltonian

Hcontacts ¼
X
q

VLqc
y
Lqc1 þ VRqc

y
Rqc3

� �
þ h:c: ð4Þ

Since we are not interested in the effects that stem from the
microscopic structure of the tunneling processes, we consider in the
following the system-lead coupling to be energy-independent. In this
so-called wide band limit the spectral density is assumed constant,
i.e., C‘ðEÞ ¼ 2p

P
qjV‘qj2dðE� e‘qÞ ¼ C‘.

3. TRANSPORT WITHOUT AC-DRIVING

As a starting point, we derive expressions for current and noise for
the static system, setting A ¼ 0 in the Hamiltonian (2). Solving the
Heisenberg equations of motion for the lead operators, we obtain
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cLqðtÞ ¼ cLqðt0Þe�ieLqðt�t0Þ=�h � iVLq

�h

Z t

t0

dt0e�ieLqðt�t0Þ=�hc1ðt0Þ ð5Þ

and a corresponding expression for cRqðtÞ with L replaced by R and c1
by c3. Inserting (5) into the Heisenberg equations of motion of the
three-site system and exploiting the wide-band limit, one arrives at

_cc1=3 ¼
i

�h
Dc2 �

CL=R

2�h
c1=3 þ nL=RðtÞ;

_cc2 ¼
i

�h
Dc1 þ

i

�h
Dc3:

ð6Þ

The operator-valued Gaussian noise defined as

n‘ðtÞ ¼ � i

�h

X
q

V�
‘q exp � i

�h
e‘qðt� t0Þ

� �
c‘qðt0Þ ð7Þ

has within the grand-canonical ensemble the properties

n‘ðtÞh i ¼ 0;

ny‘ðtÞn‘0 ðt0Þ
D E

¼ d‘‘0
C‘

2p�h2

Z
deeieðt�t0Þ=�hf‘ðeÞ:

ð8Þ

Here, f‘ðeÞ ¼ 1þ exp½bðe� l‘Þ�f g�1 denotes the Fermi function with
chemical potential l‘, ‘ ¼ L;R.

The time-dependent current through the contact ‘ is defined as

I‘ðtÞ ¼ eðd=dtÞ
P

qc
y
‘qc‘q. Making use of Eq. (5), the current through

the left contact becomes in the wide-band limit

ILðtÞ ¼
e

�h
CLc

y
1ðtÞc1ðtÞ � e cy1ðtÞnLðtÞ þ nyLðtÞc1ðtÞ

n o
: ð9Þ

The operator c1ðtÞ is obtained by solving Eqs. (6) in the stationary limit
t0 ! �1 using the Green function method. After the elimination of
the backscattering terms, we finally obtain

I ¼ hILi ¼
e

2p�h

Z
dE fRðEÞ � fLðEÞ½ �TðEÞ; ð10Þ

with the transmission TðEÞ ¼ CLCRjG13ðEÞj2, where G13ðEÞ denotes
the corresponding matrix element of the Green function. For a
three-site system with symmetric coupling to the leads, i.e.,
CL ¼ CR ¼ C, the transmission reads

TðEÞ ¼ C2D2

jð2iEþ CÞð2iE2 þ EC� 4iD2Þj2
: ð11Þ
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The noise of the current across contact ‘ is given by the symmetric
auto-correlation function of the current fluctuation operator
DI‘ðtÞ ¼ I‘ðtÞ � I‘ðtÞh i. The noise strength measured in experiments is
characterized by its zero-frequency component S ¼ Sðx ¼ 0Þ ¼ ð1=2ÞRþ1
�1 dt DI‘ðtÞDI‘ð0Þ þ DI‘ð0ÞDI‘ðtÞh i, which is independent of the contact
‘ due to total charge conservation. It is convenient to express S in
terms of the transmission function TðEÞ as [15]

S ¼ e2

2p�h

Z
dEfTðEÞ fLðEÞ½1� fLðEÞ� þ fRðEÞ½1� fRðEÞ�½ �

þ TðEÞ½1� TðEÞ�½ fRðEÞ � fLðEÞ�2g: ð12Þ

For zero temperature, the first line vanishes while the second line
describes pure shot noise, which has its physical origin in the discrete-
ness of the charge carriers.

In the following, we consider voltages much larger than all other
energy scales of the setup indicated by the subscript 1 for the dis-
cussed quantities. As a consequence, the current noise will entirely
be due to shot noise. Furthermore, in this limit, the results for current
and noise will not depend on temperature. In the expression (10) for
the current, the difference of the Fermi distributions then practically
equals one for energies where the transmission is non-vanishing. The
current thus reads

I1 ¼ e

2p�h
T ¼ eC

2�h

D2

D2 þ ðC=2Þ2
; ð13Þ

where T¼
R
dETðEÞ is the total transmission. With the same argu-

ment we find from (12) for the current noise

S1 ¼ e2C
�h

D2ðC4 � 4C2D2 þ 16D4Þ
ð4D2 þ C2Þ3

: ð14Þ

A very illustrative quantity is the relative noise strength character-
ized by the so-called Fano factor F ¼ S=eI [16] and which becomes in
our case

F1 ¼ C4 � 4C2D2 þ 16D4

2ð4D2 þ C2Þ2
: ð15Þ

Analyzing the Fano factor (15) as a function of the ratio of the tunnel-
ing matrix element D and the level width C, we find the minimal Fano
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factor F�
1¼1=8 for D¼C=2. In terms of transport properties, this

means that the channel is optimally transparent. For weak system-
lead coupling C<<D, the two contacts between the terminating sites
and the leads form the limiting step of the transport process. We effec-
tively arrive at transport through a double-barrier system with a Fano
factor F1¼1=2 [17]. The same Fano factor is obtained in the opposite
limit C>>D, but for a different physical reason: now the double-barrier
is established at the central cite since the left and right ones hybridize
with the adjacent lead.

4. HIGH-FREQUENCY REGIME

Now we switch on the external driving. It has been shown [18,19]
that for large driving frequencies X, the time-dependent system
can be approximated by a static one with renormalized parameters.
The starting point of this approximation scheme is the unitary
transformation

U0ðtÞ ¼ exp �i
A

�hX
ðcy1c1 � cy3c3Þ sinðXtÞ

� �
; ð16Þ

which we first apply to the system Hamiltonian (2). For sufficiently
large driving frequencies X>>D=�h, we can separate time scales.
Thereby, we neglect fast oscillations of the transformed Hamiltonian
by averaging over a driving period [20,21]. Finally, we arrive at the
effective system Hamiltonian

�HHsystem ¼ 1

s

Z s

0

dt Uy
0HsystemðtÞU0 � i�hUy

0
_UU0

� �

¼ �Deff ðcy1c2 þ cy2c1 þ cy2c3 þ cy3c2Þ; ð17Þ

which is of the same form as in the static case but with D replaced by
the effective hopping matrix element Deff ¼ J0ðA=�hXÞD [12,21–24]. J0

is the zeroth order Bessel function of the first kind. Thus, Deff is
controllable via the driving parameters and can even vanish. The
transformation (16) affects the system-lead coupling, as well. If we
apply U0ðtÞ also to Hcontacts and solve the Heisenberg equations of
motion for the lead and system operators in the wide-band limit as
we did in Section 3, we can eventually extract the new fluctuation
operators. For the left lead one finds

gLðtÞ ¼ � i

�h

X
q

V�
Lq exp � i

�h
eLqðt� t0Þ �

A

X
sinðXtÞ

� �� �
cLqðt0Þ; ð18Þ
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which obeys the correlation function

gyLðtÞgLðt
0Þ

D E
¼ CL

2p�h2

Z
de

X
k;k0

eieðt�t0Þ=�hfLðeþ k�hXÞ

� JkðA=�hXÞJk0 ðA=�hXÞe�iðk�k0ÞXt ð19Þ

and corresponding expressions for the right lead. Again we neglect the
fast oscillating contributions by time-averaging. Then, the correlation
function is the same as in the static case, cf. Eq. (8), but with the Fermi
function replaced by the effective distribution function

f‘;eff ðEÞ ¼
X1

k¼�1
J2
kðA=�hXÞf‘ðEþ k�hXÞ: ð20Þ

Physically, the kth summand in this term describes the absorption
(k < 0) or emission (k < 0) of jkj photons by an electron of energy E
which is transferred from lead ‘ to the system. These processes are
weighted by the square of the kth order Bessel function of the first
kind. An example for the effective distribution functions for a small
transport voltage is plotted in Figure 2.

Two situations depending on the voltage have to be distinguished.
For sufficiently large voltages and in the relevant energy regime of
non-vanishing transmission, the left and right effective distribution
functions are zero and one, respectively. The transport properties
are determined by the transmission (11), the current (13) and zero-
frequency noise (14) derived in the previous section for the static case
but with the replacement D!Deff . We denote the current and the noise

FIGURE 2 Left and right effective distribution function and effective
transmission function for a typical set of parameters at room temperature.
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in this limit by �II1 and �SS1, respectively. The effective hopping matrix
element is zero for certain driving parameters and consequently in the
high-frequency limit, transport vanishes.

The case of a finite voltage has to be considered with more care.
Since the effective transmission Teff ðEÞ illustrated in Figure 2 is
peaked around E ¼ 0 in the high-frequency regime, we can replace
f‘;eff ðEÞ in the current and noise expressions by its value at E¼0 which
leaves us with f‘;eff ð0Þ ¼

P
k<l‘=�hX

J2
kðA=�hXÞ. The time-averaged

current and the zero-frequency noise are thus given by

�II ¼ �II1
X

jkj�KðVÞ
J2
kðA=�hXÞ; ð21Þ

�SS ¼ e

2
�II1 þ

X
jkj�KðVÞ

J2
kðA=�hXÞ

0
@

1
A

2

�SS1 � e

2
�II1

� �
; ð22Þ

where KðVÞ denotes the largest integer not exceeding eV=2�hX. Note
that these expressions are just valid if the voltage V is not close to a mul-
tiple of �hX and consequently the transmission peak does not appear
close to a step at l‘ þ k�hX of the effective distribution function. In that
case, f‘;eff ð0Þ would not be constant in the vicinity of E¼0 any more. Also
worth mentioning is the fact that in contrast to the static situation, the
result (22) contains contributions stemming from the first line in the
noise expression (12) even in the zero-temperature limit.

5. RESULTS AND CONCLUSION

The comparison of the numerically exact result and the high-
frequency approximation for the time-averaged current, the zero-
frequency noise and the Fano factor is shown in Figure 3. The exact
results (solid line) are computed within the Floquet approach of Ref.
[13] as a function of the driving amplitude A for lR¼�lL¼24D which
corresponds to a relatively large voltage. Besides the results for this
finite voltage in the high-frequency regime (dashed line), also the
curves for infinite voltage are depicted (dotted line) in order to get a
notion of the influence of the applied voltage.

The agreement of the current and the noise between exact results
and high-frequency approximation is very good for the chosen set of
parameters. Although the approximated noise starts to deviate from
the Floquet approach for amplitudes A>60D, we can explain the
characteristic current and noise suppressions of the numerically exact
result with help of the high-frequency approximation. These suppres-
sions appear whenever the effective hopping matrix element Deff
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vanishes. In this case, the ratio A=�hX corresponds to a zero of the
Bessel function J0 depicted in Figure 3(a). What actually happens in
the system by varying A is that the system-lead coupling is tuned

FIGURE 3 (a) Effective hopping matrix element jDeff j, (b) time-averaged cur-
rent �II, (c) zero-frequency noise �SS, and (d) Fano factor F¼ �SS=e�II as a function of
the driving amplitude A in units of D. The used parameters are the voltage
V ¼ 48D=e, the coupling strength C ¼ 0:5D and the driving frequency
X ¼ 5D=�h. Depicted are the numerically exact results (solid lines), the high-
frequency (hf) results (21) and (22) for finite voltage (dashed lines), and the
infinite voltage results (13) and (14) with the replacement D ! Deff (dotted
lines).
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depending on the ratio of C to Deff as discussed in the static situation
after Eq. (15). Therefore, starting from very small amplitudes, the
Fano factor has the value F � 1=2 describing tunneling through a
double-barrier. For larger amplitudes when C � Deff , F reaches a
minimum and optimal transport is established. Note however that
for the exact result, the current and noise are not totally zero at the
suppressions in contrast to the high-frequency approximation. If we
raise A further, we obtain again F � 1=2 since the situation is essen-
tially that of a single site weakly coupled to two leads [15].

For A < eV=2, the current and the noise are well approximated by
their asymptotic values for infinite voltage, �II � �II1 and �SS � �SS1, since
JkðxÞ � 0 for x > k and

P
k

J2
kðxÞ ¼ 1. The Fano factor behaves different

from the static case in the regime of larger amplitudes and even
exceeds one half in the finite voltage limit.

The control of electron transport through a system with discrete
levels by means of a time-periodic field is a tempting concept for future
devices in nano-electronics. Interestingly enough, an external driving
allows one to manipulate both the current and its noise level charac-
terized by the Fano factor. We gained profound physical insight by
applying a high-frequency approximation: The driving essentially
renormalizes the parameters of the static setup. In particular, the tun-
nel matrix elements between adjacent sites can be suppressed by the
external field and, thus, it is possible to switch between strong and
weak effective system-lead coupling. This explains in turn quantitat-
ively the observed noise reduction.
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