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Relaxation time scales in collective dynamics of liquid alkali metals

Anatolii V. Mokshin® and Renat M. Yulmetyev®
Department of Physics, Kazan State Pedagogical University, 420021 Kazan, Russia

Peter Hanggi
Department of Physics, University of Augsburg, D-86135 Augsburg, Germany

(Received 4 May 2004; accepted 20 July 2004

In this paper the investigation of the dynamical processes of liquid alkali metals is executed by
analyzing the time scales of relaxation processes in liquids. The obtained theoretical dynamic
structure factoS(k, w) for the case of liquid lithium is found to be in excellent agreement with the
recently received inelastic x-ray scattering data. The comparison and interrelation with other
theories are given here. Finally, an important part of this paper is the confirmation of the scale
uniformity of the dynamic processes in liquid alkali metals predicted by some previous molecular
dynamic simulation studies. @004 American Institute of Physic§DOI: 10.1063/1.1792155

I. INTRODUCTION two time scales in this model reflects the presence of physi-
cally different decay mechanisms. A faster process is hypo-

The dynamic structure factd¥(k,w) is an experimen- qvically associated with interactions between an atom and
tally measured term, containing information about the Prothe “cage” of its nearest neighbors, and a slower one is

cesses in a liquid with long- and short-time scales. It can b?dentified with the well-known structurala—) process.

gseq tofj_l:dge thf mlctr)?s.cozlcbbehawor mfg slystte_m on tthﬁowever, relaxations of both processes are approximated by
asis ot 1ts spectra, obtained by means of Inelastic neu ropronential dependencies. In recent works the viscoelastic
scattegrmg(lNS) .(Refs. 1 apd Por inelastic x-ray scattering model has been improved by means of the Markovian clo-
g:((Se)r.im’Ae:Sn tfglr dsall?;pclg( tqz')dzé\?é E;eesr?r;tc(?ugsg t;jm?nun;gfsure on the next relaxation level of Zwanzig-Mori hierarhy,
-XP o ! jutated, in par g equivalent to the exponential relaxation on this level. It
ticular, for liquid alkali metals. These data indicate Ieglblyi& worth mentioning two other methods, one of which is

the presence of the collective propagation excitations beyon lated 1o th tensi fh | hvdrod . Wtical
the hydrodynamic region. The characteristic feature of quuiore ated to the extension ot the usual hydrodynamic analytica

alkali metals is a triple-peak shape 8k, o), lasted tok expressions by modification of hydrodynamic modeskto
~0.8,,, wherek,, corresponds to the first maximum of the dependencésee, for instance, Ref_.).9Th|s mgthod assumes
static structure factos(k). Moreover, the frequency of the the existence of n_onhydrodynamlcal additional modes. The
side peak achieves its maximumlat 0.5%,,. The propa- second approach is related to the so called concept of gener-

gation of these high-frequency waves cannot be obtaine@”z_ed coIIectiv_e modes, w_hich was proposed for the investi-
within a hydrodynamic treatment, therefore, they are relate@ation of the time correlation functiord CF's) beyond the
in some works to the so-called kinetic collective excitations ydrodynamic regiorl? The key idea of this method consists
The impossibility to describe these microscopic phenomenH‘ the correct choice of the basic set of dynamical variables.
and, therefore, to reproduce qualitatively the experimental ~All these methods are more or less successfully used for
S(k, w) by means of ordinary hydrodynamic equations led tothe description of collective dynamics in liquids. They have
the development of other theoretical models and approacheg@mmon property. Namely, they are actually constructed on
One of the simplest and perhaps the earliest modelingeuristic assumption about the presence of exponential decay
approaches is the so-called viscoelastic theory. It allows on&r combination of exponential decay contributipirssome
to obtain the central quasielastic line as well as two inelasti¢elaxation processes. Nevertheless, the transition and impo-
peaks symmetrically located arouna=0 for mesoscopic sition of different relaxation modes in disorder systems can
space-frequency region. However, as shown in Refs. 4 and ®ccur even in case of a concrete relaxation process, which
this model cannot be used for the exact reproduction of theomplicates the selection of the analytical time dependence
experimental spectral shapes 8fk,») (see, for instance, for the corresponding TCF. This fact is proved by the suc-
the cases of liquid cesium and lithium in Refs. 4 and 5 cessful application of different mode-coupling theories. On
Therefore, in Ref. 5 the double-scale model for the viscoushe other hand, this difficulty can be resolved by means of
relaxation process with fast and slow time scales was testednalysis and comparison of the resulting time scales of re-
and as a result a good agreement with the IXS experimentdxation processes. Therefore, in the present work we suggest
data for the dynamic structure factor was received. Recentlyhe approach, which allows us to avoid the immediate ap-
the similar approach was also applied for the description oproximation of relaxation processes by analytical functions.
relaxation processes in H-bonded liqufdsThe existence of It is based on the development of Bogoliubov's ideas about
the hierarchy of relaxation times in liquidsadapted to the
3Electronic mail: mav@theory.kazan-spu.ru formalism of time correlation functions.
PElectronic mail: rmy@theory.kazan-spu.ru One of the open problems in studying of liquid stéte
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particular, of the microdynamics of simple liqujds to de-  with the momentum of th¢th particlep; and the pair poten-

scribe and understand on a general ground the common feial u(j,i). So, if Wy(k) is the density fluctuation, then

tures of different relaxation processes.is well known that W, (k) is the longitudinal component of the momentum den-

the dispersion of the sidgigh frequency peak of dynamic sity and so it goes on.

structure factor is the same for all alkali metals. Moreover, it ~ The TCF's for the corresponding dynamical variables are

is also valid in case of more complex systems, for examplegiven by

for liquid alloys!? Then the following questions arise: Is the w0

origin of relaxation processes the same for liquid systems <VVJ-*(k)e'£22‘W|(k)) )

with similar features? Can the unified description be applied Mji (k)= W (W (k) =12, ®)

to these systems? As for the group of melting alkalis, it has J !

been indicated in Ref. 13 that both the equilibrium and theFor conveniencenormalizedtime correlation functions are

time dependent correlations can be cast in a properly scalagsed here. The time evolution operator of E§). contains

form for all the alkali metals. Further, it was justified BY  the reduced Liouville operator,

initio molecular dynamics studyed in Ref. 13 too. Experi- | |

mental confirmation of this result was impossible over a long I

period particularly because of the difficulties related to the La= 1_1.21 I | £ 1_1.21 I |, (6)

technique of INS due to the deficient precision of the experi-

mental data. Recently, due to progress in IXS technique thidefined by the following projection operators:

issue was considered agafhin this work we present inves-

tigations related to the determination of corresponding scale ~ Wik (W7 (k) B

transitions for liquid systems. 1= (Wi (k)2 1T = 6, 11; . (@)
The organization of the paper is as follows. In the fol- )

lowing section, we describe the theoretical formalism, and=rom the condition of orthogonalization of the dynamical

the comparison with the experimental data and other theoriegariables we obtain the initial values for the TCF’s of E5).

is carried out. The possibility of scale uniformity of dynami-

cal processes in the group of liquid alkali metals is analyzed |0 if j#I, cross correlations
X ; i . Mji(k,t=0)= . — (8)
and discussed in Sec. lll. The scale-crossing relations are 1 if j=I, autocorrelations
also presented here. Finally, we come up with some conclud- ] ] o
ing remarks in Sec. IV. These correlation functionsl; (k,t) are symmetrical inl
andj, i.e.,
Il. THEORETICAL FORMALISM M (K, t) =M;(k,t). 9
A. Basic notions Autocorrelation functions of Zwanzig-Mori formalism have

the following property: every autocorrelation function of the
higher orderM;(k,t)=M;;(k,t) is a memory function for
the previous one, i.eM;_;(k,t) (autocorrelation functions
will be marked by one index only in accordance with the
1 E er used variablg and they are interrelated by integro-
\/_ﬁj=1 e (1) differential non-Markovian equations of the form:

Let us consider the liquid system Nfidentical classical
particles of the massiin the volumeV and take the density
fluctuations
N

Wo(k)=

as an initial dynamical variable. To construct some set of  dM;_1(k,t) t

dynamical variables necessary for the description of the evo- dt +Qiz(k) deTMJ(k’T)Mjfl(k't_ 7)=0.
lution of the system we use the technique of projection op- (10)
erators of Zwanzig-Mort>*® It is a formal version of the o _ _ o
Gram-Schmidt orthogonalization process, which allows ondifferentiating the first equation of the chait10), i.e., ]
to obtain the set obrthogonalvariables, =1, one obtains the generalized Langevin equation:

W (K) ={Wo(k), Wy (k),Wy(K),...,Wj(k),...}. 2 d®Mg(k,t)

They satisfy the conditior(v\/j‘w,>=5j,|(|V\g|2> and are dt2

connected by the following recurrent relatith:

W 1(K) = LW, (k) = QF (KW, -1 (K),

L _ (3)  One the other hand, these functions describe concrete relax-

j=0.1.2,.... W_y(k)=0. ation processes, the physical meaning of which may be es-
Here the characteristic of the corresponditiy relaxation tablished from direct definitions of TCF's. For instance,
process, the so-called frequency paramélé(k), appears, My(k,t) describes the dynamics of fluctuations of density

XMy(k,t—7)M1(k,t—7")Mqy(k,7")=0. (17

and L is the Liouville operator, correlations in the systenM(k,t) is the TCF of the fluc-
N N tuations of the longitudinal component of the momentum
L=—i 2 pi_VJ'_ E vu(j i(Vi—Vi) (4) density, andM,(k,t) contains the TCF of fluctuations of
=m0 L energy density. So, these quantities are associated with the
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TCF’s of the well-known hydrodynamic “slow” variables. case in our approach. Simultaneously, our approach does not
These TCF's have characteristic time scales, which can bdeny the presence of the long-lasting time tailhd§(k,t),

found from which may be adequately taken into account by the mode-
. ~ coupling theonf®
Tj(k)zReJ dtM;(k,t)=ReM;(k,s=0), (12) Then, taking into account E@12) one can find
0
M4(k,t)=M,(k,t)+h(k,t), (13

whereM;(k,s) is the Laplace transform of the corresponding
TCF, i.e.,Mj(k,s)=f§dte*Sth(k,t) (Refs. 18—20 where the “tail” function h(k,t) appears. From the short-
So, the memory function approach with single initial dy- time asymptotic of the time autocorrelation functions and the
namical variable extracts the whole set, which describes theondition of the long-time attenuation of correlation Etg)
relaxation processes of the corresponding relaxation levelyields the following properties dfi(k,t):
In f_act, the we_ll-known problem of the _ch_oice of a set of lim h(k,t)= lim h(k,t)=0,
variables required for the correct description of the system ,_,
dynamics here is reducdd to the search of the number of
variables fora priori known successiolV(k), that was ex- this function must have at least one crossing with the time
cellently shown by the recurrent relation approach in a workgXis at the intermediate regigfi Equation(13) allows us to
of Lee??? and/or (i) to finding the correct closure of the obtain the closure of hierarchy of equations of the fd(if)
chain (10). at the fourth level [=4) and by means of Laplace transfor-
The ratio betweeny(k), r1(k), and7,(k) may be quite mation to find its exact solution fdvly(k,iw), particularly,
arbitrary. In the hydrodynamic regiork{-0,0—0) they  which is directly related to the experimentally available term
take large values due to the slow changes of the correspond the dynamic structure fact@(k, ). The expression for
dent variables: densities of mass, momentum, and energthe resultingS(k, ) is given in Ref. 25 in terms of the first
Further, one can suggest that the relaxation times of the fofour frequency parameter§)?(k), Q3(k), Q3(k), and
lowing TCF’s, in comparison with the scales of these threegﬁ(k) and the Laplace transform of tail function, i.e.,
variables, are comparable, i.eg(k) ~ 74(k). We emphasize h(k,iw). In some cases, the regime wiiik,t)—0 may be
here that this assumption does not contradict the viscoelastiealized. It can be observed in some parts of tifrequency
model, which presupposes thap(k)> 75(k). Obviously, scale. In this case we find the following expression for the
this key condition of the viscoelastic theory is just a specialdynamic structure factor:

(14

t—oo

S(k)

21T

— 07k Q3(k) +202(k) Q3(k)Q3(k) — Q2(k) Q3(k) Q3(k) + Q3(k) Q2(K) ]+ o[ Q3(k) — 203(k) Q3(k)

S(k,w)= 5—Q5(k)Q5(K) Q5(K)[4Q5(K) — 021" Q3 (k) Q3(k) + 0 QF(K)Q5(k) — 205 (k) Q3(k)

+205(k)Q5(k)—2Q5(k)Q5(k) + Q5(k) Q5(k) 1+ o[ Q5(k) — Q5(K) 1} % (15)

This equation is also expressed through the first four freorder parameters were found by comparison with the experi-
guency parameters, which are directly related to the first fivenent. Eventually, we have revealed that all the frequency
even frequency moments of dynamics structure factor. It iparameters have the similar dispersion. In particular, they
necessary to note that this expression is obtained in the wayave the first principal maximum at the same wave numbers

completely different from the theory of moments. such as the side peak 8tk,w), i.e., atk~0.5%,,, and any
low order parameter is less than the high order one.

B. Comparison with IXS experiment and relationship We would like to emphasize that the theoretiggk, w)

with other theoretical approaches and, in particular, the position of the side peak, is very sen-

sitive to the magnitude df23(k). The magnitudes of23(k)
andQﬁ(k) influence the form of5(k, ). However, it is not
so important to know these parameters separately as their
ratio, i.e.,Q3(k)/Q35(k).
To compare the theoretical outcome with the experiment
({ve modified it to account for the quantum mechanical de-
ailed balance condition according to

In Fig. 1 we report the dynamic structure fac&{k,w)

of liquid lithium (T=475K) for some wave numbers calcu-
lated from Eq.(15) (solid line) and obtained from IXS ex-
periment(circles.** Being used in theoretical computations
the static structure fact@(k) for both cases was taken from
Ref. 27. The first frequency parameter was directly define
from its definition Qi(k)=KBTk2/mS(k). The second fre-
quency parameteﬂﬁ(k) is related to the fourth frequency
moment. We found this parameter from the values of the

infinite frequency sound velocity..(k) (Refs. 5 and 1¥by Sq(k )=

means of relationcx(k)=\/Qzl(k)+922(k)/k. The high-

hﬂ)/KBT

ms(k,w), (16)
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2

3 |€]<1. (19

403’
Taking into account the fact that the found vaIuesQif(k)
for liquid sodium and lithium achieve ¥»-10*°s™2 for the
low-k region, we span by introducing parametethe fre-
quency(time) rangew<10®s™ 1 (t>10"1°s), which is im-
portant for us and is available experimentally.

Expanding the radicand in E418b) as a series in the

parametet
¢ &
VI+é=145- 5+, (20)
we can rewrite it in the following way:
Ma(s) S+1+S2 S4+ (21)
S = - — R —_— e,
° 202 Q4 803 3208

By restricting the number of terms in the seri@d) [and,
FIG. 1. Dynamic structure factor of liquid lithium at the temperatdre  accordingly, in Eq(21)] we receive from Eq(183 the linear
=475 K. The solid lines are the results of the theoretic métig), whereas combination of the Lorentz functions

the open circles are the IXS daahe theoretical lineshapes have been

modified to account for the quantum mechanical detailed balance condition

and broadened for the finite experimental resolution effects as described in "\‘“/l (k,s)= z Aj(k) j=1,2,3,5 (22)

the text. The wave numbeksare given in a reduced form, whekg, is the AN T s+ l(k) ’ P T T

. S . J
main peak position in the static structure facfk). ]

the number of which will be increased at the increase of the
and then broadened it for the finite experimental resolutio?Umber of terms in the seri¢20). The quantltlez:\é(k) and

effectsR(k, ):° 7j(K) are expressed by the relaxation frequen€lggk) and
Q3(k). Going over to the time scale by the inverse Laplace
8 .
f R(ko—w')Sy(k.o')dw. 17 transfornf® we obtain
From Fig. 1 one can see that the above described theoretical M(k,t)=2>, A;(k)e V7, (23)
approach yields a good agreement with IXS data of both )
systems. By restricting the first term of the serié®0) only we receive

Now we can execute a more detailed study of the obthe simplest model from the first equality of E@.8a with
tained results and compare them with other approaches: they. (21)

usual viscoelastic model, the double-scale viscous model, 0
and the generalized mode approach. The common feature of Ma(k,t)=e~"7, (24)

these theories is the use of the time autocorrelation functiop) i, corresponds to the viscoelastic model with the relax-

M;i(k.t) of Eq. (5) atj=I=2. So, the viscoelastic and the ,yqn time (k) =, (k)/Q2(K), and from the second equal-
double-viscosity models are based on approximations to thlﬁy of Eq. (18 the double exponential model, i.e., H33)

term, andv Z(k'.t) plays a key rol_e in these theories. As for at j =2 with the following time relaxation parameters
our approach, it gives the following form for Laplace trans-

form of M (k,t): 71.4K) = [Qa(K) =V Q5(k) — Q3(k)] 7 (25
M (k,)=[s+Q3(k)M4(k,5)]~* and the weight factor
s+03(k)M4(k,s) Qu(K) + VOZ(K) — Q2K
— 5 5 i 5 ’ (18@ A(k): 4( ) 4( ) 3( ) (26)
s*+Q5(K)M3(k,s)s+Q5(k) 2/02(k)—02(k)
~ —s+s?+4Q5(k) This case may be related to the double-time viscous
Ms(k,s) = 202(K) : (18D model> two-time exponentialansatz®? In the general
4

form Eg. (23) corresponds to the framework of generalized
which are obtained by Laplace transform of the third andcollective mode approaghwith the sum of the weighed ex-
fourth (j=3,4) equations of the chaii0). ponents for the TCRM»(k,t), wherer; *(k) denote eigen-
To pass from the frequency dependencéMofk,iw) to  values of a generalized dynamic matrix with the elements
the time one, let us consider the low-frequency region re€onsisting of static correlation functions, and the weight fac-
stricted by the value 2,4(k). For convenience we introduce tors A;(k) are the amplitudes describing the contribution of
here a small parametéat the fixed wave numbéd: the corresponding modes.
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So, it is obvious that the theory underlying Ed5) pre-

scribes such behavior of the second-order memory function . II:;, kk==061125k1?

M,(k,t), which may be represented in the form of Eg3) 2t el

and can be reduced to the above-mentioned modelg28y.

is in fact an expansion d¥1,(k,t) into decay channels em- 1

bedded in this function. 0t :
-40 -20 0 20 40

IIl. SCALE UNIFORMITY OF DYNAMICS PROCESSES JA[e G 1=0.28K '

IN LIQUID ALKALI METALS Na, k=0‘29§lil(m i ]

[32]
<o
i
*
The determination of the scale uniformity of structural "=
and dynamical features for different groups of liquids is very ”é\
important for the physics of liquid state. On the one hand, it &
allows one to apply the unified theoretical description to the
whole group. On the other hand, it allows one to remove the r
difficulties related to obtaining the experimental data. The 40t o Li,k=0.75k
fact is that until recently the microscopic dynamics of liquids Na, k=0.73k |
could be experimentally probed by INS only. However, there 20t
were often different problems related to, first, separation of
collective and one-particle contributions, and, second, gross ) N
experimental errorgand even with impossibility to obtain -10 -5 0 5 10
datg for different (k,w) regions. Recent progress in the *
technique of IXS has allowed one to clear some of the
obstacleS. Ten years ago the possibility of the unified de- F_IG. 2. IXS spectra of liquid lithium a1l':_475 K (OO0 an_d liquid so-
scription of the structural and dynamical properties of dif“fer-f"Ulm atT=390 K (OO0) (Refs. 5 and Lin the reduced units. The scale
.. . . . requencyw* is chosen as the term inverse proportionat*to
ent liquid alkali metals near the melting point was found by
the comprehensive molecular dynamics simulation stédy,
where the adopted potential model of Price, Singwi, and Tosi
was used, and the scale passage was executed on the badighe reduced wave number, 0.75, whereas in case of so-
of the potential parameters. The recent sketchy attempt afium, k/k,,=0.73. As known, these wave numbers corre-
testing this outcome experimentally has shown itsspond to the so called de Gennes narrowing region charac-
inconsistency? terized by a strond dependence. In other words, a higher
In present work we also execute the comparison of thesection atk of flat S(k,w)/t* is presented for lithium than
dynamic structure factor spectra of liquid lithium and so-for sodium. It is necessary to take into account that the val-
dium. As known from the experimental results, the dynamicues of the reduced temperatures for both systems are also
structure factoiS(k,w) depends strongly on the temperature slightly different.
T and the wave numbét. So, one can define the reduced Notice that the time unit* depends on the system fea-
forms of these terms a&/T,, and k/k,,, whereT, is the  turesm, on the probed spatial regidnand the temperature
melting temperature ankj, is the main peak position in the regimeT in contrast to scale units,, andT,,, which remain
static structure factdB(k) for the corresponding system. The unchanged and the spatial region and the temperature of the
scale time interval t* can be expressed ag* system are revised.
=k~ 1Jm/KgT. Thus defined time unit* is different from At result, the experimental or theoretic3(k, w) for any
the one introduced in Ref. 14, because the present term vasingle metal allows one to easily restore this term for the
ies with the change of space and temperature characteristioghole group of alkali metals at the same reduced conditions,
However we do not exclude the possibility that this scalek/k,, andT/T,,. Moreover, the theory developed for the con-
unit may be independent of the temperature and the waverete separate alkali metal may be simply extended to the
number for other systemdor instance, semiconductors, or whole group.
H-bonded liquids As an example, in Fig. 3 we report the dynamic structure
In Fig. 2 we report the comparison 8tk,w) spectra for  factor of liquid potassiuns®(k,») obtained on the basis IXS
liquid lithium and sodiur®’ at approximately the same re- data for liquid sodiumSNy(k,w). The transitionSN3(k, w)
duced temperaturég/ T, and wave numbers/k,,. Namely, ——S%(k,w) has been executed by means of the following
T/T,=1.049 for liquid lithium and 1.051 in case of sodium. scale reductions:
From this figure one can see that dynamic structure factor

practically coincides in the first two higher cases. From the WNa  [pKTNa

lower plot of Fig. 2 one can see that the position of inelastic  SK(k, )= SVa(k, ) — [— (273
and central peaks for both systems is the same. However, kK mNeT

though the overall coincidence of spectra is observed at in-

termediate frequencies only, the peak altitudes are a little KK NaTK

different. Such deviation can easily be explained by the fact ~ k_ Na__ m (27b
that the plot for liquid lithium is presented for a higher value KNa NV mKTNe
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S(k,o) (102 ps)

0
1.74

—

FIG. 3. The dynamic structure fact®(k,w) of liquid potassium atT
=354.1K calculated from IXS data of liquid sodium &&390 K by the
scale reduction described in the text.

TKTNa kK kNa
T K (279
Tm km

By the top subscript we note the corresponding sydi€rar
Na).
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