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An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe
nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our
method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald[Proc.
Natl. Acad. Sci. U.S.A.85, 1503(1988)] to the case of a continuous, anomalous slow conformational diffu-
sion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-
neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains
three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index
of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribu-
tion is obtained. In the limiting case of normal diffusion, our prior findings[Proc. Natl. Acad. Sci. U.S.A.99,
3552 (2002)] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a
very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the
corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our
theoretical model is in good agreement with experimental data for large conductance potassium ion channels.
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I. INTRODUCTION

Ion channels are complex membrane proteins which pro-
vide ion-conducting, nanoscale pores in the biological mem-
branes[1]. These proteins undergo spontaneous conforma-
tional dynamics resulting in stochastic intermittent events of
opening and closing the pore—the so-called gating dynam-
ics. It can be described by the following kinetic scheme:

C�
kc

ko

O. s1d

As it stands, this scheme describes Markovian stochastic
transitions between the closed statesCd and the open state
sOd of an ion channel which can fully be characterized by the
opening rate,ko, and the closing rate,kc. From a trajectory
description of the observed two-state gating process, these
transitions can be characterized by the residence time distri-
butions (RTDs) of open and closed time intervals,costd
=kc exps−kctd andccstd=ko exps−kotd, respectively.

The invention of the patch clamp technique[2] marked
the beginning of a new era: detailed experimental studies of
the statistics of such stochastic trajectory realizations have
been rendered possible. These experimental investigations,
however, also reveal the fact that the distributions of the
residence time intervals are typically not exponential. This in
turn implies that the correspondingobservedtwo-state dy-
namics of current fluctuations isnot Markovian. Any such
nonexponential distribution can, however, approximately be
fitted by a sum of(sometimes many) exponentials, e.g.,

ccstd = o
i=1

N

cili exps− litd, s2d

with weightsci obeyingoi=1
N ci =1. The rationale behind this

fitting procedure is the assumption that the corresponding
state consists ofN discrete substates, separated by potential
barriers. This method constitutes the working tool for the
majority of molecular physiologists in interpreting their ex-
perimental data within a discrete Markovian scheme consist-
ing of many (sub)states[3]. The addition of new states(or
new configurational dimensions in the continuous case) is a
well known formal method to unravel a low-dimensional
non-Markovian stochastic dynamics via its embedding into a
Markovian dynamics of higher dimensionality. The problem
with such a methodology is, however, that the number of
substates needed to fit the experimental data can depend on
the experimental conditions. For example, the experimental
gating dynamics of a Shaker potassium channel has been
successfully described by a sequential eight- state Markovian
scheme with seven closed states for a fixed value of tempera-
ture aboutT=20 °C [4]. However, to describe the experi-
mental data over a small extended temperature regime be-
tween 10 and 20 °C already necessitates adding three
additional closed substates[5].

For several types of ion channels, the RTDs can alterna-
tively be fitted in terms of nonexponential distributions such
as a stretched exponentialcstd~−sd/dtdexpf−sntdag [6], or
by a power lawcstd~t−b [7,8] with a few parameters only.
The case of a power-law coefficient nearb=3/2 can be de-
scribed with normal conformational diffusion over many de-
generate substates[7,9–12]. Such diffusion models[7,9–16]
present an alternative to the standard discrete state Markov-
ian modeling which can be considered also as a complemen-
tary one[16]. It should be noted, however, that exponentsb
different from a normal diffusion behavior have been de-*Email address: goychuk@physik.uni-augsburg.de
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tected experimentally as well[17–19]. Therefore, it is of
prominent importance to generalize the normal diffusion
model to the case of anomalous diffusion: this objective is at
the heart of the following discussion.

II. MODELING ANOMALOUS ION CHANNEL GATING

Ion channels are protein complexes with an intrinsically
hyperdimensional conformational space. Such macromolecu-
lar complexes can possess several macroconformations cor-
responding to different functional states of the ion channel.
These macroconformations are, however, not static, but
rather present dynamical structures featuring multiple con-
formational substates and undergoing a corresponding intra-
conformational dynamics which can be of the diffusion type,
as it is well studied for one of the simplest proteins—
myoglobin [20–22]. In particular, for myoglobin it has been
shown experimentally that the diffusive motions become in-
creasingly important above some critical temperature and
can serve as lubricants for macroconformational changes,
see, e.g., in Ref.[22]. There is no convincing reason to be-
lieve that ion channels, which are structurally much more
complex proteins, are very different from myoglobin in this
respect. Therefore, the conformational diffusion should be
present and can be important for the gating dynamics of ion
channels as well. Diffusion models of ion channel gating put
emphasis on this fundamental feature of protein dynamics. In
the case of ion channels with one open and one closed mac-
roconformation, the whole conformational space can be di-
vided into the two hyperdimensional subspaces correspond-
ing to the open macroconformation and to theclosed
macroconformation, respectively. These subspaces present
generally some complex manifolds consisting of domains of
attraction in the conformational space which are separated by
potential barriers. Such domains of spatial localization can
be associated with discrete states in the discrete state diffu-
sion modeling of the gating dynamics. They can possess but
a complex intrinsic structure reflecting the intrinsic multidi-
mensionality of the problem. For this reason, such states can
be trapping states with a nonexponential distribution of the
residence times spent in the corresponding domains of attrac-
tion. On the contrary, the Markovian assumption within a
discrete state modeling involves the assumption on a strictly
exponential distribution of the residence times in such dis-
crete states. This presents at best an approximation only. It is
at the heart of modeling the gating dynamics with appropri-
ate Markovian kinetic schemes. Moreover, some parts of the
conformational potential landscape can lack the presence of
pronounced barriers and some domains of attraction can be
flat providing valleys in the corresponding potential land-
scape. This provides an ideal starting point for a diffusion
modeling of the gating dynamics.

The simplest diffusion model[7,9] assumes the existence
of such a one-dimensional valley wherein the diffusion is
modeled bysequentialtransitions among a large number of
discrete substates. Alternatively, a continuous diffusion mod-
eling can be applied[10,11,14,15]. Note also that multiple
pathways into the open state can be accounted for within a
one-dimensional reaction coordinate modeling by allowing

for transitions with non-nearest-neighbor jumps. Such com-
plexity will not be addressed within our sequential diffusion
model. At one edge of this valley, the transition into the open
state can occur via the single route[7,9,10]. Such a modeling
is appropriate when the correlations between the subsequent
closed and/or open residence time intervals are absent. The
multiple transitions could also induce some correlation be-
tween the durations of time intervals. Such effects will be
neglected in a zero-order approximation(renewal assump-
tion for the observed two-state conductance fluctuations).
The existence of time correlations between the durations of
time intervals(nonrenewal gating dynamics) would indicate
the presence of more than one route between the manifolds
of open and closed states(see, e.g., in Ref.[2], pp. 440 and
441). Such correlations can also be accounted for in the dif-
fusion models[14,15]. The incorporation of such correla-
tions is, however, beyond the scope of our present work,
which presents an anomalous diffusion generalization of the
Markovian modeling used in Refs.[7,9–11].

Let us start from a continuous time random walk(CTRW)
[23–27] generalization of the discrete state diffusion model
by Millhauser et al. [7], see Fig. 1. It is assumed that the
manifold of closed substates consists ofN states; namely, the
states fromj =2 to j =N−1 (“diffusion states”) are identical
and characterized by identical residence time distributions
c jstd=cstd, i.e., the channel stays in the corresponding state
j for a random time intervalt distributed in accordance with
cstd, and performs at the end of every time interval a jump
j → j ±1 with probability pj+1,j =pj−1,j =1/2 either to the left
or to the right neighboring state, respectively. If the RTD is
exponential, i.e.,cstd=2k exps−2ktd, then the standard
Markovian rate description with ratek is recovered. The
boundary statej =N possesses a different RTDcNstd which
in the Markovian case readscNstd=k exps−ktd (transitions
occur always with the probability 1,pN−1,N=1, to the state
j =N−1). Furthermore, from the statej =1, the channel can
undergo a transition into its open statej =0 with the rateg, or
make transition into the manifold of conformational diffu-
sion substates with the ratek. For this state, the correspond-
ing RTD readsc1std=sg+kdexpf−sg+kdtg and the transi-
tion probabilities arep01=g / sg+kd and p21=k / sg+kd. The
dynamics of state occupanciespjstd is described by the gen-
eralized master equation(GME) due to Kenkre, Montroll,
and Shlesinger[28,29] and its generalization[30,31]. The
corresponding dynamics reads[with an initial preparation in
some statej0, pj0

s0d=1]

FIG. 1. Sketch of the CTRW generalization of the(discrete)
diffusion model of ion channel gating.
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ṗjstd =E
0

t

Kst − t8dfpj−1st8d + pj+1st8d − 2pjst8dgdt8, s3d

j = 3,N − 2,

ṗNstd =E
0

t

Kst − t8dpN−1st8ddt8 −E
0

t

KNst − t8dpNst8ddt8,

s4d

ṗN−1std =E
0

t

Kst − t8dfpN−2st8d − 2pN−1st8dgdt8

+E
0

t

KNst − t8dpNst8ddt8, s5d

ṗ2std =E
0

t

Kst − t8dfp3st8d − 2p2st8dgdt8 + kp1std, s6d

ṗ1std =E
0

t

Kst − t8dp2st8ddt8 − sk + gdp1std + kcp0std, s7d

ṗ0std = − kcp0std + gp1std, s8d

with the kernelsKstd andKNstd defined through their Laplace
transforms

K̃ssd =
1

2

sc̃ssd

1 − c̃ssd
,

K̃Nssd =
sc̃Nssd

1 − c̃Nssd
, s9d

wherec̃ssd andc̃Nssd are the Laplace transforms ofcstd and
cNstd, respectively. These kernels can be derived due to the
following simple consideration. Let us prepare the diffusing
particle at t=0 in the statej =2, . . . ,N−1 and let it make
transitions to the neighboring states without return. Then, the
survival probability Fstd=et

`cstddt in the state j [which
should be identified under such conditions withpjstd] is gov-

erned obviously by the equationḞstd=−2e0
t Kst− t8dFst8ddt8

with Fs0d=1. It can be easily solved by the Laplace-
transform method to yield the first equation in Eq.(9) by

taking into accountc̃ssd=1−sF̃ssd. The second kernelKNstd
is obtained along the same lines.

The RTD of the open state is readily obtained, i.e.,
costd=kc exps−kctd. In order to calculate the RTD of the set
of closed states, one starts out fromp1s0d=1 (the channel has
been just closed) to obtain the survival probabilityFcstd
=o j=1

N pjstd with the boundary condition that the statej =0 is
absorbing. This latter condition is realized by setting for-
mally kc→0. The corresponding RTD then follows from
ccstd=−dFcstd /dt. The total population of the closed state
pcstd=o j=1

N pjstd obeys(not allowing for the backward transi-
tion, kc→0)

ṗcstd = − gp1std. s10d

This must be used as the proper boundary condition(it yields
a radiation boundary via a continuity equation in the scaling
limit, see below) to calculateccstd [33,34].

Next let us make the ansatz that

cstd = −
d

dt
Eaf− s2ktdag,

whereEaszdªo0
`zn/Gsan+1d is the Mittag-Leffler function.

It is defined via a generalization of the Taylor series expan-
sion of the exponential function,E1szd=expszd, and Gszd is
the standard Gamma function. In other words, the corre-
sponding survival probability in the state just occupied[40],
Fstd=et

`cstddt, is given byFstd=Eaf−s2ktdag. This corre-
sponds to the Cole-Cole relaxation law, i.e., the relaxation
law which yields the Cole-Cole susceptibility[35,36]. The

Laplace transform ofFstd reads F̃ssd=sa−1/ fsa+s2kdag
[41,42], and by use of the relationc̃ssd=1−sF̃ssd, one ob-

tainsc̃ssd=s2kda / fsa+s2kdag. This particular choice of RTD
interpolates between the initial stretched exponential
(Weibull) distribution [40] [which corresponds to the Kohl-
rausch relaxation law; “stretched exponential” refers here to
the survival probabilityFstd, with cstd~1/t1−a at t→0]
and the asymptotic long time power lawcstd~1/t1+a. It
yields anomalously slow diffusion,kdx2stdl~ ta [42]. For ex-
ample, such an anomalous diffusion is measured experimen-
tally, along with the RTD in trapping domains exhibiting the
corresponding power law, for colloidal particles in cytoskel-
eton actin networks of biological cells[37] and in living cells
[38]. These latter experimental results offer a clear clue for
understanding the results on virus diffusion in infected cells
[39]—that is an observed anomalously slow diffusion in ac-
tin networks combined with active directional trafficking of
viruses by molecular motor proteins[39]. For the discussed

form of RTD, K̃ssd=s2kdas1−a /2 and the fractional master
equation follows exactly from Eq.(3) as a particular case of
the GME. It reads explicitly

ṗjstd =
1

2
s2kda

0D̂t
1−afpj−1st8d + pj+1st8d − 2pjst8dg, s11d

where

0D̂t
1−as¯d =

1

Gsad
]

]t
E

0

t s. . .ddt8

st − t8d1−a

is the integro-differential operator of the fractional derivative
introduced by Riemann and Liouville, see Refs.[41–43,46]
for reviews and further references. In the case of a two-state
dynamics, a similar fractional master equation was obtained
in [44,45]. Note that the fractional master equation(11) pre-
sents in fact a conventional generalized master equation be-
ing nonlocal in time. The introduction of a fractional time
derivative in the generalized master equation of CTRW is
nothing but a shorthand notation which corresponds to a spe-
cific choice of the RTD. The importance of this equation lies
in the fact that it can serve as a useful mathematical tool to
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model anomalously slow diffusion. The physical origin of
this diffusion can be attributed to very broad residence time
distributions on the sites of particle localization with diverg-
ing mean residence time[23,25,26]. In practice, this implies
that the corresponding mean residence time is exceedingly
large as compared with the characteristic time scale of
anomalous diffusion in the given domain of a finite size. As
a consequence, the approximation with an infinite mean resi-
dence time becomes physically justified.

Likewise, with cNstd=−sd/dtdEaf−sktdag, Eq. (4) takes
on the form

ṗNstd =
1

2
s2kda

0D̂t
1−apN−1st8d − ka

0D̂t
1−apNst8d. s12d

The remaining equations(5)–(7) involving the memory ker-
nel can readily be rewritten in a similar form upon use of the
notation of the fractional time derivative.

It is worth noting that Eq.(11) and Eq.(12) can equiva-
lently be brought into a form with the fractional Caputo de-
rivative [41]

D*
as. . .d ª

1

Gs1 − adE0

t

]

]t8
s. . .ddt8

st − t8da

on the left-hand side. Namely, Eq.(11) becomes

D*
apjst8d =

1

2
s2kdafpj−1std + pj+1std − 2pjstdg. s13d

Such a fractional master equation has been first derived from
CTRW in Ref. [48]. This form is, however, clearly not ap-
propriate for a further use in the studied case, where the
normal rate transitions are also present. The reason is that
Eqs. (6) and (7) would get a form mixing the fractional
Caputo derivative and the fractional Riemann-Liouville inte-
gral on the left- and right-hand sides of the corresponding
equations. This fact establishes a clear advantage for the use
of the Riemann-Liouville fractional derivative in a case
where normal rate processes are also present.

A. Scaling limit to a fractional diffusion equation

Let us perform next a continuous limit: namely, assuming
the distanceDx between neighboring sites, we introduce the
conformational coordinatexª−jDx which models the mani-
fold of closed diffusion substates. The following continuous
limit is assumed: LetDx→0, N→`, k→` whereas keeping
Kaª

1
2s2kdasDxd2 and the diffusion “length”LªNDx con-

stant. By use of the expansion

pj±1std ª Ps− f j ± 1gDx,td

< Psx,td 7
]Psx,td

]x
Dx +

1

2

]2Psx,td
]x2 sDxd2,

in Eq. (3) we arrive at the following fractional diffusion
equation in continuous state space, i.e.,

]Psx,td
]t

= Ka0D̂t
1−a]2Psx,t8d

]x2 , s14d

whereKa is the diffusion constant of anomalously slow dif-
fusion. The fractional diffusion equation(14) presents a non-
Markovian diffusion equation[27] with a particular choice of
an integral kernel that accounts for the residence time distri-
butions following the Cole-Cole relaxation law[35,36] in a
corresponding formulation in terms of a discrete CTRW. The
fractional diffusion equation(14) assumes the form of a con-
tinuity equation,

]Psx,td
]t

= −
]Jsx,td

]x
, s15d

where the probability fluxJsx,td becomes modified due to
the fractional time derivative,

Jsx,td = − Ka0D̂t
1−a]Psx,t8d

]x
. s16d

Our derivation of the fractional diffusion equation from the
CTRW complements previous studies[42,47]; it is rather
simple and does not require jumps with a variable step length
beyond nearest neighbors. For this very reason, no over-
flights of the boundaries occur that are possible otherwise.
This observation is of crucial importance in determining the
physically correct boundary conditions[49,50]. This also
means that the boundaries are strictly local in space. The
given derivation removes any open query about the space-
locality of boundary conditions for the fractional diffusion
equation. After the integration of the continuity equation
from x=−L to x=0, one deduces that the decrease of the total
probability of the closed-state manifold(the survival prob-
ability), pcstd=e−L

0 Psx,tddx, occurs due to the probability
flux on the boundary. Accordingly, we will replace the origi-
nal discrete master equation in space by its corresponding
fractional diffusion equation with the following boundary
conditions as they emerge from the original problem. The
boundaryx=−L is a reflecting one, obeying

Js− L,td = 0. s17d

The boundary atx=0 is radiative. Settingp1std<DxPs0,td
=LPs0,td /N and using Eq.(10), one finds

Js0,td = gLPs0,td/N. s18d

We additionally use here the specific scaling limitg→`,
N→`, with ktcl=N/g being held fixed. This quantity pos-
sesses the meaning of the mean residence time in the closed-
state manifold, see below. The radiation boundary acquires
then the explicit form

Js0,td = LPs0,td/ktcl. s19d

Our fractional diffusion modeling for the RTD of closed-time
intervals thus has three parameters only:(i) the mean resi-
dence timektcl, (ii ) the characteristic time of conformational
diffusion, i.e.,tDª sL2/Kad1/a, and(iii ) the power-law index
of anomalous diffusiona. In the case of normal diffusion,
i.e., a=1, the special scaling limit used here can also be
justified from a Kramers approach[51] to the gating problem
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[11,12]. Whereas the solution of the Kramers approach in
Ref. [11] in addition yields also an analytical expression for
ktcl, which reproduces the experimental crossover behavior
from an exponential-to-linear voltage dependence due to
Hodgkin and Huxley[52], the model here treatsktcl as one
of the phenomenological parameters. It is also worthwhile to
remark that the boundary condition doesnot contain the in-
dex of anomalous diffusiona. Formally it remains the same
as for normal diffusion. The flux expression(16) is, however,
not local in time. Moreover, the right-hand side of Eq.(19)
does not contain the fractional derivative in time. This fea-
ture is in accord with the original discrete model where the
last, final transition into the open state is given by an ordi-
nary rate transition. The analogy with the Kramers model of
Ref. [11] is that the diffusion in the domain of voltage-
dependent states(cf. [11,12]), which becomes a thin bound-
ary layer in the considered scaling limit, remainsnormal.
This justifies well the use of boundary condition(19) in our
fractional diffusion model which now is completely formu-
lated.

B. Characteristics of the residence time distribution

To obtain the distribution of closed residence timesccstd,
one needs to solve first the fractional diffusion equation(14)
with the boundary conditions(17) and (19) and the initial
condition Psx,0d=dsx−x0d with x0→0−. The survival prob-
ability Fcstd follows as the integral of the solution over the
spatial variable and subsequently the corresponding RTD fol-
lows as the negative time derivative of the survival probabil-
ity. This task has been achieved by use of the Laplace-
transform method. The details of the derivation are outlined
in the Appendix. The final result for the Laplace-transformed
RTD of closed-time intervals then reads

c̃cssd =
1

1 + sktclgasstDd
, s20d

where an auxiliary function

gaszd =
tanhfza/2g

za/2 s21d

has been introduced. Fora=1, this result reduces to one for
normal diffusion in Refs.[11,12]. Moreover, sincegaszd=1
+oszd for smallz, one can readily see from Eq.(20) that ktcl
indeed has the meaning of a mean residence time,ktcl
ªe0

`tccstddt=−ufdc̃ssd /dsgus=0. Note also that the second
moment of RTD diverges,ktc

2lªe0
`t2ccstddt→` for all

a,1 (anomalous diffusion). Furthermore, iftD=0, then the
closed-time distribution becomes strictly exponential, i.e.,
ccstd=exps−t / ktcld / ktcl, and the simplest two-state Mar-
kovian model of the ion channel gating is reproduced with
the opening rateko=ktcl−1. In general, the expression(20)
cannot be inverted to the time domain exactly; its different
characteristic regimes, however, can be discussed analyti-
cally.

In proceeding, let us consider first the limit of a large
conformational diffusion timetD@ ktcl. Then[by use of the

large-z asymptotic behavior ofgszd,z−a/2], we have

c̃cssd <
1

1 + sst0d1−a/2 s22d

with t0ªtDsktcl /tDd1/s1−a/2d. The inversion of Eq.(22) is
given asccstd=−dFcstd /dt in terms of the survival prob-
ability

Fcstd = E1−a/2F− S t

t0
D1−a/2G , s23d

which is expressed through the Mittag-Leffler functionEaszd
and corresponds to the Cole-Cole relaxation law[35,36]. Be-
cause E1/2s−z1/2d=ez erfcsz1/2d [42], where erfcszd is the
complementary error function, the solution of the normal dif-
fusion problem in Ref.[10] for the initial and intermediate
time evolution regimes is reproduced from Eq.(23). For t
!t0, Eq. (23) behaves as a stretched exponential[42],

Fcstd < expF−
1

Gs2 − a/2d
S t

t0
D1−a/2G . s24d

This dependence(24) corresponds in the language of time-
dependent rateskostdª−sd/dtdlnfFcstdg (used in the re-
newal theory) [6,40,53] to kostd~t−a/2. Such a time-
dependent rate of recovery from inactivation has been
measured witha=1 for a sodium ion channel in Ref.[54]. In
the limit t→0, Eq. (24) yields a power law for the RTD,

ccstd ~ t−a/2. s25d

Furthermore, for intermediate timest0!t!tD, Eq. (23)
yields another power law, reading

ccstd ~ t−b s26d

with b=2−a /2. For a=1, such an intermediate power law
with the slopeb=3/2 hasbeen measured for a potassium ion
channel in[8]. Note that this particular power-law exponent
reflects normal diffusion. Consequently, the origin of the in-
termediate power law is principally not due to the anomalous
diffusion behavior. Our theory smoothly reproduces the in-
termediate power law associated with normal diffusion in the
limit a→1.

Other power-law features were also measured in experi-
ments, for example for a gramicidin channel with the slope
b<1.7 [17]. This corresponds to an intermediate power law
in Eq. (26) with a<0.6. Moreover, power-law exponents
with b.2 are also measured in experiments[18] analyzed in
Ref. [19] from a pure phenomenological perspective without
clarifying a tentative mechanism. Our model can as well cap-
ture such anomalous power laws which cannot be explained
within the intermediate power-law asymptotics(26).

Indeed, let us assume thattD is sufficiently small and
consider the asymptotic behaviort→`. The corresponding

asymptotics can be deduced from the behavior ofc̃cssd at
small s. For s→0, Eq. (20) yields

c̃cssd < 1 − sktclf1 − sstDda/3g. s27d

From this, by way of F̃cssd=f1−c̃cssdg /s<ktcl
3f1−sstDda /3g for s→0, it follows [55] that Fcstd
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~1/t1+a for t→`. This renders then a power law(26) with
b=2+a for larget. This asymptotic power law withb.2 is
a manifestation of the anomalously slow conformational dif-
fusion in a space domain offinite size. It replaces an expo-
nential asymptotic behavior ofccstd for t.tD in the case of
normal diffusion[7,11,12].

III. APPLICATION TO GATING DYNAMICS OF A
LOCUST POTASSIUM ION CHANNEL

Our fractional diffusion model can be used to describe the
rather complex gating behavior observed for a locust potas-
sium ion channel[19]. This ion channel exhibits experimen-
tally a Pareto law in its gating kinetics,ccstd=a/ sb+tdb

with b<2.24±0.06. The corresponding autocorrelation
function, however, seems to exhibit three different inter-
changing power laws[19]. These features are compatible
with our model. Within a two-state reduction, we are dealing
with an alternating renewal process[40]. Its (Laplace-
transformed) normalized autocorrelation function reads
[56,57]

k̃ssd =
1

s
− S 1

ktol
+

1

ktcl
D 1

s2

f1 − c̃ossdgf1 − c̃cssdg

f1 − c̃ossdc̃cssdg
. s28d

For our case under study, this yields

k̃ssd =
1

s

fasstDd + sktcl

1 +
ktcl
ktol

+ fasstDd + sktcl
, s29d

where faszdª1/gaszd−1. Note thatfas0d=0 and fortD=0
the inversion of Eq.(29) yields the Markovian resultkstd
=expf−sk0+kcdtg. Moreover, the analytical expression(29)
allows one to study the asymptotics ofkstd at t→`. Namely,

from fasstDd<sstDda /3 it follows that k̃ssd~sa−1 at s→0.
By virtue of a Tauberian theorem[58], this latter result
readily yields

kstd ~ t−a. s30d

This power-law feature agrees well with the experiment
which shows asymptotically(30) with a=0.28±0.1. Further-
more, an intermediate asymptotics ofkstd can be obtained by
studying the limit of very largetD. Using the scaling
s̃ªsktcl and the limit of very large valuesyªtD / ktcl@1
such thats̃!1 is allowed for, whereas stills̃y@1, Eq. (29)
can formally be approximated by

k̃ssd =
sa/2−1

sa/2 + ra/2 , s31d

with r =tD
−1s1+ktcl / ktold2/a. The formal inversion of Eq.(31)

yieldskstd=Ea/2f−srtda/2g. This in turn yields an intermediate
asymptotics kstd~t−a/2 within ktcl!t!tD. Indeed, the
analysis of experimental data in[19] reveals such an inter-
mediate asymptoticskstd~t−0.14±0.02. The numerical inver-

sion of k̃ssd in Fig. 2 displays three different power-law re-
gimes in qualitative agreement with the experimental data.

Only one of these power laws—the long-time asymptotic
one—seems, however, to present a true power-law asymptot-
ics. The intermediate power law in Fig. 2 does not agree
numerically with the experimental one in Ref.[19]. Never-
theless, the experimental data agree—surprisingly enough—
with the intermediate asymptotics obtained above in the limit
tD→`.

Furthermore, the numerical inversion ofc̃cssd in Fig. 3
can be fitted by the Pareto law withb<2.24. The discrep-
ancy betweenb−2<0.24 anda=0.28 is due to the experi-
mental restrictions on the maximal time intervals measured.
The actual power-law asymptotics fort→` in Fig. 3 is
Fcstd~t−1.28. This long-time asymptotic regime is not yet
attained in Fig. 3, which instead closely agrees withFcstd
~t−1.24 (see Fig. 3), giving an apparent agreement with the
experimental data. In view of our few elementary model as-
sumptions, the agreement between theory and the experi-
mental data[18] analyzed in Ref.[19] is striking indeed.

Our fractional diffusion scheme is not expected to de-
scribe the experimental facts quantitatively in all details. In

FIG. 2. Normalized autocorrelation function of conductance
fluctuations. Numerical inversion of Eq.(29) is done with the(im-
proved) Stehfest algorithm[60] for the following set of parameters:
ktcl=0.84 ms,ktol=0.79 ms[19], and assumedtD=100 ms anda
=0.28.

FIG. 3. Survival probability of the closed state for the studied
model. The set of parameters is the same as in Fig. 2.
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particular, it predicts that the low-frequency part of the spec-
tral powerSsfd of ion current fluctuations of the locust BK
potassium ion channel corresponds to 1/fg noise withg=1
−a<0.72 [57,59]. The experiment[61] indeed reveals 1/fg

noise with g close but to unity,g<1. The reason for this
discrepancy is not resolved. The asymptotic behavior of the
autocorrelation function in Ref.[19] and the behavior of the
low-frequency part of the spectrum in Ref.[61] are certainly
at odds. A possible reason could be nonstationarity of the
given current recordings. Nevertheless, the qualitative agree-
ment, i.e., the principal theoretical prediction and the mea-
surement of 1/fg noise, is comforting.

Moreover, the durations of residence time intervals in
open and closed states can be correlated. Such correlations
can be induced by stochastic binding of calcium ions which
regulate the gating dynamics of large conductance potassium
ion channels. To account for such correlation effects, our
model principally can be generalized in the same spirit as the
original diffusion model has been generalized to include
ligand binding effects[62]. This generalization is left for a
future study.

IV. DISCUSSION AND CONCLUSION

The gating dynamics of protein ion channels in biological
membranes is governed by a conformational dynamics on a
very complex energy landscape with a huge number of de-
grees of freedom. This multidimensional energy landscape
can possess deep energy wells(as compared with the thermal
energykBT) which are separated by potential barriers. In ad-
dition, there can exist an underlying energy valley network
connecting these wells which results in an energy quaside-
generacy. The traditional discrete state approach to the gating
dynamics pursued by the community of molecular physiolo-
gists presents an abstraction to this complexity: it has its
focus on the fact of deep potential wells being separated by
high energy barriers. The energy quasidegeneracy of poten-
tial wells enters the theory as an entropic contribution to the
corresponding free energies after reduction of the multidi-
mensional reality to low-dimensional models(possessing a
few discrete states only). This traditional approach has
proven useful over the past years and it serves as a service-
able working tool for the analysis of the experimental data.
This approach is, however, not able to capture the physical
origin of such complexity features as the presence of power-
law distributions of the residence time intervals, the slow
decay of the autocorrelations of fluctuations, or the presence
of 1/ fg noise feature in the power spectrum of fluctuations of
several ion channel types, to name but a few. Experiments
have demonstrated[63] that the 1/fg noise is due to the
conformational transitions among different conductance
states. In particular, the ion current is free of 1/fg noise in a
frozen conductance substate of the ion channel. Therefore,
the 1/fg noise originates due to fluctuations among experi-
mentally distinguishable substates[63]. These features reveal
unambiguously the non-Markovian character of theobserved
“on-off” ion current fluctuations[6,64,65]. The diffusion
models of ion channel gating[7,9–15] present another,
complementary abstraction of the actual dynamics. These ap-

proaches attempt to capture the spatial structures of the po-
tential minima and the associated dynamics, and/or the cor-
rugated and hierarchical features of the real multi-
dimensional conformation landscape after performing the re-
duction to a reaction coordinate picture[20]. It is physically
likely that the ion channel protein can become temporarily
trapped in some domains of its intrinsic conformational land-
scape from which it can escape by activated jumps among
those states. Due to a complicated structure of such traps, the
corresponding residence time distribution can possess a di-
vergent, or from a practical point of view a very large, first
moment. This in turn gives rise to an anomalous conforma-
tion diffusion within the chosen reduced reaction coordinate
description. Our scheme in terms of a fractional, continuous
diffusion model, being complemented with appropriate
boundary conditions, properly accounts for such complexity.

As demonstrated theoretically and exemplified with the
gating of a BK locust potassium ion channel, our fractional
diffusion theory presents a powerful approach to describe
these various observed power-law characteristics of the un-
derlying gating dynamics.
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APPENDIX: SOLUTION OF THE BOUNDARY-VALUE
PROBLEM

The Laplace-transformed probabilityP̃sx,sdªe0
`e−st

3Psx,tddt, Eq. (14), reads

sP̃sx,sd − dsx − x0d = Kas1−ad2P̃sx,sd
dx2 sA1d

with −L,x0,0. Note that the limitx0→0− will be taken at
the very end of the calculation. The corresponding Laplace-
transformed boundary conditions assume the form

UdP̃sx,sd
dx

U
x=−L

= 0, sA2d

s1−aUdP̃sx,sd
dx

U
x=0

= −
L

Kaktcl
P̃s0,sd. sA3d

The challenge is thus the solution of the boundary-value
problem (A1)–(A3). Towards this goal, we consider sepa-
rately the solution in the domains, −L,x,x0,

P̃1sx,sd = A1 expSÎ sa

Ka

xD + B1 expS−Î sa

Ka

xD , sA4d

andx0,x,0,
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P̃2sx,sd = A2 expSÎ sa

Ka

xD + B2 expS−Î sa

Ka

xD . sA5d

At x=x0, the solution is continuous,

P̃1sx0,sd = P̃2sx0,sd. sA6d

The first derivativedP̃sx,sd /dx, however, experiences a
jump. This can readily be seen upon integrating Eq.(A1) in
an infinitesimally small neighborhood ofx=x0. Thus,

Kas1−aFdP̃2sx,sd
dx

−
dP̃1sx,sd

dx
G

x=x0

= − 1. sA7d

The coefficientsA1,2 andB1,2 are determined by substitution
of Eqs.(A4) and(A5) into Eqs.(A2), (A3), (A6), and(A7).
Thereby, the proposed objective is exactly solved. The inte-
gration of the solution(A4) from x=−L to x=0sx0→0−d
yields the Laplace-transformed survival probabilityF̃cssd;
the corresponding RTD(20) follows asc̃cssd=1−sF̃cssd.
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