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Fractional diffusion modeling of ion channel gating
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An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe
nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our
method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Psaald
Natl. Acad. Sci. U.S.A.85, 1503(1988)] to the case of a continuous, anomalous slow conformational diffu-
sion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-
neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains
three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index
of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribu-
tion is obtained. In the limiting case of normal diffusion, our prior findifgsoc. Natl. Acad. Sci. U.S.A99,
3552(2002] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a
very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the
corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our
theoretical model is in good agreement with experimental data for large conductance potassium ion channels.
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I. INTRODUCTION N
Pel(D) = 2 i\ expl—= \it), ()
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lon channels are complex membrane proteins which pro-

vide ion-conducting, nanoscale pores in the biological mem-
branes[1]. These proteins undergo spontaneous conformawith weightsc; obeyingEiNzlcizl. The rationale behind this

tional dynamics resulting in stochastic intermittent events ofiitting procedure is the assumption that the corresponding

opening and closing the pore—the so-called gating dynamstate consists ofl discrete substates, separated by potential

ics. It can be described by the following kinetic scheme: barriers. This method constitutes the working tool for the
majority of molecular physiologists in interpreting their ex-

perimental data within a discrete Markovian scheme consist-

ko ing of many (substates[3]. The addition of new state®r
Ci’o- (1) new configurational dimensions in the continuous ase

well known formal method to unravel a low-dimensional
non-Markovian stochastic dynamics via its embedding into a
As it stands, this scheme describes Markovian stochasti%i?ﬁkgxgn gyr?gm'gjo?; h'ggerh%wgc::o?sg:yihzhiupr;obtgfrgf
transitions between the closed sté@® and the open state ogy 1S, . '

. . . substates needed to fit the experimental data can depend on
(O) of an ion channel which can fully be characterized by the

. ) ) the experimental conditions. For example, the experimental
opening ratek,, and the closing ratek.. From a trajectory P P b

d inti fthe ob dt tat i th %?ting dynamics of a Shaker potassium channel has been
escription of the observed two-stale galing process, the ccessfully described by a sequential eight- state Markovian
transitions can be characterized by the residence time distr

. X . Scheme with seven closed states for a fixed value of tempera-
butions (RTDs) of open and closed time |r}tervals§{40(r) ture aboutT=20 °C [4]. However, to describe the experi-
=k exp(—k;7) and y(7) =k, exp(-k,7), respectively. mental data over a small extended temperature regime be-

The invention of the patch clamp techniq{® marked  yyeen 10 and 20 °C already necessitates adding three
the beginning of a new era: detailed experimental studies of y4itional closed substat¢s].

the statistics of such stochastic trajectory realizations have Eq several types of ion channels, the RTDs can alterna-
been rendered possible. These experimental investigationgyely be fitted in terms of nonexponential distributions such
however, also reveal the fact that the distributions of theaS a stretched exponentiai7) < —(d/dr)exg—(»7)“] [6], or
residence time intervals are typically not exponential. This i”oy a power lawy(7) = 75 [7,8] with a few parameters’only.
turn .|mpI|es that the corrgspon_d|rtg)serve(;itwo-state dy- The case of a power-law coefficient ngg=3/2 can be de-
namics of current fIL_Jctu_anons isot Markovian. An_y such scribed with normal conformational diffusion over many de-
nonexponential distribution can, however, approximately begenerate substaté#,9—12. Such diffusion model§7,9-16
fitted by a sum ofsometimes manyexponentials, e.g., present an alternative to the standard discrete state Markov-
ian modeling which can be considered also as a complemen-
tary one[16]. It should be noted, however, that exponefts
*Email address: goychuk@physik.uni-augsburg.de different from a normal diffusion behavior have been de-
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tected experimentally as we|ll7-19. Therefore, it is of N N-1 s 2 1
prominent importance to generalize the normal diffusion

e WD) () v (1) Y
model to the case of a_nomalous qmusmn. this objective is at R A
the heart of the following discussion. ' 3 . . * ® L X0)
b S S N— T T
K k
C

Il. MODELING ANOMALOUS ION CHANNEL GATING

FIG. 1. Sketch of the CTRW generalization of thdiscrete

lon channels are protein complexes with an intrinsicallydiﬁusion model of ion channel gating

hyperdimensional conformational space. Such macromolecu-
lar complexes can possess several macroconformations cor-
responding to different functional states of the ion channel.
These macroconformations are, however, not static, buor transitions with non-nearest-neighbor jumps. Such com-
rather present dynamical structures featuring multiple conplexity will not be addressed within our sequential diffusion
formational substates and undergoing a corresponding intranodel. At one edge of this valley, the transition into the open
conformational dynamics which can be of the diffusion type,state can occur via the single ro(#®9,1J. Such a modeling

as it is well studied for one of the simplest proteins—is appropriate when the correlations between the subsequent
myoglobin[20-22. In particular, for myoglobin it has been closed and/or open residence time intervals are absent. The
shown experimentally that the diffusive motions become inmultiple transitions could also induce some correlation be-
creasingly important above some critical temperature angyeen the durations of time intervals. Such effects will be
can serve as lubricants for macrocopfo_rmational changes,;,eg|ected in a zero-order approximatirenewal assump-
see, e.g., in Ref.22]. There is no convincing reason to be- tion for the observed two-state conductance fluctuafions
lieve that ion channels, which are structurally much morerna eyistence of time correlations between the durations of
complex proteins, are very different from myoglobin in this yjne jntervals(nonrenewal gating dynamicsvould indicate
respect. Therefore, the conformational diffusion should b he presence of more than one route between the manifolds

present and can be important for the gating dynamics of io%f open and closed statésee, e.g., in Ref2], pp. 440 and

channels as we_II. Diffusion models of ion Char?”e' gating pUt441). Such correlations can also be accounted for in the dif-
emphasis on this fundamental feature of protein dynamics. In

the case of ion channels with one open and one closed ma&qsmn. models[14,15. The incorporation of such correla-
roconformation, the whole conformational space can be di!'or.]S is, however, beyond the SCOpe of our p.rest'ent work,
vided into the two hyperdimensional subspaces correspond‘-’h'Ch presents an anomalpus diffusion generalization of the
ing to the open macroconformation and to thelosed Markovian modeling used in Refg7,9-11.
macroconformation, respectively. These subspaces present L€t us start from a continuous time random wekTRW)
generally some complex manifolds consisting of domains of23-27 generalization of the discrete state diffusion model
attraction in the conformational space which are separated by Millhauseret al. [7], see Fig. 1. It is assumed that the
potential barriers. Such domains of spatial localization carinanifold of closed substates consistd\o$tates; namely, the
be associated with discrete states in the discrete state diffigtates fromj=2 to j=N-1 (“diffusion states} are identical
sion modeling of the gating dynamics. They can possess b@nd characterized by identical residence time distributions
a complex intrinsic structure reflecting the intrinsic multidi- ¢;(7)=y«(7), i.e., the channel stays in the corresponding state
mensionality of the problem. For this reason, such states cajnfor a random time intervat distributed in accordance with
be trapping states with a nonexponential distribution of they(7), and performs at the end of every time interval a jump
residence times spent in the corresponding domains of attrag-_, j+1 with probability Pj+1j=Pj-1;=1/2 either to the left
tion. On the contrary, the Markovian assumption within aor to the right neighboring state, respectively. If the RTD is
discrete state modeling involves the assumption on a Stric“léxponential, i.e., (7)) =2k exp(-2k7), then the standard
exponential distribution of the residence times in such diSMarkovian rate description with rate is recovered. The
crete states. This presents at best an approximation only. It l?oundary stat¢ =N possesses a different RT{(7) which

at the heart of modeling the gating dynamics with appropri- ; _ : .
ate Markovian kinetic schemes. Moreover, some parts of th&' the I\/:arkowan;a;e reat()iﬁa\t,)(_r)—xexp( _KI) (trarr:smons
conformational potential landscape can lack the presence @Ccur always with the probability Joy-1n=1, to the state

pronounced barriers and some domains of attraction can H&-N~1). Furthermore, from the staje=1, the channel can

flat providing valleys in the corresponding potential land-Undergo a transition into its open stqte0 with the ratey, or
scape. This provides an ideal starting point for a diffusionmake transition into the manifold of conformational diffu-
modeling of the gating dynamics. sion substates with the rate For this state, the correspond-

The simplest diffusion moddl7,9] assumes the existence ing RTD readsys(7)=(y+«)exg—-(y+«)7] and the transi-
of such a one-dimensional valley wherein the diffusion istion probabilities argyy;=y/(y+«) and p,;=«/(y+«). The
modeled bysequentiatransitions among a large number of dynamics of state occupancipgt) is described by the gen-
discrete substates. Alternatively, a continuous diffusion moderalized master equatiofGME) due to Kenkre, Montroll,
eling can be applied10,11,14,1% Note also that multiple and Shlesingef28,29 and its generalizatiofi30,33. The
pathways into the open state can be accounted for within eorresponding dynamics reafigith an initial preparation in
one-dimensional reaction coordinate modeling by allowingsome statgy, p; (0)=1]
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Pe(t) == ypa(t). (10

This must be used as the proper boundary condiitoyields

a radiation boundary via a continuity equation in the scaling
j=3,N-2, limit, see belowy to calculatey.(7) [33,34.

Next let us make the ansatz that

t
I'D,-(t)=f K(t=t")[pj-1(t') + pja(t’) = 2p5(t")Jdt’,  (3)
0

t t
pN(t) - fo K(t t )pN—l(t )dt fo KN(t t )pN(t )dt ’ w(T) - _ diEa[_ (2KT)D[],
T
@ whereE (2):=272"/T'(an+1) is the Mittag-Leffler function.
t It is defined via a generalization of the Taylor series expan-
Prn-1(t) :f K(t=t")[pnea(t’) — 2png(t)]dt sion of the exponential functiorg,(z)=exp(z), andI'(2) is
0 the standard Gamma function. In other words, the corre-
t sponding survival probability in the state just occupjéd],
+f Kn(t=t")py(tHdt’, (5  ®(n=[Iy(t)dt, is given byd(7)=E[-(2«x7)*]. This corre-
0 sponds to the Cole-Cole relaxation law, i.e., the relaxation

. law which yields the Cole-Cole susceptibilif35,3§. The
pz(t):f K(t—t)[pa(t’) = 2p,(t")]dt’ + kpy(t),  (6) Laplace transform ofd(7) reads~<1)(s):sa‘~1/[s“+(2:<)“]
0 [41,42, and by use of the relatiom(s)=1-sd(s), one ob-
‘ tains?ﬂ(s):(ZK)“/[s%(2K)“]. This particular choice of RTD
p(t) :f K(t—t")p,(t")dt’ = (k + y)py(t) + (t), (7) Iinterpolates between the initial stretched exponential
P 0 P2 VP ePo (Weibull) distribution [40] [which corresponds to the Kohl-
rausch relaxation law; “stretched exponential” refers here to
Po(t) = — kePo(t) + yp(t), (8) the survival probability®(7), with (7)< 1/7% at 7— 0]
and the asymptotic long time power lay(r)o1/7%, It

with the kernelK(t) andKy(t) defined through their Laplace yields anomalously slow diffusio(t))  t* [42]. For ex-

transforms ample, such an anomalous diffusion is measured experimen-
_ 1 s://(s) tally, along with the RTD in trapping domains exhibiting the
K(s)=-———, corresponding power law, for colloidal particles in cytoskel-
21- s eton actin networks of biological cel[87] and in living cells
[38]. These latter experimental results offer a clear clue for
~ syn(S) understanding the results on virus diffusion in infected cells
Kns) =————, (9  [39]—that is an observed anomalously slow diffusion in ac-
1-yn(s) tin networks combined with active directional trafficking of

viruses by molecular motor proteifi89]. For the discussed

wherey(s) and (s are the Laplace transforms and ~
ws) Un(S) P o) form of RTD, K(s)=(2k)*s'™@/2 and the fractional master

Y (7), respectively. These kernels can be derived due to th X :
following simple consideration. Let us prepare the diffusing&duation follows exactly from Eq3) as a particular case of

particle att=0 in the statej=2,... N-1 and let it make the GME. It reads explicitly

transitions to the neighboring states without return. Then, the 1 ~

survival probability ®(t)=[{#(7)d7 in the statej [which pj(t):E(ZK)“ODtl_“[pj_l(t’)+pj+1(t’)—2p]-(t’)], (11
should be identified under such conditions wit)] is gov-

erned obviously by the equatich(t)=-2[tK(t—-t")d(t")dt’ ~ where
with ®(0)=1. It can be easily solved by the Laplace-

t !
transform method to yield the first equation in E§) by Obtl‘“(...) = 1o ("'),df_a
taking into accouni/(s) =1 -s®(s). The second kernddy(t) M) dt]o (t=1)
is obtained along the same lines. is the integro-differential operator of the fractional derivative

The RTD of the open state is readily obtained, i.e.,introduced by Riemann and Liouville, see Rei$1-43,46
ho(7) =k exp(—k;7). In order to calculate the RTD of the set fo reviews and further references. In the case of a two-state
of closed states, one starts out frppi0) =1 (the channel has  gynamics, a similar fractional master equation was obtained
been just closedto obtain the survival probabilityb.(t)  in [44,45. Note that the fractional master equatidr) pre-
=2;2,p;(t) with the boundary condition that the stgte0 is  sents in fact a conventional generalized master equation be-
absorbing. This latter condition is realized by setting for-ing nonlocal in time. The introduction of a fractional time
mally k.— 0. The corresponding RTD then follows from derivative in the generalized master equation of CTRW is
Y(1)=—dd (7)/d7. The total population of the closed state nothing but a shorthand notation which corresponds to a spe-
pc(t):ElNzlpj(t) obeys(not allowing for the backward transi- cific choice of the RTD. The importance of this equation lies
tion, k;— 0) in the fact that it can serve as a useful mathematical tool to
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model anomalously slow diffusion. The physical origin of IP(x,t) Al_afp(x,t')
this diffusion can be attributed to very broad residence time P =Raolt T
distributions on the sites of particle localization with diverg-

ing mean residence tim@3,25,2§. In practice, this implies whereK,, is the diffusion constant of anomalously slow dif-
that the corresponding mean residence time is exceedinglysion. The fractional diffusion equatiqfi4) presents a non-
large as compared with the characteristic time scale oMarkovian diffusion equatiof27] with a particular choice of
anomalous diffusion in the given domain of a finite size. Asan integral kernel that accounts for the residence time distri-
a consequence, the approximation with an infinite mean resbutions following the Cole-Cole relaxation 1ay85,39 in a

(14

dence time becomes physically justified. corresponding formulation in terms of a discrete CTRW. The
Likewise, with yy(7)=—(d/d7)E,[-(x7)“], Eq. (4) takes fractional diffusion equatio14) assumes the form of a con-
on the form tinuity equation,

1 - R IP(X,t) _ dI(x,1)
Bu(D) = (200D “Prea(t) ~ KDL “pu(t). (12 I

o . . ) where the probability fluxJ(x,t) becomes modified due to
The remaining equation®)—(7) involving the memory ker-  the fractional time derivative,

nel can readily be rewritten in a similar form upon use of the )
notation of the fractional time derivative. Ix=-K 61—01(9P(X’t ) (16)

It is worth noting that Eq(11) and Eq.(12) can equiva- ' a0t '
lently be brought into a form with the fractional Caputo de-
rivative [41]

(15

Our derivation of the fractional diffusion equation from the
CTRW complements previous studi¢42,47; it is rather
simple and does not require jumps with a variable step length

ti,(...)dt’ beyond nearest neighbors. For this very reason, no over-
2(..) = 1 A flights of the boundaries occur that are possible otherwise.
Fl-a)Jy (t-t)" This observation is of crucial importance in determining the
physically correct boundary conditiorigl9,50. This also
on the left-hand side. Namely, E(l1) becomes means that the boundaries are strictly local in space. The

given derivation removes any open query about the space-
locality of boundary conditions for the fractional diffusion
equation. After the integration of the continuity equation
from x=-L to x=0, one deduces that the decrease of the total
Such a fractional master equation has been first derived fromrobability of the closed-state manifolthe survival prob-
CTRW in Ref.[48]. This form is, however, clearly not ap- ability), pu(t)=/° P(x,t)dx, occurs due to the probability
propriate for a further use in the studied case, where thélux on the boundary. Accordingly, we will replace the origi-
normal rate transitions are also present. The reason is thatl discrete master equation in space by its corresponding
Egs. (6) and (7) would get a form mixing the fractional fractional diffusion equation with the following boundary
Caputo derivative and the fractional Riemann-Liouville inte-conditions as they emerge from the original problem. The
gral on the left- and right-hand sides of the correspondingoundaryx=-L is a reflecting one, obeying

equations. This fact establishes a clear advantage for the use

1
Dipy(t') = E(ZK)a[pj—l(t) +pa® -2p]. (13

of the Riemann-Liouville fractional derivative in a case J-LH=0. 17

where normal rate processes are also present. The boundary ak=0 is radiative. Setting;(t) =~ AxP(0,t)
=LP(0,t)/N and using Eq(10), one finds

A. Scaling limit to a fractional diffusion equation J(0,8) = yLP(0,1)/N. (18)

Let us perform next a continuous limit: namely, assumin " . , .
the distance\x between neighboring sites, we introduce thgxlv i ?Odwl&n?ﬂ);_ul\?/eyh;éﬁ]éhﬁe%pﬁigg .Sr(;]?!nqgug%f; 3[;65
] c/ . -

conformational coordinate:= —jAx which models the mani- . . U
sesses the meaning of the mean residence time in the closed-

fold of closed diffusion substates. The following continuous i o .
limit is assumed: Lef\x— 0, N—s oo, x— o whereas keeping state manifold, see below. The radiation boundary acquires
Y ' ’ then the explicit form

K,:=3(2x)*(Ax)? and the diffusion “length’L:= NAx con-
stant. By use of the expansion J(0,t) =LP(0,t)/{7y). (19

Our fractional diffusion modeling for the RTD of closed-time
intervals thus has three parameters oiily:the mean resi-
dence tim€7), (ii) the characteristic time of conformational
diffusion, i.e., 7y := (L2/K)Y*, and(iii ) the power-law index

of anomalous diffusiorw. In the case of normal diffusion,
in Eqg. (3) we arrive at the following fractional diffusion i.e., =1, the special scaling limit used here can also be
equation in continuous state space, i.e., justified from a Kramers approa¢fl] to the gating problem

Px1(t) = P(=[j £ 1]Ax.t)

=~ P(x,t) ¥ ap;i't)Ax+ %&2:)(:2(’0

(Ax)?,
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[11,12. Whereas the solution of the Kramers approach inlargez asymptotic behavior ofi(z) ~ z*?], we have

Ref. [11] in addition yields also an analytical expression for 1

(7s), which reproduces the experimental crossover behavior Tﬁc(s) ~— (22)
from an exponential-to-linear voltage dependence due to 1+(sm) ™

Hodgkin and Huxley{52], the model here treats) as one  \yitp To:= To((7)/ 7o)V The inversion of Eq(22) is
of the phenomenological parameters. It is also worthwhile tcgiven asy(7)=—-dd,(7)/dr in terms of the survival prob-
remark that the boundary condition doast contain the in- ability

dex of anomalous diffusior. Formally it remains the same

as for normal diffusion. The flux expressi¢lb) is, however, O () =E B <1>l—a/2 23
not local in time. Moreover, the right-hand side of Ef9) AT = Fl-al2 ’

does not contain the fractional derivative in time. This fea- . . .
ture is in accord with the original discrete model where theVhich is expressed through the Mittag-Leffler functigg(2)

last, final transition into the open state is given by an ordi-2nd correspon/ds to the Cc;le-CoIe relaxation [8%,36. Be-
nary rate transition. The analogy with the Kramers model ofc@use Eyo(-2"%) =€ erfd(z! .2) [42], where erf€z) is the
Ref. [11] is that the diffusion in the domain of voltage- complementary error function, the solution of the normal dif-
dependent statgsf. [11,19), which becomes a thin bound- f_usion prob_lem in _Ref[l_O] for the initial and intermediate
ary layer in the considered scaling limit, remainermal  time evolution regimes is reproduced from Kg3). For 7
This justifies well the use of boundary conditi¢k®) in our <70, EQ.(23) behaves as a stretched exponerjéd,

fractional diffusion model which now is completely formu- p{ 1 ( T)l—a/2:|
Q1) =exp ————|— 24
lated. (7 X r2-a2)\m (24
o ) . o This dependenc€4) corresponds in the language of time-
B. Characteristics of the residence time distribution dependent rateg,(7):=—(d/dnIn[®(7)] (used in the re-

To obtain the distribution of closed residence tinggér), newal theory [6,40,53 to k,(n) =72 Such a time-
one needs to solve first the fractional diffusion equatibfy  dependent rate of recovery from inactivation has been
with the boundary condition§l7) and (19) and the initial measured withk=1 for a sodium ion channel in Rgb4]. In
condition P(x, 0)= 8(x—Xg) with x— O_. The survival prob- the limit 7— 0, Eq.(24) yields a power law for the RTD,
ability ®(t) follows as the integral of the solution over the (7)o 72, (25)
spatial variable and subsequently the corresponding RTD fol- ¢
lows as the negative time derivative of the survival probabil-Furthermore, for intermediate timeg<r<7p, EQ. (23
ity. This task has been achieved by use of the Laplaceyields another power law, reading

transform method. The details of the derivation are outlined (1) = 7 (26)
in the Appendix. The final result for the Laplace-transformed ¢
RTD of closed-time intervals then reads with B=2-a/2. For a=1, such an intermediate power law

with the slopeB=3/2 hasheen measured for a potassium ion
’ (20) channel in[8]. Note that this particular power-law exponent
1 +(7)0,(S™) reflects normal diffusion. Consequently, the origin of the in-
termediate power law is principally not due to the anomalous
diffusion behavior. Our theory smoothly reproduces the in-
tant z*?] termediate power law associated with normal diffusion in the
9.0 =—— 2D limit a—1.
z . .
Other power-law features were also measured in experi-
has been introduced. Far=1, this result reduces to one for ments, for example for a gramicidin channel with the slope
normal diffusion in Refs[11,12. Moreover, sinceg,(z2)=1  B=1.7[17]. This corresponds to an intermediate power law
+0(2) for smallz, one can readily see from E(R0) that(7.) in Eg. (26) with a=0.6. Moreover, power-law exponents
indeed has the meaning of a mean residence timg, With 8>2 are also measured in experimefi8] analyzed in
= 0= 9115, Note slso rat th secors K {197 & ure phenamenciogcl erspective uibhout
moment of RTD diverges{7?):= [~y (r)dr—= for all 9 ' P

e . ture such anomalous power laws which cannot be explained
a<1 (anomalous diffusion Furthermore, ifrp=0, then the  ithin the intermediate power-law asymptoti@s).
closed-time distribution becomes strictly exponential, i.e., |ndeed let us assume thag is sufficiently small and

Y1) =exp—7/(r))/(7e), and the simplest two-state Mar- c,ngjder the asymptotic behavior-=. The corresponding
kovian mpdel of th_e |orjlchannel gating Is reprodqced Wlthasymptotics can be deduced from the behavioﬂfg(fs) at
the opening rat&k,=(7,)"". In general, the expressiqi20) small's. Fors—0, Eq.(20) yields
cannot be inverted to the time domain exactly; its different ' » =4 y
characteristic regimes, however, can be discussed analyti- T/,C(s) ~1-(7)[1 - (s7p)%3]. (27)
cally. ~ _

In proceeding, let us consider first the limit of a large From this, by way of ®.(s)=[1-y(9)]/s=~(7)
conformational diffusion timep> (7). Then[by use of the  X[1-(smp)?/3] for s—0, it follows [55] that ®(7)

Yols) =

where an auxiliary function
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o« 1/7H* for 7—oe. This renders then a power |ai@6) with
B=2+a for large 7. This asymptotic power law wit3>2 is

a manifestation of the anomalously slow conformational dif-
fusion in a space domain dinite size. It replaces an expo-
nential asymptotic behavior af.(7) for 7> 75 in the case of
normal diffusion[7,11,13.

Ill. APPLICATION TO GATING DYNAMICS OF A
LOCUST POTASSIUM ION CHANNEL

Our fractional diffusion model can be used to describe the
rather complex gating behavior observed for a locust potas-

sium ion channef19]. This ion channel exhibits experimen-
tally a Pareto law in its gating kineticsj,(7)=al/(b+7)#

with B=~2.24+0.06. The corresponding autocorrelation
function, however, seems to exhibit three different inter-
changing power lawg19]. These features are compatible

PHYSICAL REVIEW E70, 051915(2004)
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FIG. 2. Normalized autocorrelation function of conductance
fluctuations. Numerical inversion of EQR9) is done with the(im-
proved Stehfest algorithnfi60] for the following set of parameters:

with our model. Within a two-state reduction, we are dealing(r)=0.84 ms,(,)=0.79 ms[19], and assumed,=100 ms ancx

with an alternating renewal proced40]. Its (Laplace-
transformegl normalized autocorrelation function reads
[56,57

o1 (1 1\ 1A= - (S]]
k()=——<—+—>— —— . (28
V75T () ()€ [1- (9 e(9)]
For our case under study, this yields
o= 1 <f0;(STD) + (1) ’ (29)
S 1+ y f (smp) + (7o)

(7o

wheref,(2):=1/g,(2)-1. Note thatf,(0)=0 and for =0
the inversion of Eq(29) yields the Markovian resulk(t)
=exfd -(ky+ky)t]. Moreover, the analytical expressig@9)
allows one to study the asymptoticsktf) att— <. Namely,
from f(smp) = (smp)@/3 it follows thatk(s)«s* ! at s— 0.

By virtue of a Tauberian theorerfb8], this latter result
readily yields

k(t) oc t. (30)

=0.28.

Only one of these power laws—the long-time asymptotic
one—seems, however, to present a true power-law asymptot-
ics. The intermediate power law in Fig. 2 does not agree
numerically with the experimental one in R¢L9]. Never-
theless, the experimental data agree—surprisingly enough—
with the intermediate asymptotics obtained above in the limit
Tp— .

Furthermore, the numerical inversion ¢f(s) in Fig. 3
can be fitted by the Pareto law wii~2.24. The discrep-
ancy betweerB—2=0.24 anda=0.28 is due to the experi-
mental restrictions on the maximal time intervals measured.
The actual power-law asymptotics far—oo in Fig. 3 is
® (1) 7128 This long-time asymptotic regime is not yet
attained in Fig. 3, which instead closely agrees vit(7)
« 7124 (see Fig. 3, giving an apparent agreement with the
experimental data. In view of our few elementary model as-
sumptions, the agreement between theory and the experi-
mental datg18] analyzed in Ref[19] is striking indeed.

Our fractional diffusion scheme is not expected to de-
scribe the experimental facts quantitatively in all details. In

This power-law feature agrees well with the experiment

which shows asymptoticall§B0) with «=0.28+0.1. Further-
more, an intermediate asymptoticskof) can be obtained by
studying the limit of very largery. Using the scaling
S:=5(7,) and the limit of very large valueg:= 7p/(7)>1
such thafS<1 is allowed for, whereas stily>1, Eq.(29)
can formally be approximated by

12-1
Soz/Z + roz/Z’

with r:r‘Dl(l +(1)1{7,))?". The formal inversion of Eq:31)
yieldsk(t)=E[—(rt)¥?]. This in turn yields an intermediate
asymptotics k(7) = 72 within (r)<7<m. Indeed, the
analysis of experimental data [19] reveals such an inter-
mediate asymptotic&(7) o« 714002 The numerical inver-

sion 0fT<(s) in Fig. 2 displays three different power-law re-

k(s) = (30)

10‘l [ T T T T
o b our model —
10% (DC(T) . 7_1'21 _____
T (-
=10
;6 .
1072
3L
Il 10-3
w
St
10
1077 [ 1 1 L L
107! 100 10! 102 10% 10¢
7 [msec]

FIG. 3. Survival probability of the closed state for the studied

gimes in qualitative agreement with the experimental datamodel. The set of parameters is the same as in Fig. 2.
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particular, it predicts that the low-frequency part of the specproaches attempt to capture the spatial structures of the po-
tral powerS(f) of ion current fluctuations of the locust BK tential minima and the associated dynamics, and/or the cor-
potassium ion channel corresponds td”roise withy=1  rugated and hierarchical features of the real multi-
-a=~0.72[57,59. The experimenf61] indeed reveals ¥#  dimensional conformation landscape after performing the re-
noise with y close but to unity,y=1. The reason for this duction to a reaction coordinate pictyi20]. It is physically
discrepancy is not resolved. The asymptotic behavior of thdikely that the ion channel protein can become temporarily
autocorrelation function in Ref19] and the behavior of the trapped in some domains of its intrinsic conformational land-
low-frequency part of the spectrum in R§81] are certainly  scape from which it can escape by activated jumps among
at odds. A possible reason could be nonstationarity of théhose states. Due to a complicated structure of such traps, the
given current recordings. Nevertheless, the qualitative agreeorresponding residence time distribution can possess a di-
ment, i.e., the principal theoretical prediction and the meavergent, or from a practical point of view a very large, first
surement of 1f” noise, is comforting. moment. This in turn gives rise to an anomalous conforma-

Moreover, the durations of residence time intervals intion diffusion within the chosen reduced reaction coordinate
open and closed states can be correlated. Such correlatiodgscription. Our scheme in terms of a fractional, continuous
can be induced by stochastic binding of calcium ions whichdiffusion model, being complemented with appropriate
regulate the gating dynamics of large conductance potassiutroundary conditions, properly accounts for such complexity.
ion channels. To account for such correlation effects, our As demonstrated theoretically and exemplified with the
model principally can be generalized in the same spirit as thgating of a BK locust potassium ion channel, our fractional
original diffusion model has been generalized to includediffusion theory presents a powerful approach to describe
ligand binding effect462]. This generalization is left for a these various observed power-law characteristics of the un-
future study. derlying gating dynamics.

IV. DISCUSSION AND CONCLUSION ACKNOWLEDGMENTS

The gating dynamics of protein ion channels in biological This work has been supported by the Deutsche
membranes is governed by a conformational dynamics on Borschungsgemeinschatft via the collaborative research cen-

very complex energy landscape with a huge number of detre, Manipulation of matter on the nanoscal&FB-486,
grees of freedom. This multidimensional energy landscap@roject A-10.

can possess deep energy wédls compared with the thermal

energykgT) which are separated by potential barriers. In ad-

dition, there can exist an underlying energy valley network APPENDIX: SOLUTION OF THE BOUNDARY-VALUE
connecting these wells which results in an energy quaside- PROBLEM

generacy. The traditional discrete state approach to the gating o~ .
dynamics pursued by the community of molecular physiolo- "€  Laplace-transformed probabilityP(x,s) = [ye o
gists presents an abstraction to this complexity: it has its<P(Xx,t)dt, Eq.(14), reads

focus on the fact of deep potential wells being separated by

high energy barriers. The energy quasidegeneracy of poten- ~ - d2|~3(x,s)

tial wells enters the theory as an entropic contribution to the SP(x,s) = 8(x = xg) =K, a? (A1)
corresponding free energies after reduction of the multidi-

mensional reality to low-dimensional modelsossessing @ with ~L <x,<0. Note that the limity— 0_ will be taken at
few discrete states only This traditional approach has the very end of the calculation. The corresponding Laplace-

proven useful over the past years and it serves as a servicgansformed boundary conditions assume the form
able working tool for the analysis of the experimental data.

This approach is, however, not able to capture the physical

origin of such complexity features as the presence of power- dPx.9) =0, (A2)
law distributions of the residence time intervals, the slow (¢ h QU oy

decay of the autocorrelations of fluctuations, or the presence

of 1/f” noise feature in the power spectrum of fluctuations of ~

several ion channel types, to name but a few. Experiments gl-@ dP(x,s) =— L P(0,9). (A3)
have demonstratef63] that the 1f” noise is due to the dx [xo Kulm)

conformational transitions among different conductance ) .
states. In particular, the ion current is free of Lhoise ina  1he challenge is thus the solution of the boundary-value

frozen conductance substate of the ion channel. Therefor@roblem (A1)«(A3). Towards this goal, we consider sepa-
the 1/” noise originates due to fluctuations among experifately the solution in the domainsL.<x<x,

mentally distinguishable substat@s]. These features reveal -
unambiguously the non-Markovian character of tfserved = _ /s /S~

“on-off” ion current fluctuations[6,64,69. The diffusion P1(x9) = Ay ex;{ Kax) *By ex;{— Kax), (A4)
models of ion channel gating7,9-13 present another,

complementary abstraction of the actual dynamics. These apndx,<x<0,
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P,(x,9) =A, exp< \/ i—ax) +B, exp(— \/ li—ax> . (A5) Kasl‘“[ dPZ(;(, S _ dP;(;(,s) :|x:x0 =-1. (A7)

At x=Xo, the solution is continuous, The coefficientsA, , andB, , are determined by substitution
~ = of Egs.(A4) and(Ab5) into Eqgs.(A2), (A3), (A6), and(A7).
P1(X0,5) = Pa(%0,9). (A6) Thereby, the proposed objective is exactly solved. The inte-

The first derivativedP(x,s)/dx, however, experiences a g_ra'uon of the solution(A4) from X:__L to X:O(X_O:} 0)
jump. This can readily be seen upon integrating @&d.) in yields the Laplace-transformed survival probabiliby(s);

an infinitesimally small neighborhood afx,. Thus, the corresponding RTIR0) follows as .(s)=1-s®(s).
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