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Relaxation time scales in collective dynamics of liquid alkali metals
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In this paper the investigation of the dynamical processes of liquid alkali metals is executed by
analyzing the time scales of relaxation processes in liquids. The obtained theoretical dynamic
structure factorS(k,v) for the case of liquid lithium is found to be in excellent agreement with the
recently received inelastic x-ray scattering data. The comparison and interrelation with other
theories are given here. Finally, an important part of this paper is the confirmation of the scale
uniformity of the dynamic processes in liquid alkali metals predicted by some previous molecular
dynamic simulation studies. ©2004 American Institute of Physics.@DOI: 10.1063/1.1792155#
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I. INTRODUCTION

The dynamic structure factorS(k,v) is an experimen-
tally measured term, containing information about the p
cesses in a liquid with long- and short-time scales. It can
used to judge the microscopic behavior in a system on
basis of its spectra, obtained by means of inelastic neu
scattering~INS! ~Refs. 1 and 2! or inelastic x-ray scattering
~IXS!.3 As for simple liquids, at present a great amount
experimental data ofS(k,v) have been accumulated, in pa
ticular, for liquid alkali metals. These data indicate legib
the presence of the collective propagation excitations bey
the hydrodynamic region. The characteristic feature of liq
alkali metals is a triple-peak shape ofS(k,v), lasted tok
;0.8km , wherekm corresponds to the first maximum of th
static structure factorS(k). Moreover, the frequency of th
side peak achieves its maximum atk;0.55km . The propa-
gation of these high-frequency waves cannot be obtai
within a hydrodynamic treatment, therefore, they are rela
in some works to the so-called kinetic collective excitatio
The impossibility to describe these microscopic phenom
and, therefore, to reproduce qualitatively the experime
S(k,v) by means of ordinary hydrodynamic equations led
the development of other theoretical models and approac

One of the simplest and perhaps the earliest mode
approaches is the so-called viscoelastic theory. It allows
to obtain the central quasielastic line as well as two inela
peaks symmetrically located aroundv50 for mesoscopic
space-frequency region. However, as shown in Refs. 4 an
this model cannot be used for the exact reproduction of
experimental spectral shapes ofS(k,v) ~see, for instance
the cases of liquid cesium and lithium in Refs. 4 and!.
Therefore, in Ref. 5 the double-scale model for the visc
relaxation process with fast and slow time scales was tes
and as a result a good agreement with the IXS experime
data for the dynamic structure factor was received. Rece
the similar approach was also applied for the description
relaxation processes in H-bonded liquids.6,7 The existence of

a!Electronic mail: mav@theory.kazan-spu.ru
b!Electronic mail: rmy@theory.kazan-spu.ru
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two time scales in this model reflects the presence of ph
cally different decay mechanisms. A faster process is hy
thetically associated with interactions between an atom
the ‘‘cage’’ of its nearest neighbors, and a slower one
identified with the well-known structural~a2! process.
However, relaxations of both processes are approximate
exponential dependencies. In recent works the viscoela
model has been improved by means of the Markovian c
sure on the next relaxation level of Zwanzig-Mori hierarch8

it is equivalent to the exponential relaxation on this level.
is worth mentioning two other methods, one of which
related to the extension of the usual hydrodynamic analyt
expressions by modification of hydrodynamic modes tok
dependence~see, for instance, Ref. 9!. This method assume
the existence of nonhydrodynamical additional modes. T
second approach is related to the so called concept of ge
alized collective modes, which was proposed for the inve
gation of the time correlation functions~TCF’s! beyond the
hydrodynamic region.10 The key idea of this method consis
in the correct choice of the basic set of dynamical variab

All these methods are more or less successfully used
the description of collective dynamics in liquids. They ha
common property. Namely, they are actually constructed
heuristic assumption about the presence of exponential d
~or combination of exponential decay contributions! in some
relaxation processes. Nevertheless, the transition and im
sition of different relaxation modes in disorder systems c
occur even in case of a concrete relaxation process, w
complicates the selection of the analytical time depende
for the corresponding TCF. This fact is proved by the su
cessful application of different mode-coupling theories. O
the other hand, this difficulty can be resolved by means
analysis and comparison of the resulting time scales of
laxation processes. Therefore, in the present work we sug
the approach, which allows us to avoid the immediate
proximation of relaxation processes by analytical functio
It is based on the development of Bogoliubov’s ideas ab
the hierarchy of relaxation times in liquids,11 adapted to the
formalism of time correlation functions.

One of the open problems in studying of liquid state~in
1 © 2004 American Institute of Physics
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particular, of the microdynamics of simple liquids! is to de-
scribe and understand on a general ground the common
tures of different relaxation processes.6 It is well known that
the dispersion of the side~high frequency! peak of dynamic
structure factor is the same for all alkali metals. Moreover
is also valid in case of more complex systems, for exam
for liquid alloys.12 Then the following questions arise: Is th
origin of relaxation processes the same for liquid syste
with similar features? Can the unified description be app
to these systems? As for the group of melting alkalis, it h
been indicated in Ref. 13 that both the equilibrium and
time dependent correlations can be cast in a properly sc
form for all the alkali metals. Further, it was justified byab
initio molecular dynamics studyed in Ref. 13 too. Expe
mental confirmation of this result was impossible over a lo
period particularly because of the difficulties related to
technique of INS due to the deficient precision of the exp
mental data. Recently, due to progress in IXS technique
issue was considered again.14 In this work we present inves
tigations related to the determination of corresponding sc
transitions for liquid systems.

The organization of the paper is as follows. In the fo
lowing section, we describe the theoretical formalism, a
the comparison with the experimental data and other theo
is carried out. The possibility of scale uniformity of dynam
cal processes in the group of liquid alkali metals is analy
and discussed in Sec. III. The scale-crossing relations
also presented here. Finally, we come up with some conc
ing remarks in Sec. IV.

II. THEORETICAL FORMALISM

A. Basic notions

Let us consider the liquid system ofN identical classical
particles of the massm in the volumeV and take the density
fluctuations

W0~k!5
1

AN
(
j 51

N

eik"r j ~1!

as an initial dynamical variable. To construct some set
dynamical variables necessary for the description of the e
lution of the system we use the technique of projection
erators of Zwanzig-Mori.15,16 It is a formal version of the
Gram-Schmidt orthogonalization process, which allows o
to obtain the set oforthogonalvariables,

W~k!5$W0~k!,W1~k!,W2~k!,...,Wj~k!,...%. ~2!

They satisfy the condition̂ Wj* Wl&5d j ,l^uWj u2& and are
connected by the following recurrent relation:17

Wj 11~k!5LWj~k!2V j
2~k!Wj 21~k!,

~3!
j 50,1,2,..., W21~k!50.

Here the characteristic of the correspondingjth relaxation
process, the so-called frequency parameterV j

2(k), appears,
andL is the Liouville operator,

L52 i H (
j 51

N pj¹j

m
2 (

i . j 51

N

¹ju~ j ,i !~¹p
j 2¹p

i !J , ~4!
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with the momentum of thejth particlepj and the pair poten-
tial u( j ,i ). So, if W0(k) is the density fluctuation, then
W1(k) is the longitudinal component of the momentum de
sity and so it goes on.

The TCF’s for the corresponding dynamical variables
given by

M jl ~k,t !5
^Wj* ~k!eiL22

~1!tWl~k!&

^Wj* ~k!Wl~k!&
, j ,l 51,2,... . ~5!

For conveniencenormalizedtime correlation functions are
used here. The time evolution operator of Eq.~5! contains
the reduced Liouville operator,

L22
~ l !5S 12(

j 51

l

P j DLS 12(
j 51

l

P j D , ~6!

defined by the following projection operators:

P j5
Wj~k!&^Wj* ~k!

^uWj~k!u2&
, P jP l5d j ,lP j . ~7!

From the condition of orthogonalization of the dynamic
variables we obtain the initial values for the TCF’s of Eq.~5!

M jl ~k,t50!5H 0 if j Þ l , cross correlations

1 if j 5 l , autocorrelations
. ~8!

These correlation functionsM jl (k,t) are symmetrical inl
and j, i.e.,

M jl ~k,t !5Ml j ~k,t !. ~9!

Autocorrelation functions of Zwanzig-Mori formalism hav
the following property: every autocorrelation function of th
higher orderM j (k,t)5M j j (k,t) is a memory function for
the previous one, i.e.,M j 21(k,t) ~autocorrelation functions
will be marked by one index only in accordance with t
used variable!, and they are interrelated by integro
differential non-Markovian equations of the form:

dMj 21~k,t !

dt
1V j

2~k!E
0

t

dtM j~k,t!M j 21~k,t2t!50.

~10!

Differentiating the first equation of the chain~10!, i.e., j
51, one obtains the generalized Langevin equation:

d2M0~k,t !

dt2
1V1

2~k!M0~k,t !2V1
2~k!V2

2~k!E
0

t

dtE
0

t

dt8

3M2~k,t2t!M1~k,t2t8!M0~k,t8!50. ~11!

One the other hand, these functions describe concrete re
ation processes, the physical meaning of which may be
tablished from direct definitions of TCF’s. For instanc
M0(k,t) describes the dynamics of fluctuations of dens
correlations in the system,M1(k,t) is the TCF of the fluc-
tuations of the longitudinal component of the momentu
density, andM2(k,t) contains the TCF of fluctuations o
energy density. So, these quantities are associated with
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TCF’s of the well-known hydrodynamic ‘‘slow’’ variables
These TCF’s have characteristic time scales, which can
found from

t j~k!5ReE
0

`

dtMj~k,t !5ReM̃ j~k,s50!, ~12!

whereM̃ j (k,s) is the Laplace transform of the correspondi
TCF, i.e.,M̃ j (k,s)5*0

`dte2stM j (k,t) ~Refs. 18–20!.
So, the memory function approach with single initial d

namical variable extracts the whole set, which describes
relaxation processes of the corresponding relaxation lev
In fact, the well-known problem of the choice of a set
variables required for the correct description of the syst
dynamics here is reduced~i! to the search of the number o
variables fora priori known successionW(k), that was ex-
cellently shown by the recurrent relation approach in a wo
of Lee;21,22 and/or ~ii ! to finding the correct closure of th
chain ~10!.

The ratio betweent0(k), t1(k), andt2(k) may be quite
arbitrary. In the hydrodynamic region (k→0,v→0) they
take large values due to the slow changes of the corres
dent variables: densities of mass, momentum, and ene
Further, one can suggest that the relaxation times of the
lowing TCF’s, in comparison with the scales of these th
variables, are comparable, i.e.,t3(k)'t4(k). We emphasize
here that this assumption does not contradict the viscoela
model, which presupposes thatt2(k)@t3(k). Obviously,
this key condition of the viscoelastic theory is just a spec
fre
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case in our approach. Simultaneously, our approach does
deny the presence of the long-lasting time tail ofM2(k,t),
which may be adequately taken into account by the mo
coupling theory.23

Then, taking into account Eq.~12! one can find

M4~k,t !5M3~k,t !1h~k,t !, ~13!

where the ‘‘tail’’ function h(k,t) appears. From the short
time asymptotic of the time autocorrelation functions and
condition of the long-time attenuation of correlation Eq.~13!
yields the following properties ofh(k,t):

lim
t→0

h~k,t !5 lim
t→`

h~k,t !50, ~14!

this function must have at least one crossing with the ti
axis at the intermediate region.24 Equation~13! allows us to
obtain the closure of hierarchy of equations of the form~10!
at the fourth level (j 54) and by means of Laplace transfo
mation to find its exact solution forM̃0(k,iv), particularly,
which is directly related to the experimentally available te
and the dynamic structure factor,S(k,v). The expression for
the resultingS(k,v) is given in Ref. 25 in terms of the firs
four frequency parametersV1

2(k), V2
2(k), V3

2(k), and
V4

2(k) and the Laplace transform of tail function, i.e
h̃(k,iv). In some cases, the regime withh(k,t)→0 may be
realized. It can be observed in some parts of time~frequency!
scale. In this case we find the following expression for t
dynamic structure factor:
S~k,v!5
S~k!

2p
V1

2~k!V2
2~k!V3

2~k!@4V4
2~k!2v2#1/2$V1

4~k!V3
4~k!1v2@V1

4~k!V4
2~k!22V1

2~k!V3
4~k!

2V1
4~k!V3

2~k!12V1
2~k!V2

2~k!V4
2~k!2V1

2~k!V2
2~k!V3

2~k!1V2
4~k!V4

2~k!#1v4@V3
4~k!22V1

2~k!V4
2~k!

12V1
2~k!V3

2~k!22V2
2~k!V4

2~k!1V2
2~k!V3

2~k!#1v6@V4
2~k!2V3

2~k!#%21. ~15!
eri-
ncy
hey
ers

en-

their

ent
e-
This equation is also expressed through the first four
quency parameters, which are directly related to the first
even frequency moments of dynamics structure factor. I
necessary to note that this expression is obtained in the
completely different from the theory of moments.26

B. Comparison with IXS experiment and relationship
with other theoretical approaches

In Fig. 1 we report the dynamic structure factorS(k,v)
of liquid lithium (T5475 K) for some wave numbers calcu
lated from Eq.~15! ~solid line! and obtained from IXS ex-
periment~circles!.14 Being used in theoretical computation
the static structure factorS(k) for both cases was taken from
Ref. 27. The first frequency parameter was directly defin
from its definitionV1

2(k)5KBTk2/mS(k). The second fre-
quency parameterV2

2(k) is related to the fourth frequenc
moment. We found this parameter from the values of
infinite frequency sound velocityc`(k) ~Refs. 5 and 14! by
means of relationc`(k)5AV1

2(k)1V2
2(k)/k. The high-
-
e
is
ay

d

e

order parameters were found by comparison with the exp
ment. Eventually, we have revealed that all the freque
parameters have the similar dispersion. In particular, t
have the first principal maximum at the same wave numb
such as the side peak ofS(k,v), i.e., atk;0.55km , and any
low order parameter is less than the high order one.

We would like to emphasize that the theoreticalS(k,v)
and, in particular, the position of the side peak, is very s
sitive to the magnitude ofV2

2(k). The magnitudes ofV3
2(k)

andV4
2(k) influence the form ofS(k,v). However, it is not

so important to know these parameters separately as
ratio, i.e.,V4

2(k)/V3
2(k).

To compare the theoretical outcome with the experim
we modified it to account for the quantum mechanical d
tailed balance condition according to

Sq~k,v!.
\v/KBT

12e2\v/KBT
S~k,v!, ~16!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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and then broadened it for the finite experimental resolut
effectsR(k,v):5

E R~k,v2v8!Sq~k,v8!dv. ~17!

From Fig. 1 one can see that the above described theore
approach yields a good agreement with IXS data of b
systems.

Now we can execute a more detailed study of the
tained results and compare them with other approaches
usual viscoelastic model, the double-scale viscous mo
and the generalized mode approach. The common featu
these theories is the use of the time autocorrelation func
M jl (k,t) of Eq. ~5! at j 5 l 52. So, the viscoelastic and th
double-viscosity models are based on approximations to
term, andM2(k,t) plays a key role in these theories. As f
our approach, it gives the following form for Laplace tran
form of M2(k,t):

M̃2~k,s!5@s1V3
2~k!M̃3~k,s!#21

5
s1V4

2~k!M̃3~k,s!

s21V4
2~k!M̃3~k,s!s1V3

2~k!
, ~18a!

M̃3~k,s!5
2s1As214V4

2~k!

2V4
2~k!

, ~18b!

which are obtained by Laplace transform of the third a
fourth (j 53,4) equations of the chain~10!.

To pass from the frequency dependence ofM̃2(k,iv) to
the time one, let us consider the low-frequency region
stricted by the value 2V4(k). For convenience we introduc
here a small parameter~at the fixed wave numberk!:

FIG. 1. Dynamic structure factor of liquid lithium at the temperatureT
5475 K. The solid lines are the results of the theoretic model~15!, whereas
the open circles are the IXS data.5 The theoretical lineshapes have be
modified to account for the quantum mechanical detailed balance cond
and broadened for the finite experimental resolution effects as describ
the text. The wave numbersk are given in a reduced form, wherekm is the
main peak position in the static structure factorS(k).
Downloaded 10 Feb 2005 to 137.250.81.48. Redistribution subject to AIP
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, uju!1. ~19!

Taking into account the fact that the found values ofV4
2(k)

for liquid sodium and lithium achieve 1029– 1030s22 for the
low-k region, we span by introducing parameterj the fre-
quency~time! rangev,1015s21 (t.10215s), which is im-
portant for us and is available experimentally.

Expanding the radicand in Eq.~18b! as a series in the
parameterj

A11j511
j

2
2

j2

8
1¯, ~20!

we can rewrite it in the following way:

M̃3~s!52
s

2V4
2

1
1

V4
1

s2

8V4
3
2

s4

32V4
5

1¯. ~21!

By restricting the number of terms in the series~20! @and,
accordingly, in Eq.~21!# we receive from Eq.~18a! the linear
combination of the Lorentz functions

M̃2~k,s!5(
j

Aj~k!

s1t j
21~k!

, j 51, 2, 3, 5,..., ~22!

the number of which will be increased at the increase of
number of terms in the series~20!. The quantitiesAj (k) and
t j (k) are expressed by the relaxation frequenciesV3

2(k) and
V4

2(k). Going over to the time scale by the inverse Lapla
transform28 we obtain

M2~k,t !5(
j

Aj~k!e2t/t j ~k!. ~23!

By restricting the first term of the series~20! only we receive
the simplest model from the first equality of Eq.~18a! with
Eq. ~21!

M2~k,t !5e2t/t~k!, ~24!

which corresponds to the viscoelastic model with the rel
ation timet(k)5V4(k)/V3

2(k), and from the second equa
ity of Eq. ~18a! the double exponential model, i.e., Eq.~23!
at j 52 with the following time relaxation parameters

t1,2~k!5@V4~k!6AV4
2~k!2V3

2~k!#21 ~25!

and the weight factor

A~k!5
V4~k!1AV4

2~k!2V3
2~k!

2AV4
2~k!2V3

2~k!
. ~26!

This case may be related to the double-time visco
model,5,14 two-time exponentialansatz.18,29 In the general
form Eq. ~23! corresponds to the framework of generaliz
collective mode approach30 with the sum of the weighed ex
ponents for the TCFM2(k,t), wheret j

21(k) denote eigen-
values of a generalized dynamic matrix with the eleme
consisting of static correlation functions, and the weight fa
tors Aj (k) are the amplitudes describing the contribution
the corresponding modes.

on
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So, it is obvious that the theory underlying Eq.~15! pre-
scribes such behavior of the second-order memory func
M2(k,t), which may be represented in the form of Eq.~23!
and can be reduced to the above-mentioned models. Eq.~23!
is in fact an expansion ofM2(k,t) into decay channels em
bedded in this function.

III. SCALE UNIFORMITY OF DYNAMICS PROCESSES
IN LIQUID ALKALI METALS

The determination of the scale uniformity of structur
and dynamical features for different groups of liquids is ve
important for the physics of liquid state. On the one hand
allows one to apply the unified theoretical description to
whole group. On the other hand, it allows one to remove
difficulties related to obtaining the experimental data. T
fact is that until recently the microscopic dynamics of liqui
could be experimentally probed by INS only. However, the
were often different problems related to, first, separation
collective and one-particle contributions, and, second, gr
experimental errors~and even with impossibility to obtain
data! for different (k,v) regions. Recent progress in th
technique of IXS has allowed one to clear some of
obstacles.3 Ten years ago the possibility of the unified d
scription of the structural and dynamical properties of diff
ent liquid alkali metals near the melting point was found
the comprehensive molecular dynamics simulation stud13

where the adopted potential model of Price, Singwi, and T
was used, and the scale passage was executed on the
of the potential parameters. The recent sketchy attemp
testing this outcome experimentally has shown
inconsistency.14

In present work we also execute the comparison of
dynamic structure factor spectra of liquid lithium and s
dium. As known from the experimental results, the dynam
structure factorS(k,v) depends strongly on the temperatu
T and the wave numberk. So, one can define the reduce
forms of these terms asT/Tm and k/km , whereTm is the
melting temperature andkm is the main peak position in th
static structure factorS(k) for the corresponding system. Th
scale time interval t* can be expressed ast*
5k21Am/KBT. Thus defined time unitt* is different from
the one introduced in Ref. 14, because the present term
ies with the change of space and temperature characteris
However we do not exclude the possibility that this sc
unit may be independent of the temperature and the w
number for other systems~for instance, semiconductors, o
H-bonded liquids!.

In Fig. 2 we report the comparison ofS(k,v) spectra for
liquid lithium and sodium5,14 at approximately the same re
duced temperaturesT/Tm and wave numbersk/km . Namely,
T/Tm51.049 for liquid lithium and 1.051 in case of sodium
From this figure one can see that dynamic structure fa
practically coincides in the first two higher cases. From
lower plot of Fig. 2 one can see that the position of inelas
and central peaks for both systems is the same. Howe
though the overall coincidence of spectra is observed at
termediate frequencies only, the peak altitudes are a l
different. Such deviation can easily be explained by the f
that the plot for liquid lithium is presented for a higher val
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of the reduced wave number, 0.75, whereas in case of
dium, k/km50.73. As known, these wave numbers corr
spond to the so called de Gennes narrowing region cha
terized by a strongk dependence. In other words, a high
section atk of flat S(k,v)/t* is presented for lithium than
for sodium. It is necessary to take into account that the v
ues of the reduced temperatures for both systems are
slightly different.

Notice that the time unitt* depends on the system fea
turesm, on the probed spatial regionk and the temperature
regimeT in contrast to scale unitskm andTm , which remain
unchanged and the spatial region and the temperature o
system are revised.

At result, the experimental or theoreticalS(k,v) for any
single metal allows one to easily restore this term for
whole group of alkali metals at the same reduced conditio
k/km andT/Tm . Moreover, the theory developed for the co
crete separate alkali metal may be simply extended to
whole group.

As an example, in Fig. 3 we report the dynamic structu
factor of liquid potassiumSK(k,v) obtained on the basis IXS
data for liquid sodiumSNa(k,v). The transitionSNa(k,v)
→SK(k,v) has been executed by means of the followi
scale reductions:

SK~k,v!5SNa~k,v!
kNa

kK
AmKTNa

mNaTK
, ~27a!

vK5vNa
kK

kNa
AmNaTK

mKTNa
, ~27b!

FIG. 2. IXS spectra of liquid lithium atT5475 K ~hhh! and liquid so-
dium atT5390 K ~sss! ~Refs. 5 and 14! in the reduced units. The scal
frequencyv* is chosen as the term inverse proportional tot* .
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TK5
Tm

KTNa

Tm
Na

, kK5
km

KkNa

km
Na

. ~27c!

By the top subscript we note the corresponding system~K or
Na!.

IV. CONCLUDING REMARKS

The following results are presented in this work.
~i! The theory, developed on the basis of Bogoliub

ideas about the hierarchy of relaxation times, allows one
obtain dynamic structure factor, reproducing adequately
perimental IXS spectra for liquid alkali metals~in particular,
for liquid lithium and sodium! in the region of low values of
wave number.

~ii ! The expansion of the second-order memory funct
into exponential decay channels, used~sometimes intu-
itively! in others theories, may be easily obtained within t
framework of the presented approach. This is the evidenc
the multimode character of decay of the observed relaxa
process.

~iii ! An important result of this work is the confirmatio
of the proposition about the unitary description of the d
namical features of liquid alkali metals, and finding of co
responding scale transition relations.
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