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Abstract

We investigate the potential for controlling the effect of nonlinear Stochastic Resonance

(SR) by use of harmonic mixing signals for an overdamped Brownian dynamics in a symmetric

double well potential. The periodic forcing for harmonic mixing consists of a first signal with a

basic frequency O and a second, superimposed signal oscillating at twice the basic frequency

2O: By variation of the phase difference between these two components and the amplitude

ratios of the driving the phenomenon of SR becomes a priori controllable. The harmonic

mixing dynamically breaks the symmetry so that the time- and ensemble-average assumes a

non-vanishing value. Independently of the noise level, the response can be suppressed by

adjusting the phase difference. Nonlinear SR then exhibits resonances at higher harmonics

with respect to the applied noise strength and relative phase. The scheme of nonlinear SR via

harmonic mixing can be used to steer the nonlinear response and to sensitively measure the

internal noise strength. We further demonstrate that the full Fokker–Planck dynamics can be

well approximated by a two-state model.
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1. Introduction

Stochastic resonance (SR) describes the phenomenon where an incoming, generally
weak signal can become amplified upon harvesting the ambient noise in metastable,
nonlinear stochastic systems [1]. This phenomenon is based on a stochastic
synchronization between noise-induced hopping events and the periodic, externally
applied signal [1–4]. SR has since been observed in an abundance of systems in
physics, chemistry, engineering, biology and biomedical sciences and the list of
examples and applications is still growing. In particular, SR has found widespread
interest and has been applied to many differing applications within biological physics
[5]. In many situations, however, the strength of the noise acting upon a system is not
arbitrarily controllable; e.g. the strength of the internal noise source can be so large
that SR will simply not occur, as it may happen for SR in globally coupled ion
channel clusters of small size [6–8]. It is, therefore, of ultimate importance to devise
control schemes to attain and manipulate SR in real systems. A concept which was
proposed in the prior literature [9,10] in order to enhance or suppress the spectral
power is based on a modulation of the threshold in a discrete detector or in a bistable
system dynamics. This in turn results in ‘‘breathing’’ oscillations of the barriers. By
doing so, the ‘‘classical’’ SR effect could be both characteristically enhanced and
suppressed by changing the phase difference between the threshold modulation and
the input signal.

In this work, we suggest a different, although related control scheme which we
base on harmonic mixing input signal [11–16]. The sinusoidal input signal is
superposed by a second, sinusoidal signal with twice the frequency of the former,
monochromatic input signal. By controlling the phase difference between these two
signal parts we obtain a powerful tool for the manipulation of SR.
2. The model

To start out, we consider the motion of a Brownian particle in a bistable and
symmetric potential in the presence of noise and periodic forcing. The particle is
furthermore subjected to viscous friction. With the assumption that inertia effects
are negligible (overdamped dynamics), the driven Langevin dynamics reads in scaled
units [1,17]:

d

dt
xðtÞ ¼ �

d

dx
V ðxÞ þ f ðtÞ þ xðtÞ (1)

with the static double-well potential given by V ðxÞ :¼ 1=4 x4 � 1=2 x2: The harmonic
mixing driving signal f ðtÞ has the form,

f ðtÞ ¼ A sinðOtÞ þ B sinð2Ot þCÞ : (2)

The relative phase difference is denoted by C; and it is this quantity which we shall
predominantly use in the following as our control parameter for steering SR. The
coupling to the heat bath is modeled by zero-mean, Gaussian white noise xðtÞ with
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autocorrelation function:

hxðtÞxðsÞi ¼ 2Ddðt � sÞ ; (3)

where D denotes the noise strength.
The corresponding Fokker–Planck equation for the probability density Pðx; tÞ

[18,19] is thus given by

q
qt

Pðx; tÞ ¼
q
qx

d

dx
V ðxÞ

� �
� f ðtÞ

� �
Pðx; tÞ þ D

q2

qx2
Pðx; tÞ : (4)

In the absence of the second signal (i.e., B ¼ 0) Eq. (1) forms the archetypical model
for SR [1]. The dependence of SR-measures such as the spectral power amplification
[20–22] or the signal-to-noise ratio [23] exhibits a bell-shaped behavior vs. the noise
strength D, respectively. Moreover, due to the dynamical generalized parity
symmetry [20–22,24] only odd higher harmonics emerge and all exhibit the effect
of SR. In contrast, for asymmetric double-well potentials also the even numbered
higher harmonics are generated: the generation rate of the third harmonic then
depicts a characteristic noise-induced suppression [25,26]. Due to our harmonic
mixing signal, and particularly due to the relative phase difference C and the ratio of
amplitudes A and B, we can systematically break the symmetry dynamically and
thus, control the response at higher harmonics.
3. Symmetry breaking in the deterministic model

Before we elucidate the Fokker–Planck dynamics (4), the deterministic
case is instructive for obtaining an understanding of the physics of the
harmonic mixing driving on the dynamics of a particle in a symmetric
double-well. The Langevin equation (1) thus turns into the time-dependent
deterministic equation:

d

dt
xðtÞ ¼ �

d

dx
V ðxÞ þ f ðtÞ : (5)

In the absence of any modulation, i.e., f ðtÞ ¼ 0; there exist two stable attractors at
x� ¼ �1 and one unstable attractor at xu ¼ 0: For sub-threshold harmonic mixing,
f ðtÞ ¼ A sinðOtÞ þ B sinð2Ot þCÞ; two oscillatory stable orbits are formed within
the potential wells. The domains of attraction are separated by an unstable orbit,
oscillating close to the former, unstable point near the barrier.

Upon increasing the amplitudes A and B, the oscillations of the stable and
unstable orbits become larger; consequently, the corresponding orbits approach each
other. At even stronger driving the situation changes drastically and the variation of
the phase difference C possesses salient effects: the symmetry breaking by the
harmonic mixing signal becomes evident: in Fig. 1, the amplitudes A and B both
equal the barrier height 1=4 and the basic frequency is O ¼ 0:1: For phases C around
0 or p two stable and one unstable orbits are present, whereas for C ¼ p=2 or 3p=2
there is only one attractor located in either the left or in the right potential well of the
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Fig. 1. The stable (solid line) and unstable (dashed line) periodic orbits for the motion of an overdamped

particle in a quartic double-well potential driven by a harmonic mixing signal f ðtÞ ¼ 0:25 sinð0:1tÞ þ

0:25 sinð0:2t þCÞ are plotted for C ¼ 0 in (a) with Y :¼ 0:1tðmod 2pÞ: In contrast, there exists also a

parameter regime for the phase difference C where only one stable orbit exists (depicted in panel (b)). For

example, the orbit is located in the left potential well for C ¼ p=2 (solid line) and in the right well for

C ¼ 3p=2 (dashed line); harmonic mixing thus causes symmetry breaking.
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static potential, respectively. The reason for this symmetry breaking is the interplay
between the asymmetry of the harmonic mixing signal and the non-linearity of the
quartic double-well potential.

For large signal amplitudes and arbitrary phase differences, there occurs only one
stable periodic orbit which spreads over both potential wells (not depicted).
4. Two-state model

In view of our findings for the deterministic dynamics, we expect that the noisy
system exhibits SR similarly to the ones occurring in asymmetric potentials driven by
sinusoidal signals [1,17]. In order to check the former statement we have numerically
solved the continuous Fokker–Planck model and developed an approximate
treatment for (1) in terms of a two-state model.

For small driving frequencies, i.e., for frequencies which are much smaller than the
noise induced hopping rate, the adiabatic potential modulation can be invoked.
Applying Kramers rate formula [27–30] for the transition rates among potential
wells we find the results to leading order in the driving amplitudes [31]

k�ðtÞ ¼ k0 exp �
A

D
sinðOtÞ �

B

D
sinð2Ot þCÞ

� �
; (6)

wherein k0 is the Kramers rate of the unperturbed symmetric system, i.e.,
k0:¼1=ðp

ffiffiffi
2

p
Þ expf�1=ð4DÞg: The occupation probabilities p�ðtÞ for the two states

x� ¼ �1 obey the following master equation [23,32]:

d

dt
p�ðtÞ ¼ k�ðtÞp�ðtÞ � k�ðtÞp�ðtÞ : (7)
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Due to normalization of probabilities, i.e., pþðtÞ þ p�ðtÞ ¼ 1; the differential
equation for the mean value (hxðtÞi ¼ pþ � p�) reads

d

dt
hxðtÞi ¼ �½kþðtÞ þ k�ðtÞ�hxðtÞi þ kþðtÞ � k�ðtÞ : (8)

Assuming A � B and A=D51 the asymptotic, periodic long time solution of Eq. (8)
can be expanded beyond linear response into a series with respect to the ratios A=D

and B=D: Next, in order to identify higher harmonics, we expand hxðtÞi into a
Fourier series:

hxðtÞi ¼ g0 þ
X1
n¼1

gn sinðnOt þ fnÞ (9)

with corresponding Fourier coefficients gn and phase lags fn: The spectral
amplification factors Zn; which are defined as ratio of the output power stored
at the corresponding higher harmonic driving frequency to the input power, are
given by

Zn ¼
g2

n

A2 þ B2
; n ¼ 1; 2; . . . : (10)

4.1. The time- and ensemble-averaged mean value

We start our discussion with the zeroth-order Fourier coefficient g0; namely the
time- and noise-averaged mean value. This nonlinear response reads in leading
order:

g0 ¼
A2B

D3

1

8

1

ð4k2
0 þ O2Þðk2

0 þ O2Þ

� 3k0O3 cos Cþ ð8k4
0 þ 4k2

0O
2 � O4Þ sin C

	 

:

ð11Þ

Note that generally g0 differs from zero. This is so, because the unbiased,
but asymmetric input signal, possessing particularly nonvanishing time-
averaged odd numbered higher moments nX3 dynamically breaks the
symmetry of the system [9,10,33–37]. For illustration, we depict this driving
induced, nonvanishing mean g0 for f ðtÞ ¼ 0:01 sinð0:01tÞ þ 0:01 sinð0:02t þCÞ

and different relative phases C in Fig. 2. For a phase difference C ¼ 0;
the accumulation in the state ‘‘þ’’ increases initially, reaches a maximum, and
then decreases as the noise strength D is increased further, cf. Fig. 2(a). At an
optimum noise level D the accumulation in one state is extremal. Similar to the
phenomenon of Stochastic Resonance, this effect manifests itself by a synchroniza-
tion of noise-activated hopping events between the two metastable states and the
driving force f ðtÞ:
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Fig. 2. Time- and ensemble-averaged mean value g0 of the nonlinear response of the two-state system

driven by a harmonic mixing signal with amplitudes A ¼ B ¼ 0:01; fundamental frequency O ¼ 0:01 and

phase differences C ¼ 0; p=2; p and 3p=2: The lines correspond to the analytic solution, i.e., Eq. (11), while

the two symbols (‘‘þ’’ and ‘‘�’’) belong to the corresponding numerical solution of Eq. (8). This driving

induced zero-frequency response g0 exhibits versus noise strength D a bell-shaped behavior, similar to the

behavior of Stochastic Resonance. Interestingly, for specific noise levels and chosen relative phases C the

symmetry can be restored, cf. panel 2(b) and Fig. 4(a).
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Upon changing the relative phase difference C we thus can control the dynamical
asymmetry of the harmonic mixing driving signal and therefore the time averaged
mean value g0: As a consequence for C ¼ 0 and p the accumulation in the states ‘‘þ’’
and ‘‘�’’ undergo an SR-like behavior. For other phase differences C; the time-
averaged mean value vanishes at certain noise strengths; thus, the symmetry in the
system can, dynamically, be restored accidentally at selected parameter choices, cf.
Fig. 2(b). According to the expansion in A=D and B=D; the analytic solution worsens
for small noise strengths D, this feature is apparent in Fig. 2(b).
4.2. Spectral amplification factors

The spectral amplification factors (10) at the first- and second-harmonic of the
system output are evaluated to leading, nonvanishing order as

Z1 ¼
A2

D2

1

A2 þ B2

4k2
0

4k2
0 þ O2

; Z2 ¼
B2

D2

1

A2 þ B2

k2
0

k2
0 þ O2

: (12)

We observe that, within this two-state approximation scheme, g1 depends in lowest
order only on A=D (linear response limit). Likewise, the spectral amplification at 2O
is determined in linear response by the second-harmonic component of the harmonic
mixing signal, yielding the spectral amplification of the second harmonic Z2: The two
components of the driving do not interact with each other in this lowest order,
particularly because of the suppression of even-numbered higher harmonic
generation in symmetric systems driven by sinusoidal signals. Therefore, SR
manifests itself at both frequencies with the well-known bell-shaped amplification
behavior, cf. Figs. 3(a) and (b).

For the generation of the third higher harmonic, however, the two parts of the
harmonic mixing signal do interact, and, in the lowest, leading order, Z3 is given by
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Fig. 3. The dependence of the spectral power amplification factors (a)–(c) and the time-averaged mean

value (d) versus the noise strength D is depicted for the driving amplitudes A ¼ B ¼ 0:01 at vanishing

relative phase C ¼ 0 and at the fundamental driving frequency O ¼ 0:001: analytic estimate (solid line),

corresponding numerical Fokker–Planck solution (crosses ‘‘�’’). The same for the driving fundamental at

O ¼ 0:01: analytic estimate (dashed line), numerical solution (‘‘+’’ signs). Likewise, the same for the high-

frequency drive at O ¼ 0:1: analytic estimate (dotted line), numerical Fokker–Planck solution (squares).

Note that at large driving frequencies there is a good agreement between analytic results (lines) and the

numerical results (symbols) for the Fokker–Planck equation (4).
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the expression:

Z3 ¼
1

D6

1

A2 þ B2
½ðk2

0 þ O2Þð4k2
0 þ O2Þ

2
ð4k2

0 þ 9O2Þ��1

� A6 1

144
k2

0ðO
2 þ 16k2

0Þðk
2
0 þ O2Þð4k2

0 þ O2Þ

�

� A4B2k2
0

1

12
ðO6 þ 64k6

0 þ 36k4
0O

2 � 9k2
0O

4Þcos2 C
�

þ
1

2
k0O3ðO2 � 2k2

0Þ sin C cos C

�
1

24
ð64k6

0 þ 36k4
0O

2 � 9k2
0 O

4 þ O6Þ

�

þA2B4 1

16
k2

0ðO
4 � 7k2

0O
2 þ 16k4

0Þð4k2
0 þ O2Þ

�
: ð13Þ

Just as for the case with an asymmetric double well potential [26,38,39], the spectral
amplification at the third harmonic exhibits in our case a noise-induced suppression.
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This characteristic suppression at a tailored noise strength depends on the driving
frequency O and is accompanied with a corresponding p-phase jump (not depicted).
In Fig. 3(c) we depict this behavior for amplitudes A ¼ B ¼ 0:01; and a vanishing
relative phase difference C ¼ 0 and for different fundamental frequencies.
Agreement with the two-state theory is best at moderate fundamental driving
frequencies; this corroborates with the fact that the linear response analysis and its
corrections to higher orders indeed work best at moderate-to-large frequencies and
increasingly fails at very small frequencies [40,41].

4.3. Comparison with the Fokker– Planck treatment

Additionally, we have numerically integrated the Fokker–Planck equation (4) and
evaluated the time-periodic, asymptotic mean value hxðtÞi together with an
expansion according to Eq. (9) into a Fourier series. The results are depicted in
Fig. 3. There is good agreement between the analytic solution of the two-state
approximation and the numerical solution of the continuous-state problem.
Although the two-state approximation, i.e., the Kramers-rate approximation fails
for large driving frequencies and large noise strengths, there is nevertheless still
qualitative good agreement, cf. Fig. 3.
5. Controlling nonlinear SR with noise and relative phase C

Within the range of small harmonic mixing driving amplitudes, where the
agreement of the two-state and the continuous system is very good, the time- and
noise-averaged mean value g0 and the spectral amplification factor of the third
harmonic Z3 depict a striking dependency on the relative phase C; in contrast the
amplification factors of the first and second harmonic generations are in lowest order
independent on the phase difference. This is because these former quantifiers depend
nonlinearly on the driving amplitudes (nonlinear response regime). In Fig. 4 this
dependence of the time averaged mean value g0 (a) and the third spectral
amplification factor Z3 (b) are plotted versus the noise strength and the relative
phase difference by means of contour-line plots. Because a shift of p will not change
the spectral amplification factors and only inverts the sign of the time averaged mean
value g0; it is sufficient to vary C in the range from 0 to p:

As noted above, the mean value vanishes for certain, tailored noise strengths D

and relative phases C; cf. Fig. 2(b). The resulting zero-lines converge for large noise
strengths to multiples of p; cf. Fig. 4(a). Interestingly enough, for every phase
difference there exists only one value of noise strength for which g0 vanishes and,
thus, symmetry restoring occurs accidentally. This feature can be used to determine
and characterize sensitively the operating internal noise level in metastable systems.
Additionally, by changing the relative phase difference the time-averaged mean value
and, consequently, the output power of the dynamically induced bias value of the
response signal can be controlled. A maximum enhancement of g0 is obtained for
relative phases C around p=2 and 3p=2:
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Fig. 4. The contour plot of the time-averaged mean value g0 (a) and of the spectral amplification factor of

the third harmonic Z3 (b) are depicted for varying phase difference C and noise strength D according Eqs.

(11) and (13) (A ¼ B ¼ 0:01; O ¼ 0:01). The two dashed lines indicate the zero contour-line, meaning the

symmetry restoring condition in (a) and the corresponding line in panel (b) the regime of noise-induced

suppression of Z3:
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By variation of the phase difference C; the noise strength D at which suppression
takes place could be controlled as well, cf. Fig. 4(b). Yet another feature to be
obtained upon controlling the relative phase difference C is a large enhancement of
Z3 up to a factor of 10.
6. Summary

We have investigated the influence of a harmonic mixing signal on the
phenomenon of nonlinear Stochastic Resonance [1,32] for a Brownian dynamics
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in a double well. In the deterministic limit of harmonic mixing driving we can
distinguish three situations: for small driving amplitudes the particle oscillates in one
of the wells, depending on the initial starting value. In the range of large amplitudes
the oscillation extend over both wells. For moderate driving amplitudes, however, a
symmetry breaking occurs, independent on the initial starting values the motion
dwells only one specific well. By varying the relative phase difference between the
two components of the mixing signal we can selectively control the dynamics in one
of the two wells.

For the phenomenon of nonlinear Stochastic Resonance we monitor the nonlinear
response due to harmonic mixing versus the noise strength D. Despite the somewhat
coarse nature of the applied two-state approximation, it nevertheless provides very
good agreement for the dynamics of the full Fokker–Planck dynamics; it is only for
very small frequencies and/or large noise strength where the approximation starts to
fail. The analytic estimate predicts a dynamical symmetry breaking which can be
selectively controlled by the relative phase between the two driving modes and the
noise strength D.

The spectral amplification measures of the higher harmonics exhibit the
characteristic features of nonlinear SR in systems possessing an asymmetry. At
selected noise strengths and relative phase differences the time-averaged mean value
accidentally vanishes thereby restoring the symmetry via the combined action of
noise and driving. The dynamically induced bias value and the spectral amplification
factor of the third harmonic generation depend sensitively on the relative phase
difference of the two sinusoidal input signals. This can be used from a technological
viewpoint to selectively control the enhancement and the suppression of the
nonlinear system response up to factor of 10. Moreover, the dynamically induced
restoration of symmetry can be harvested to measure very sensitively the internal
noise strength in a symmetric system.
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