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Shot-noise control in ac-driven nanoscale conductors
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We derive within a time-dependent scattering formalism expressions for both the current through ac-driven
nanoscale conductors and its fluctuations. The results for the time-dependent current, its time average, and,
above all, the driven shot-noise properties assume an explicit and serviceable form by relating the propagator
to a non-Hermitian Floquet theory. The driven noise cannot be expressed in terms of transmission probabilities.
The results are valid for a driving of arbitrary strength and frequency. The connections with commonly known
approximation schemes such as the Tien-Gordon approach or a high-frequency approximation are elucidated,
together with a discussion of the corresponding validity regimes. Within this formalism, we study the coherent
suppression of current and noise caused by properly chosen electromagnetic fields.
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I. INTRODUCTION driving opens inelastic transport channels and, therefore, in

The experimental success in the coherent coupling ofontrast to the static case, ad hocinclusion of the Pauli
quantum dots? has enabled measuring the transport properp”nc'ple is no longer unique. This gave rise to a discussion

- . . " H M 8‘39 .
ties of systems with a molecule-like level structure. Recently2P0ut “Pauli blocking factors®3% In order to avoid such

further progress in this direction has been attained by th&oNflicts, one should start out from a many-particle descrip-

reproducible measurement of currents through moleculedon: In this spirit, within a Green's function approach,

which are coupled to metallic leads.Together with these & formal solution for the current through a time-dependent
experimental achievements, new theoretical interest in th§onductor has been presented, e.g., in Refs. 38 and 40 with-

transport properties of such nanoscale systems emé?ged.ﬁllgvgﬁllﬁlezgviﬁnstg?neecg tgg;ﬁgazlgsqgﬁiahggr)éfor }2? c\:ltv)lrr%uc-
One patrticular field of interest is the interplay of the electron P ' €9,

transport and excitations by an oscillating gate voltage tors consisting of a single leét*or for the scattering by a
ANSp ) . y 99 9€, Biecewise constant potentfad? an explicit solution becomes
microwave field, or an infrared laser, respectively. Such ex

L R . “Teasible. Moreover, for large driving frequencies, the driving
citations bear intriguing phenomena such as photon-assisted ., e treated within a self-consistent perturbation

tunneling8-1% and the adiabatlé° and nonadiabatf€—22 theory/3:44
pumping of electrons. The spectral density of the current fluctuations has been
A prominent example for the control of quantum dynam-derived for the low-frequency ac conductatfe® and the
ics is the so-called coherent destruction of tunneling, i.e., th@cattering by a slowly time-dependent potertiaor arbi-
suppression of the tunneling dynamics of a particle in arary driving frequencies, the noise has been characterized by
double-well potentiaf} in a two-level system®> or in a its zero-frequency compone#tA remarkable feature of the
superlattice® Recently, coherent destruction of tunneling current noise in the presence of time-dependent fields is its
has also been found for the dynamics of two interacting elecdependence on the phase of the transmisaioplitudesi®*’
trons in a double quantum dét?® Moreover, it has been By clear contrast, both the noise in the static ésad the
demonstrated that a corresponding transport effect exists: Hurrent in the driven cag®depend solely on transmission
two leads are attached to the ends of a tunneling system, thgmobabilities
a proper driving field can be used to suppress the current Within this work, we derive within a Floquet approach
even in the presence of a large transport voltfddoreover,  explicit expressions for both the current and the noise prop-
in such a system the corresponding shot-noise level can berties of the electron transport through a driven nanoscale
controlled by proper ac field®. Within this work, we pro-  conductor under the influence of time-dependent forces. This
vide more details on this noise control scheme and also exgeneralizes recent approaches since the presented Floquet
plore its limitations. formalism is applicable to arbitrary periodically driven tight-
An intuitive description of the electron transport through binding systems and, in particular, is valid for arbitrary driv-
time-independent mesoscopic systems is provided by thmg strength and, as well, extends beyond the adiabatic re-
Landauer scattering formifaand its various generaliza- gime. The dynamics of the electrons is solved by integrating
tions. Both the average curréhtand the transport noise the Heisenberg equations of motion for the electron creation/
characteristics-34can be expressed in terms of the quantumannihilation operators in terms of the single-particle propa-
transmission coefficients for the respective scattering chargator. For this propagator, in turn, we provide a solution
nels. By contrast, the theory for driven quantum transport isithin a generalized Floquet approach. Such a treatment is
less developed. Scattering of a single particle by an arbitraryalid for effectively noninteracting electrons, i.e., when no
time-dependent potential has been consick®réfwithout  strong correlations occur. Disregarding these interactions
relating the resulting transmissions to a current between ele@lso implies that the displacement currents are not taken into
tron reservoirs. Such a relation is indeed nontrivial since theccount entirely. As a consequence, the ac component of the
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electrical curreninsidethe nanoconductor may deviate from
the particle current®48

This paper is organized as follows. After introducing in
Sec. Il a model for the leads and the conductor under the

hQ2

influence of external fields, we derive in Sec. Ill for a situa- 'z A R
tion with time periodic but otherwise arbitrary driving gen- 1 N gy
eral expressions for the current and its noise and establish a £ (1) 2) 13)

connection to a Floquet eigenvalue equation. In Sec. IV, we
consider some special cases and approximations. Section V
is devoted to the influence of an electromagnetic dipole field
on a conductor consisting of a few tight-binding levels. Situ- FIG. 1. Level structure of a nanoconductor w3 orbitals.
ations with an ac transport voltage are addressed in Appendikhe end sites are coupled to two leads with chemical potentials
A, while in Appendix B, we detail an alternative derivation andug=p_+eV.

which has been introduced in Ref. 30.

Ty(€) =27 Vo ?0e— €) (5)
II. LEAD-WIRE MODEL q

We start out by introducing a model for the central con-of lead ¢, {=L,R. If the lead modes are densE(e) be-
ductor (“wire”) under the influence of an external driving comes a smooth function.
field such as, e.g., a molecular wire subject to laser radiation To fully specify the dynamics, we choose as an initial
or coupled quantum dot$ driven by microwaves or an os- condition for the left/right lead a grand-canonical electron
cillating gate voltage. The conductor is attached by tunnelinggnsemble at temperaturé and electrochemical potential
couplings to external leads. The entire setup of our nanoscalg, , respectively. Thus, the initial density matrix reads
system is described by the time-dependent Hamiltonian

H(t) = Hyire(t) + Hicads™ Heontacts (1) " . .

_ _ whereNy=XC;,C¢q is the number of electrons in leddand
where the different terms correspond to the wire, the leads;T denotes the Boltzmann constant times temperature. An
and the wire-lead couplings, respectively. We focus on theypplied voltageV maps to a chemical potential difference
regime of coherent quantum transport where the main physg. -, =eV with —e being the electron charge. Then, at ini-
ics at work occurs on the wire itself. In doing so, we neglecttjal time t,, the only nontrivial expectation values of the wire
other possible influences originating from driving-inducedgperators read(c!, ,c,o)=f/(€) ¢ ¢S,y Where f (e)=(1

. .. . . p ¢'q’ -9 €\€q/ O ¢ Cqq’ 4
hot electrons in the leads, dissipation on the wire, and+ex;:[(e—m)/kBT])‘1 denotes the Fermi function.
electron-electron interaction effects, as well. Then, the wire In our model Hamiltoniari1), the leads are time indepen-

Hamiltonian in a tight-binding approximation witk orbitals dent. Thus, it seemingly cannot describe ac transport volt-
[n) reads ages. Such a situation, however, can be mapped by a gauge
B + transformation to one with time-independent chemical poten-
Huire(t) = 2 Hon (DC1Cry (2 tials as demonstrated in Appendix A.

nn’

po € (Hieads NL=#RNR)/KgT (6)

For a molecular wire, this constitutes the so-called Huckel lll. SCATTERING APPROACH FOR TIME-DEPENDENT
description where each site corresponds to one atom. The POTENTIALS

fermion operators,, cg annihilate and create, respectively,
an electron in the orbitghy. The influence of an applied ac
field with frequencyQ =27/7 results in a periodic time de-
pendence of the wire Hamiltoniai,,, (t+7)=H,(t). The
leads are modeled by ideal electron gases,

Due to their experimental accessibility, the central quan-
tities in a quantum transport problem are the stationary cur-
rent and the low-frequency part of its noise spectrum. Within
a scattering picture afiondrivenmesoscopic transport, both
gquantities can be expressed in terms of a transmission func-
tion T(E) which reflects the probability that an electron is
transmitted from one lead to the oti¥éDue to energy con-
servation, the reversed process occurs with equal probability.
Wherec[q (C;;q) creates an electron in the stéte)(|Rqg) in This is no _Ionger true for driven systems anq, conseque_zntly,_
the left (right) lead. The tunneling Hamiltonian the scattering approach needs to be generalized. Thus, in this
section, we derive expressions for the currents and its noise
properties for the transport through the time-dependent sys-
tem modeled above. In the so-called wide-band limit, the
more compact derivation presented in Ref. 30 becomes pos-
establishes the contact between the dit¢s|N) and the re-  sible, cf. Appendix B. We will show that the average electri-
spective lead, as sketched in Fig. 1. This tunneling couplingal current contains only transition probabilities and, thus,
is described by the spectral density resembles a scattering formula. In clear contrast to the static

— T T
Hicads= E 6q(CLqCLq + CRqCRq)r (3
q

Hcontacts™ 2 (VLqCchl + VRqueqCN) + H.c. (4)
q
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pends in addition also on the phases of the scattering matrix. F=— (13

two-terminal case, however, we will find that the noise de- g
ell]

A. Charge, current, and their fluctuations — . .
d wherel denotes the time average of the current expectation

To avoid the explicit appearance of commutators in theyalue(l,(t)). Note that in a two-terminal device, the absolute

definition of correlation functions, we perform the derivation gjye of the average current is independent of the corftact
of the central transport quantities in the Heisenberg picture.

As a starting point we choose the operator B. Transition amplitudes

Qe(t) = eNy(t) — eNy(to) (7) In order to take the exclusion principle properly into ac-

count, we have formulated the transport problem under con-
sideration in terms of second quantization. Nevertheless, in
the absence of interactions, both the current and its noise can
be traced back to the solution of the corresponding single-
particle problem. Thus, our next step is to relate the expec-

d tation value and the variance of the charge oper@toto the
le(t) = an(t)- (8) transmission of electrons from one lead to the other. For that

purpose, we start from the Heisenberg equations of motion
The current noise is described by the symmetrized correla-
tion function

that describes the charge accumulated in leadth respect
to the initial state. Due to total charge conservatiQy,
equals the net charge transmitted across the coftaits
time derivative defines the corresponding current

. i i
CLIRg™ ~ 3 €CLRq ™ %VL/Rqu/Na (14

St t') = F{[AI(1), Al(t)].) 9)

of the current fluctuation operatoAl,(t)=1,(t)=(l,(t)),
where the anticommutatdi, B],=AB+BA ensures hermi-
ticity. It can be shown that at long times,(t,t")=S(t
+7,t'+7) shares the time periodicity of the drivirt§. i
Therefore, it is possible to characterize the noise level by the ch=—=> Hpw(cy, n=2,...N-1. (16)
zero-frequency component &(t,t—7) averaged over the h

driving period,

. [ i +
CyN="— 52 Hinn (DCh = %E VirEurg (15
g

n’

For these coupled linear equations, the formal solution

— 17 i
S = }J dtJ drS(t,t— 7). (10 Corgr(t) = > (€'q'|U(t, 1) [€a)ce(to)
0 - €,q
We find below that for two-terminal devices is indepen- + 2 (€'’ |U(t, to)[In)cn(to) (17)
-~ — n

dent of the contact, i.e.,§ ==S.

The evaluation of the zero-frequency noiSedirectly  involves the propagatdd(t,to) of the corresponding single-
from its definition (10) can be tedious due to the explicit particle problem. We insert Eg17) into Eq.(7) and use the
appearance of both tim¢sandt- 7. This inconvenience can initial condition (6) to obtain for the transferred charge at
be circumvented by employing the relation long timesJi.e., in the limitty— —c°, where all transients die

out and, in particular, the second line in E47) becomes

d L . .
d_t[<Q§(t)> —(Q,())] = ZJO drS,(t,t- 1), (11) irrelevani the expectation value
Q) =2 (KLA'[U(tto)| €D = Sy dqq) Fel ).

which follows from the integral representation of Eq%) q'.q.6

and (8), Qg(t)=f{0dt’lf(t’), in the limit ty— —o. By averag- (19)

ing Eq. (11) over the driving period and usin§t,t—7) ) _ ) o

=S(t-7,1), we obtain To symmetrize this expression, we eliminate the backscatter-

ing terms, i.e., the contributions witt=L, by employing the
completeness relation

— d
S= <d—t<AQ§(t)>> : (12)
t 1= [LgXLgl+ X [RRG+ X [nXn|  (19)
q q n

where AQ,=Q,—(Q,) denotes the charge fluctuation opera-
tor and(...); the time average. The fact that the time average
can be evaluated from the IimiS=Iimtoa_meﬁ(t))/(t =PL+Pr+ Pyje, (20)
—to) >0 allows us to interpret the zero-frequency noise as thevhereP,, P, andP,,. denote the projectors onto the states
“charge diffusion coefficient.” As a dimensionless measureof the left lead, the right lead, and the wire, respectively.
for therelative noise strength, we employ the so-called FanoThen, from the time derivative of Eq18), we find for the
factoP9-51 current through the left contact the result
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)y =e> {Wiqr rq(DFR(€q) = Wrq Lq(DFL(eg)} under exchanging < R. Here,U is a shorthand notation for
ad ' ' U(t,to) andf,=1-f,. Taking the time derivative and averag-
ing over the driving period yield
- ez Wn,Lq(t)fL(eq) (21
ng

S=€2 {Weg rofrleq) frleq) + Wig rof(eq) fr(eg)
and mutatis mutandidor the current through the right con- a9’
tact. This expression already obeys the “scattering form”

with the time-dependertransmission +\/\/fqr,|_qu(qu)fL(6q) +W;qr,quR(€qf)fL(Eq)}, (27)
Tore(t,€) = 20h 2, Wergr 4q(D) Sl &) (22)  where we have defined
aq’ q
of electrons with energye from lead ¢ to lead ¢'. At Wy g q= lim <d—t|<€'Q'|UT(t,to)Pg/'U(t,to)|€Q>|2> -
asymptotic times, the transitions from the lead stétp to to==e t
the lead staté¢’'q’) and the wire statén) happen with the (28)
rates

The contributions in Eq(26) which contain the projector
_.d > Puire ON the wire states do not contribute to the zero-
Wergr,qlt) _tanjmd_tW Ut to)lCadl*, (23 frequency noise. This can be demonstrated by inserting for

° the propagator the explicit expressiof@}) and (35) which

d we derive in the following section. Interestingly enough, the
Wi eq(t) = lim d_t|<n|U(t,to)|€Q>|2- (24)  noiseS depends on both the diagonal and the off-diagonal

to==e elements of the projectdd™P,.U. By contrast, the current
The last term in the curreri21) describes a periodic charg- (21) depends only on the diagonal elements of this operator.
ing of the wire stemming from the external driving. With an As a consequence, in the presence of driving it is not pos-
average over one driving period, this contribution vanishesible to express the noise solely by transmission probabili-

and, thus, the dc current reads ties; cf. Eq.(45) below.
I= eE {WLq',quR(fq) _VTRq’,quL(fq)}’ (25) C. Lead elimination
a9’

with Wy ¢q denoting the time average of the ra8). In- The eyaluanon of the rate‘?f’q"fq and_\/\/ﬁ,q,jq involves
terchanging in Eq(25) L andR yields the negative current the matrix elements of the time-evolution operatiit, ty)

1. Thus, as expected from total charge conservation, thWlth the wire and the lead states. In the following, we elimi-

X . L . Rate the lead states and will find expressions for the rates that
average current is, besides its sign, independent of the con-

L ; depend explicitly only on the propagator for the wire elec-
tact at which it is evaluated. We emphaS|_ze that EZIS) trons and the spectral density of the couplings to the leads.
obeys the form of the current formula obtained fostatic

conductor within a scattering formalism. In particular, con- We start from the Schrodinger equation for the propaga-
sistent with Refs. 32 and 38, no “Pauli blocking facto(s” tor, i U(L, 1)/ at=H(U(L, "), where H(1) is the single-

-f,) appear in our derivation. In contrast to a static situation particle Hamiltonian underlying Eq1). Formal integration

T . . with the initial conditionU(t’,t")=1 results in the Dyson
this is in the present context relevant since for a driven sys- .1) y

tem generallyw, qrq # Wrq g SUCh that a contribution pro- equation
portional tof| (e;)fr(e;) would not cancef?39 -
The zero-frequency noisgis conveniently derived from U(tt") = Ug(t,t') - %f dt"Uo(t,t") Heontacl (17,1),
the charge fluctuation with the help of relati¢i®). Express- t
ing the charge fluctuation by the Heisenberg operatbrs (29)

yields for the initial condition(6) after some algebra . _
whereU, denotes the propagator in the absence of the wire-

<AQE(t)>:E{fR(Eq,)f_R(eq)KRq’|UTpLu|Rq>|2 lead coupling. We emphasizg thfat due to the e>§plicit time
dependence of the wire Hamiltonian, the integral in &%)

aq’
_ is not a mere convolution. Using(¢'q’|Uq(t,t")|€q)
+f(eq) fr(€m) (LA |UTP U|RG)[? =801 Sqq XA - €,(t—t) /1], we find for the transition matrix
— - ) elements the relations
+ fL(Eq’)fL(Eq)KLq |U (PR+ Pwire)U|LQ>|
: t
_ i et
+ frl€q) L&) [(RG |UT(Pr+ Py U[LO)| ). (nU(t,to)|€ay = - %V{qu dt’e ' n[u(t,t)n,)
t

(26) ’

By using the completeness relati¢l®), we have achieved a
form which is, besides the appearanceRyf,., symmetric and

(30)
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A ,V f dt’ft/
h t t

0
x&lat’ =M, Ut ,t”)|ne>} :

€'q'|U(t,t)[€q)

_el(er’[ E’[O

5€/€5 ql dt"

0

(31)

where n, denotes the wire site attached to leédi.e., n_
=1 andng=N

At this stage, it is convenient to make use of the time

periodicity of the Hamiltonian?{(t)=H(t+7). This has the
consequendé@ that U(t,t")=U(t+7,t’ +7) and, thus, the re-
tarded Green’s function

Glt,e)=- %—f dre"Ut,t- N =G(t+7T,e) (32
0

can be decomposed into a Fourier serieG(t,e)
=3 e kUGM(¢), with the coefficients
(7, .
GW(e) == f dte“UG(t,e). (33
7)o

Physically, G®¥(e) describes the propagation of an electron

with initial energy e under the absorptiotemission of |K|
photons fork>0 (k<<0). We emphasize that generally all
sidebandd=-«---o contribute to the Green’s functiqi32)
and that, consequently, the summations okeare unre-
stricted.

After making use of Eqs(32) and (33), the transition
amplitudes(30) and(31) become

(nU(tt)]€q) = Ve a0 e n|GW(ey)|ny)
k

(34)
and
o'Vt to)|¢a) = e-“fq"—fq‘o)’ﬁ{ S8y = 2 Verg Vi
gl (eq &gk Q-in)tlhi k
X JEpp—Te (n€,|G( (fq)|n€>}
(35

PHYSICAL REVIEW B 70, 155326(2004)

_ 27
WLq’,Rq: 7|VLq/VRq|22k |G§Lkl\)l(6q)|25(€q’ - Eq - kﬁQ)

(36)

and the corresponding expression ¥gg, 4. We have intro-
duced the notatiorG,, =(n|G|n’). By use of the spectral
density (5), we replace the remaining sums over the lead
states by energy integrals and obtain as our first main result
the dc current

f de{T!(e)fr(e) - TR (OFL(},  (37)

hk__m

where
(e) =T (e + kKhQ)T(e)| G (€)%, (39)
T& (€) =Tr(e+ kAT (6)|GY)(e)2 (39)

denote the transmission probabilities for electrons from the
right lead and from the left lead, respectively with initial
energy e and final energye+k#(}, i.e., the probability for
scattering event under the absorpti@mission of |k| pho-
tons ifk>0 (k<0).

For a static situation, the transmlssmﬁ'éLR(e) and
T(Rkﬂ(e) are identical and contributions witk#0 vanish.
Thus, it is possible to write the curref87) as a product of a
single transmissionT(e) and the difference of the Fermi
functions,fr(€) —f (e). We emphasize that in the driven case
this is no longer true.

2. AC current

Although below we focus on the computation of dc cur-
rents, we here continue the derivation of the transport quan-
tities by presenting explicit expressions for the ac currents.
We restrict ourselves tdl| (t)) since(lg(t)) simply follows
by proper index replacements. Evaluatifig(t)), we con-
sider also the last term in E¢R1) which describes a periodic
charging/discharging of the wire. Apart from the time aver-
age we perform the same steps as in the derivation of the dc
current and obtain

()= E f de{TR(t, ) fr(e) — Trilt,Of ()} — au(t),
(40)

respectively. Since below we restrict ourselves to asymptotitvhere

times, t,— -, we have shifted the lower limit of the inte-
grals accordingly. Moreover, in order to perform ttiante-

gration in Eq.(31), we have introduced a converging factor

e™'/n and will finally consider the limity— 0.

1. Average current

For the further evaluation of the average curr@%), we
insert the transition amplitud®5) into Eq.(23). After taking
the time derivative, averaging over timgand considering
the limit »— 0, we find

i 2
> e GH(e)|f
k

QL(t)—_deFL(é)E L(e) (41

denotes the charge oscillating between the left lead and the
wire. Obviously, sincey (t) is time periodic and bounded, its
time derivative cannot contribute to the average current. The
corresponding charge arising from the right leggt), is a
priori unrelated ta, (t); the actual charge on the wire reads
g.(t)+gg(t). The time-dependent current is determined by
the time-dependent transmission
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T,r(t,€) = Tr(€)RED, e—ikagvk)( 6)[G(1kn;>( al the lead states by energy integrations using the spectral den-
K sity (5).
X | T (e+k'hQ) + I_pf de /# D. Wide-band limit and Floquet theory
T -e-k'nQ)

In order to evaluate the expressionsfmndgfurther, we
(42 . . : ) )
derive an eigenfunction representation for the Green’s func-
The corresponding expression fbg,(t, ) follows from the  tion. It is well known that beyond the adiabatic limit, the
replacementL, 1) — (R,N). Note that in the wide-band limit eigenfunctions of the Hamiltonian are not of particular use—

T'/(e)=T,, €=L,R, the contribution from the principal value ather a proper basis is provided by a Floquet ari¥atz.
integral vanishes. Let us start from the Schrédinger equation for the propa-

gator,

3. Zero-frequency noise d
ihd—t<n|U(t,to)|n’> =D Hyr (UL t)|n"Y,  (46)

In order to obtain the zero-frequency noSeve evaluate "

the rates\/\/?,,q,veq. This step is performed along the lines of
reasoning for the evaluation @,y ¢ (although the actual
calculation is far more tedioysWe insert the transition am- d
plitude (35) into Eq.(28), take the derivative with respect to iﬁa<n€|u(t,to)|n’> =2 Ho,w(O(M'|U(t 1))

t, and average over one driving period. Finally, we employ n”

the relation lim_ 47 (e—a—-in)(e—b+in)(e' —b-in)(e . ,
—atin)] = (277)2357(60 E;])[&(e —b)g(a b) tg performﬂ the +EqV€Q<€q|U(t’t°)|n » 4D
limit »—0 and find

forn=2,... N-1, and

wheren, is defined byn =1 andng=N. To eliminate the

WE _£7 23 +KhQ) lead states in the second line of E47), we insert Eq(30)
RIRa— 4 K and replace by use of the spectral denggythe sum over
) the lead states by an energy integral. Then the last term in
X[GH (&) Gl (e | “8leq — €5 KLY), Eq. (47) becomes
(43) “o del"(e) f dt’e =/ n [U(t,t')|n’). (48)

Within the present context, we are mainly interested in the
influence of the driving field on the conductor and not in the
details of the coupling to the leads. Therefore, we choose for
I'¢(e) a rather generic form by assuming that in the relevant
regime, it is practically energy independent,

X 8(eq — €q— k(D). (44) I'e(e) = T. (49

2T
Wtq’,qu 7|VLq'|2|VRq|22k +k'hQ)

X[GX (g ] GK(€g) — IGE () |

This so-called wide-band limit allows further progress since

we can now perform in Eq48) the remaining energy inte-

gration to obtainz8(t' —ty) and, consequently, E¢47) be-
comes

The corresponding expressions MF andV\/E /L
low from the replacemen(L,1)<—>(R N) Insertmg these

into the noise expressiai27) we arrive at our central result

— & )
S= FE f de{rR<ek)rR(e> 2 T&)GE (&)
k K

d
U IN) = 3 Hy O UL )

<G (T | “fr(e)fr(ed i
- 5F€<ne|u(t,to)|n'>- (50)
KK K
+I'e(e)lu(e) 2, I (&) Gy ([GY ()T Equations(46) and(50), together with the initial conditions
k (n|U(t,t)|n"y=8,, fully determine the propagator. Solving
- iG(l—Nk)(ek) 2fL(E)f_R(6k)} this linear set of equations is equivalent to computing a com-
plete set of solutions for the equation

+ same terms with the replacemehtl1) < (R,N).

d .
5 i |(0) = [Murl) = 131 A0, (5)

We have defineds=e+kh() and replaced the sums over where the self-energy
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I, I'r wise arbitrary driving. Within the wide-band limit, both
3= |1>E<1| + |N>?<N| (52)  quantities can be expressed in terms of the solutions of the
Floquet equation{55), i.e., the solution of a non-Hermitian
results from the coupling to the leads. eigenvalue problem in an extended Hilbert space. Thus, for

Equation (51) is linear and possesses time-dependentlarge systems, the numerical computation of the Floquet
7T-periodic coefficients. Thus, it is possible to construct astates can be rather costly. Moreover, for finite temperatures,
complete solution with the Floquet ansatz the energy integration in the expressi@¢8g) and(45) has to

_ . be performed numerically. Therefore, approximation
= —lielh— ; - ’ .
[a(0) = exil(- i€/~ yatlua(V), (53 schemes which allow a more efficient computation are of
w much practical use.
— ; Before introducing various approximation schemes for the
u,(t) = U, wexp(— ikQt). 54 . : . )
ua(0) 2 UaidexXpl ) (54 wire propagator, we discuss two particular cases for which
) S current and noise assume more intuitive expressions. In do-
The so-called Floquet stat@s,(t)) obey the time periodicity ing so, we define quantities to which we will refer later in
of Hyuire(t) and have been decomposed into a Fourier serieshis section.

In a Hilbert space that is extended by a periodic time coor-
dinate, the so-called Sambe spatéhey obey the Floquet
eigenvalue equatiGA®>®

k=—

A. Static conductor and adiabatic limit

d For consistency, the expressiof3¥) and (45) for the dc
(Hwire(t) —-ix- iﬁ—>|ua(t)) = (e, —ihy,)|u,t)). (55  current and the zero-frequency noise, respectively, must co-
dt incide in the undriven limit with the corresponding expres-
Due to the Brilouin-zone structure of the Floquet Sions of the time-independent scattering the8rphis is in-
spectrun®-54it is sufficient to compute all eigenvalues of deed thg case since the static situation is characterlz_ed by
the first Brillouin zone, #Q/2<e,<#Q/2. Since the op- WO relations: First, in the absence of spin-dependent inter-
erator on the left-hand side of E5) is non-Hermitian, the actions, we have time-reversal Symmew%q',Rq:WRko,Lq’
eigenvaluese,—ifiy, are generally complex valued and the and, second, all sidebands with0 vanish, i.e.,Tjy (e)
(right) eigenvectors are not mutually orthogonal. Thus, to:T(L‘}l(e):ékyoT(e), where
determine the propagator, we need to solve also the adjoint B )
Floquet equation yielding again the same eigenvalues but T(e) =I'(T'r(€)|Gin(e)| (59)
providing the adjoint eigenvectots;(t)). It can be shown andG(e) is the Green’s function in the undriven limit. Then
that the Floquet Statéﬂa(t» together with the adjoint states the current assumes the known form
lu’(t)) form at equal times a complete biorthogonal basis:
(U (D)]ug() =8, e_dea|uq(t)_)<_u;(t)| =1. A proof requires to lo= € f deT()[Fxle) - FL(E)]. (60)
account for the time periodicity of the Floquet states since h
the eigenvalue equatio(b5) holds in a Hilbert space ex-
tended by a periodic time coordinafe3®
Using the Floquet equatio(bb), it is straightforward to ITL(6)Gyy(e) +i[2=1-T(e) (61)
show that with the help of the Floquet statgs(t)) the
propagator can be written as

Moreover in a static situation, the relatféi’

allows us to eliminate the backscattering terms in the second
line of Eq. (45) such that the zero-frequency noise can be

U(t,t") = >, e =70 g yyul(t), (56)  expressed solely in terms of the transmission to ¥ead
a e2 . .
where the sum runs over all Floquet states within one Bril- S= h f de{T(e)[fL(e)f (e) + fr(e)fr(e)]
louin zone. Consequently, the Fourier coefficients of the
Green functior{cf. Eq. (33)] read +T(e)[1-T(e)][fr(e) — fL(e)]?}. (62
. rT o0 . . . .
YL R — _ For zero temperature, the terms in the first line vanish and
G(e) = ﬁfo T fo dre Ut t-7)  (57) pure shot noise remains. In contrast, for zero voltafge,
=f_ and the terms in the first line constitute equilibrium
- + quantum noise. Obviously if both voltage and temperature
-3 S U1 Ui (5g  arezero, not only the current but also the noise vanishes. In
@ Ko €7 (e, +K'BQ —ity,) the presence of driving, this is no longer the case. This be-

comes particularly evident in the high-frequency limit stud-
Inserting them into Eqg37) and(45) yields explicit expres- ied in Sec. IV E.
sions for the current and the noise, respectively. It is known that in the adiabatic limit, i.e., for small driv-
ing frequencies, the numerical solution of the Floquet equa-
IV. LIMITING CASES tion (55) becomes infeasible because a diverging number of
In the preceding section, the dc current and the zerosidebands has to be taken into account. In more mathemati-
frequency noise have been derived for a periodic but othereal terms, Floquet theory has no proper limittas- 0.58 The

155326-7



CAMALET, KOHLER, AND HANGGI PHYSICAL REVIEW B 70, 155326(2004)

practical consequence of this is that for low driving frequen- r r
cies, it is favorable to tackle the transport problem with a :2_;2 1] ool + 2—22 (N[ b 0] (67)
different strategy: 12} is the smallest energy scale of the k K
Hamiltonian(1), one computes for the “frozen” Hamiltonian Since the first-order correction to the Floquet states will con-
at each instance of time the current and the noise from thgibute to neither the current nor the noise, the zeroth-order
static expressiong50) and (62) being followed up by time  contribution|u,(t))=|u’(t))=|$,(1)) is already sufficient for
averaging. the present purpose. Consequently, the transmig8®nas-
sumes the form
B. Infinite voltage

(N[t X Do+l 1)
Many phenomena can be discussed in the limit of very Ti(e=TTr 2 — |(§;kk,:di I;L T
large (practically infinite; subscripte) voltages such thaftg wpi K€ (€a i)
—1 andf_—0 in the relevant energy range. Then, the dc (U pgersid DN
current(37) becomes o —
e~ (eg+ KO- Iﬁyé)

(68)

L= fdeFL(e+ KiQ)Tr(e|GY (92 (63  and Tyl(e) accordingly. The transmissiof68) exhibits for
h™ small values ofl', sharp peaks at energie§+k’ﬁ9 and
_ o _ ey+k'aQ with widths fiy, andfiyj. Therefore, the relevant
In the zero-frequency nois@5), only the contribution with  contributions to the sum come from terms for which the
frf.  remains, thus &:eZEq,,q\Ngq,’Lq:e22q,q,(wRq,,Lq peaks of both factors coincide and, in the absence of degen-
~W[ Lo)- To derive this expression, we again have used th&racies in the quasienergy spectrum, we keep only terms with
completeness relatiof19) and the fact that terms containing a=p, K =K. (69)
the projector on the wires states do not contribute to time
averages. Expressingry 4 and V\I‘fq,’Lq by the Green’s Then, Fhe fraction in Eg(68) is a Lorentzian and can be
functions yields approximated byrd(e-e€2-k'4Q)/%iy. provided thaty?, is
small. Consequently, the energy integration in BBy) can

— — & be performed even for finite temperature and we obtain for
S.=el. - sz" f del’ ()T (e) the dc current the expression
(K'—K) (k") w2 — € 1-‘Lakl-‘Rak' 0 0
X | 2 Trl€)Gl (@GR (91 |7, (69 == ————[fr(e+KHQ) - f (& +khQ)].
o ﬁa’k’k, | R
Where g,=€+kA(). These expressions make explicit that (70
l,>0 and S,<el,. Consequently, for infinite voltage the The coefficients
Fano factor(13) cannot exceed unity. )
FLa= Tl Tio=2 ok, (71)
C. Weak wire-lead coupling “
.In the limit of a vyeak wire-lead coupling, i.e., for cou- FRak:FR|<N|¢a,k>|2’ FRa:E Trok (72)
pling constantd”, which are far lower than all other energy K

scales of the wire Hamiltonian, it is possible to derive within )
a master equation approach a closed expression for the @€note the overlap of thkth sidebandd, ) of the Floguet

current®® The corresponding approximation within the state|¢q(t)> with the first site and the last site of the wire,
present Floquet approach is based on treating the self-energ§spectively. We haVe_Usedi%:FLa*'FRa which follows
contribution 43 in the non-Hermitian Floquet equatighs) ~ fom Eq. (67). Expression(70) has been derived in a prior

as a perturbation. Then, the zeroth order of the Floqueork®® within a rotating-wave approximation of a Floquet
equation master equation approach.

Within the same approximation, we expand the zero-
d 0 frequency noisé45) to lowest order i, After inserting the
Huire(t) = 'ﬁd_t)|¢a(t)> = €,/ ba(1), (65 spectral representati@b8) of the Green’s function, we again
keep only terms with identical Floquet indexand identical
describes the driven wire in the absence of the leads, whefideband index to obtain
| (1) ==, exp(-ikQt)| ¢, are the “usual” Floquet states —
with quasienergies® In the absence of degeneracies the < & FRak’fR(e?z*'k,ﬁQ)
o s=—2 {20 Trafrl(el + ki)

first-order correction to the quasienergies i4y. where h e (et Iro)®
1 (7dt + (T2 + T2 )0 fL (2 + kA Q)}
Ya= f —(Ba(D[Z] (1) (66) be Rl bkt
hlo T + same terms with the replacement> R. (73
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Of particular interest for the comparison to the static situa- — e

tion is the limit of a large applied voltage such that practi- =2 |ak|zﬁ f deT(e—knQ)[fr(e) - fL(e)],  (80)
cally fr=1 andf =0. Then, in Egs(70) and(73), the sums K

over the sideband indicdscan be carried out such that

whereT(e) is the transmission in the absence of the driving.
I‘ILal_‘Roz

— e
I, = gz T +T. (74 This expression allows the interpretation that for homoge-
a “la " Rae neous driving, the Floquet channels contribingependently
2 2 2 to the current. For the special case of a one-site conductor
gﬁ ==> PLalRall'Le * FRa)_ (75) and a sinusoidal driving, this relation to the static situation
he, (T, +TRy3 has been discussed in Refs. 61 and 62.

Addressing the noise properties, we obtain by inserting

These expressions resemble the corresponding expressiops Green’s functiori79) into Eq. (45) the expression

for the transport across static double barrief® If now

' ,=Tg, for all Floquet statesp,(t)), we findF=1/2.This

is in particular the case for systems obeying reflection— €
0 ; S=—> | de

symmetry?® In the presence of such symmetries, however,>~ |, ”

the existence of exact crossings, i.e., degeneracies, limits the

applicability of the weak-coupling approximation. +T,Tx

S & Te—KQ) ‘ (O fale+ KAQ)
k/

> 33 Gin(e~K'iQ)
k!

D. Homogeneous ac driving

In many experimental situations, the driving field actsasa  x[T' G;(e— k'AQ) —i] 2f|_(6)f_R(e+ kA Q)
time-dependent gate voltage, i.e., it merely shifts all on-site

energies of the wire uniformly. Thus, the wire Hamiltonian is
of the form + same terms with the replacemehtl) < (R, N)}.

Huielt) = Ho+ FO X |, (76) -

where, without loss of generality, we restrict) to possess

zero time average. A particular case of such a homogeneo
driving is realized with a system that consists of only one
level 426162 Then trivially, the time and the position depen-

Lthile the term in the first line contains only the static trans-
mission at energies shifted by multiples of the photon ener-
gies, the contribution in the second line cannot be brought

dences of the Floquet states factorize and, therefore, the o such a, convenient form._Thg reason fo_r this is that the
current can be obtained within the formalism introduced bysum overk 'nh'b'ts the application of relatio61). As a
Tien and Gordof. Here, we establish the relation between CONS€dUENCE, In clear contrast to the dC current, '_[he zero-
such a treatment and the present Floquet approach. frequency noise cannot be mt_erpreteq In terms of mqlgpen-
Since the time-dependent part of the Hamiltonian is pro-dent Floquet channels. Only in the limit of large driving
portional to the unity operator, the solution of the FquuetIir\?glu?ng'es’ v(\;e find (tj)elow thatjthe channels become (;ffec-
Equation(55) is, besides a phase factor, given by the eigen- y independent an EQ81) reduces to an expression that
functions|a) of the static operatoto—is, erends only on.the tran§m|53|on in the apsence _of the driv-
ing and the Fourier coefficientg, cf. following section.

luy (1) = e F O]y, (77) Expressions for the dc current and the noise that depend
where(Ho-i%)la)=(e, iy, | anddF(0/ct=rit /. The 2 20 s e P e een
quasienergiete,~i%y,) coincide with the eigenvalues of the . o5 oximation of this approach is the description of a
static eigenvalue problem. Note thit) obeys theZ peri-  ime_gependent chemical potential by an effective electron
odicity of the driving field since the time average tf)  gistribution. While this yields the correct expressi@®) for
vanishes by definition. Thus, the phase factor in the Floquehe dc current, it does not capture the interference terms in
states(77) can be written as a Fourier series, the noise formulg81). This reveals that a Tien-Gordon-like

cFO=S a e ko (78) approach yields the correct dc current while for the noise

" (and other higher-order correlation functigtitsis only valid
in a high-frequency limit.
and, consequently, we firjd, ,) =ae) and the adjoint states  For large voltages wherg =0 andfg=1, the sums over
accordingly. Then, the Green’s functi¢&3) becomes the Fourier coefficients in Eq¢80) and (81) can be evalu-
® ) — * o ated with the help of the sum rulg,.a,,a, x=do Then
G (E)_%ak'+kak'e(6 KR, (79) both the dc current and the zero-frequency noise become
identical to their value in the absence of the driving. This

where G(e) denotes the Green’s function in the absence oineans that for a sufficiently large transport voltage, a time-
the driving field. Inserting Eq(.79) into Eq.(37) and employ-  dependent gate voltage has no influence on the average cur-
ing the sum rulezk,a:(,aqu:ém yield rent and the zero-frequency noise.
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E. High-frequency driving values of the static equatia85) and, consequently, the cor-

Many effects occurring in driven quantum systems, sucHesponding Floquet states read
as coherent destruction of tunnelfigor current and noise ,
control2%3% are most pronounced for large excitation fre- lu(t)) = 2 e Vn)(n|a). (87)
quencies. Thus, it is particularly interesting to derive for the n
present Floquet approach an expansion in terms @b.1/
Thereby, the driven system will be approximated by a stati
system with renormalized parameters. Such a perturbatio
scheme has been developed for two-level systems in Ref. 53 0 =S _ikat
and applied to driven tunneling in bistable syst&hand e = " e T
superlattice® For open quantum systems, the coupling to
the external degrees of freedofe.g., the leads or a heat Thys, (n|u,,)=a,(nla) and the Green's function for the
bath bears additional complications that have been 5°|Veqi1igh-frequéncy driving reads
heuristically in Ref. 44 by replacing the Fermi functions by
effective electron distributions. In the following, we present gk
a rigorous derivation of this approach based on a perturba- nn’
tion theory for the Floquet equatiqbb).

We assume a driving that leaves all off-diagonal matrixyhereGef(¢) denotes the Green’s function corresponding to
elements of the wire Hamiltonian time independent while thehe static Hamiltoniarte; with the self-energys. Finally,
tight-binding levels undergo a position-dependent, timesypstituting e—e+k’4Q and using the sum rule
periodic drivingf ,(t)=f,(t+7) with zero time-average. Then, Ek,ank+k,a; /=60, We obtain
the wire Hamiltonian is of the form ’ k o

The fact that alF,,(t) are7 periodic allows us to write in Eq.
87) the time-dependent phase factor as a Fourier series,

(88)

(6 =2 An sy G (€—KHQ), (89
k!

Hure® = Ho+ = f®lnXn]. (82) =7 f deTe(Hfrer(e) ~ fLe(e}).  (90)

If 2Q) represents the largest energy scale of the problem, Wene effective transmissioﬁ'eﬁ(e):FLFR|G§E(E)|2 is com-

can in the Floguet equatiogss) treat thestatic part of the 1 ;1e from the effective Hamiltoniat86); the electron dis-
Hamiltonian as a perturbation. Correspondingly, the eigeng.ipution is given by

functions of the operatax,f,(t)|n)(n|—i%d/dt determine the

zeroth order Floquet statgs fLet(€) = >, [ag 2fL (e + Kh QD) (91)
e Fnjn), (83) k
We have defined the phase and fg ¢ follows from the replacementl L) — (N, R).
1t In order to derive a high-frequency approximation for the
F.t) = —f dt’f,(t") =Fu(t+7), (84) zero-frequency nois8, we insert the Green’s functio{9)
ilo into Eq. (45 and neglect products of the typ&ef(e

- ff( o1’ ’ :
which is 7 periodic due to the zero time averagefgft). As k()G (e-k'A(2) for k#Kk'. Employing the above sum
a consequence of this periodicity, to zeroth order the quasiefful€ for the Fourier coefficienta,, we obtain for the noise

ergies are zerémod ) and the Floguet spectrum is given the static expressiof62) but with the transmissiofi(e) and
by muliples of the photon energykiQ. Each k the Fermi functionsfr () replaced by the effective trans-

=0,+1,+2,... defines a degenerate subspace of the exmission Tei(€) and the effective distribution functio(®1),
tended Hilbert space. If now( is larger than all other en- respectively. The fact thafi ex(e) is generally not a mere
ergy scales, the first-order correction to the Floquet statekleaviside step function has an intriguing consequence: In
and the quasienergies can be calculated by diagonalizing tiB€e presence of driving, the noise remains finite even if both
perturbation in the subspace definedksy0. Thus, we have Voltage and temperature are zero.

to solve the time-independent eigenvalue equation Two differences between the high-frequency approxima-
_ T tion and the homogeneous driving, cf. Sec. IV D, are worth
(et = i2)|@) = (€, — ifiy,)| ). (85  mentioning: First, the static transmission is now replaced by

an effective transmission which can be considerably influ-
enced by the driving, see below. Second, in genesal
# ay x such thatfg o # f|_o¢. This means that the driving can
. create an effective bias and thereby create a nonadiabatic
dt . e, pump current. By contrast E@80) reveals that a homoge-
(Het)nw = fo ?ean(t)(HO)nn’e F©, (86) neous driving cannot create such a pump current. Moreover,
if all F, are identical as in the case of a homogeneous driv-
Thet integration constitutes the inner product in the Hilberting, the effective Hamiltoniarft ¢ equals the original static
space extended by a periodic time coordir?4fEo first order  Hamiltonian. Then, also the second line of E§1) can be
in 1/Q, the quasienergies.—i%y’ are given by the eigen- written in terms of the static transmissidite).

The time-independent effective Hamiltoni&ty is defined
by the matrix elements of the original static Hamiltoni&g
with the zeroth order Floquet staté&3),
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V. CONDUCTOR DRIVEN BY AN OSCILLATING DIPOLE for quantum dots at helium temperature since in both cases
FIELD thermal electron excitations do not play a significant role.

In this section, we apply the formalism derived in Secs. _ )
[l and IV to study the conduction and noise properties of a A. Current and noise suppression
nanoscale conductor under the influence of an electromag- For a wire described by the Hamiltoni@®2), it has been
netic field. As an elementary model that captures the essefiouncf that a dipole force of the forn@93) suppresses the
tial features of a molecular wifewe employ a tight-binding  transport if the raticA/4() is close to a zero of the Bessel
model composed oN sites as sketched in Fig. 1. Each or- function J, (i.e., the values 2.405.5.520...,8.654. ... ).
bital is coupled to its nearest neighbor by a hopping matrixMoreover, in the vicinity of such suppressions, the shot noise
elementA; thus, the single-particle wire Hamiltonian reads characterized by the Fano fac(dB) assumes two character-
istic minima. These suppression effects are most pronounced

- in the high-frequency regime, i.e., if the energy quditthof
Hire(t) = = AE (Jm}n+ 1|+ n+ 1)(n)) the driving exceed the energ;l/ scéles of the wire. Thus, before

going into a detailed discussion, we start with a qualitative
+ 2 [Eq+ fo(0]In)n], (92)  description of the effect based on the static approximation
n for a high-frequency driving that has been derived in Sec.

IV E.
where E, denote the on-site energies of the tight-binding | et us consider first the limit of a voltage which is so
levels. Within a deOle approximation, the OSCi”a“ng electr0'|arge that in Eq(go), fRef‘f_fL off can be rep|aced by unity_

magnetic field causes the time-dependent level shifts Then, the average current is determined by the effective
Hamiltonian
fa(t) = A cogQt)x, (93)
N-1 N
with x,=(N+1-2n)/2 being the scaled position of sits). Hetr = — Aeir >, (IMY(N+ 1]+ [n+ 1)(n|) + >, Eqln)n|,
Since typical laser frequencies are below the work function n=1 n=1
of a usual metal, we assume that the radiation does not pen- (94)

etrate the leads and that, consequently, the leads stay in ther- . . . o i

mal equilibrium. The energyA denotes the electrical field which has been derived by inserting the drivi(@p) into
amplitude multiplied by the electron charge and the distanc&dS: (84) and (86). Then, obviouslyH. is identical to the
between two neighboring sites. This model describes, aklamiltonian(92) in the absence of the driving field but with
well, an array of coherently coupled quantum dotsinder the tunnel matrix element renormalized according to

the influence of microwave radiation. A — A= Jo(AEQ)A. (95)

The tight-binding parameters andA both depend on the
physical length of the sample. The driving amplitudleés  Since the Bessel functiod, assumes values between 0 and
directly proportional to the length scale and, thus, in smalled, the amplitude of the driving field allows us to switch the
samples, the same physical effects are obtained at highabsolute value of the effective hopping on the witgy,
field strengths. The tunnel matrix elemehtobeys an even between 0 and. Since the transmission of an undriven wire
more sensitive length dependence which results from the fads proportional tolA[?, the effective transmissiofg(e) ac-
that the tunnel probability decreases exponentially with in-quires a factorJ3(A/A€). This renormalization of the hop-
creasing barrier width. This finally causes a length depenping results finally in a current suppressfdri°
dence of the transmission and the electrical current. For the discussion of the shot noise, we employ the Fano

The dipole approximation inherent to the drivi(@B) ne-  factor (13) as a measure. In the limit of large applied volt-
glects the propagation of the electromagnetic field and, thusges, we have to distinguish two limit§) weak wire-lead
is valid only for wavelengths that are much larger than thecoupling I'<Aq4 (i.e., weak with respect to the effective
size of the samplé® This condition is indeed fulfilled for hopping and (ii) strong wire-lead coupling> A. In the
both applications we have in mind: For molecular wires, wefirst case, the tunnel contacts between the lead and the wire
consider frequencies up the optical spectral range, i.e., wavect as “bottlenecks” for the transport. In that sense they form
lengths of the order km and samples that extend over a barriers. Thus qualitatively, we face a double-barrier situa-
few nanometers. Coupled quantum dots typicdafiynave a tion and, consequently, expect the shot noise to exhibit a
distance of less than Am while the coupling matrix ele- Fano factorF~1/23%In the second case, the links between
ment A is of the order of 3QueV which corresponds to a the wire sites act al—1 barriers. Correspondingly, the Fano
wavelength of roughly 1 cm. factor assumes valuds~=1 for N=2 (single barriey and F

We assume that the wire couples equally strong to botk=1/2 for N=3 (double barriex5” At the crossover between
leads; thusI' =I'r=T". An applied transport voltag¥ is  the two limits, the conductor is optimally “barrier free” such
mapped to a symmetric shift of the leads’ chemical potenthat the Fano factor assumes its minimum.
tials, ug=-u_ =eV/2. Moreover, for the evaluation of the dc  In order to be more quantitative, we evaluate the current
current and the zero-frequency noise, we restrict ourselves @nd the zero-frequency noise in more detail thereby consid-
zero temperature. The zero-temperature limit is physicallyering a finite voltage. This requires a closer look at the ef-
well justified for molecular wires at room temperature andfective electron distributior{91); in particular, we have to
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quantify the concept of a “practically infinite” voltage. In a
static situation, the voltage can be replaced by infinity,
fr(e)=1=1-f (e, if all eigenenergies of the wire lie well
inside the rang€u, , ug]. In contrast to the Fermi functions,
the effective electron distributioi91), which is decisive
here, decays over a broad range in multiple steps offdize
Since for our modelT(e) is peaked arouné=0, we re-
place here the effective electron distributions by their values

for =0,
AN-1
fa@= S JZ( ( )),

96
K< ol h Q2 2hQ) 90

for zero temperature. We have inserted the coefficians
=JJAN-1)/2AQ] anday ,=J_JA(N-1)/220] which have
been computed directly from their definitig@8); J, denotes

the kth order Bessel functions of the first kind. The current,
the noise, and the Fano factor are given by the static expres-
sions (60) and (62) with the transmission and the electron
distribution replaced by the corresponding effective quanti-
ties, T and fogr ¢, respectively. Thus, we obtain

I[el/H]

S[e2r /R

S/el

F

0.8

0.6

04

0.2
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— exact

r—= limv_,oo

--- high-frequency approx.

AJRQ

=l (97)

S=A%S, + 2(1 NI, (99)
32

F=\F.+ , (99)

2\

respectively, where the subscriptdenotes the correspond-

ing quantities in the infinite voltage limit,

L=t f deTen(e), (100
— €
S, = F dETeff(E)[l _Teff(f)]: (101)
and szglel. The factor
~ A(N - 1))
A= frar0 = fen©@= 2 Jk( o) (102

reflects the influence of a finite voltag& V) denotes the
largest integer not exceedimgV|/2%). SinceJy(x) =0 for
lk|>x and 2Jix)=1, we find A=1 if K(V)>A(N

FIG. 2. Time-averaged curre(d), zero-frequency nois@), and
Fano facton(c) for a conductor consisting dfi=3 sites with equal
on-site energies,=0, as functions of the driving amplitude The
driving frequency isQA=5A/#, the wire-lead coupling i$'=0.5A,
and the chemical potentials gug=—u =24A. The exact numerical
results(solid lineg are compared to the high-frequency approxima-
tion for finite (dashed and infinite voltagegdash-dottefd

this purpose, we have solved numerically the Floquet equa-
tion (55). With the resulting Floquet states and quasienergies,
we obtained the Green’s functiori58). In the zero-
temperature limit considered here, the Fermi functions in the
expressions for the average curref®7) and the zero-
frequency nois€45) become step functions. The remaining
energy integrals can be performed analytically since the in-
tegrands are rational functions.

1. Intermediate wire-lead coupling

Figure 2 depicts the average current, the zero-frequency
noise, and the corresponding Fano factor for a wire that con-
sists ofN=3 sites with on-site energids,=0 as sketched in
Fig. 1. The driving frequenc$=5A/# lies above all transi-
tion energies of the wire states and the applied voltége
=48A/e is relatively large. This particular value of the volt-
age has been selected to avoid chemical potentials to lie

-1)/24Q. This means that for small driving amplitudes close to multiples ofi(}, i.e., close to the steps of the effec-
A<eV/(N-1), we can consider the voltage as practicallytive electron distribution(96). The wire-lead couplingl’

infinite. With an increasing driving strengtk,decreases and,
thus, the current becomes smaller by a faatdout still ex-
hibits suppressions. By contrast, sinée<1 for all situa-
tions considered hergcf. the remark after Eq(64)], we
find from Eq. (99) that the Fano factor will increase with

smallerX.

B. Numerical results

=0.%A is sufficiently weak, such that in the absence of the
driving, the transport is dominated by resonant tunneling.
Correspondingly, the current is essentially determined by the
hopping ratd’/ 24 of the electrons from the lead to the wire.
The noise exhibits a Fano factbr=1/2 which is the char-
acteristic value for the transport across a double b&iti&r.
With an increasing driving amplitude, the current becomes
smaller until it reaches its minimum when the rafd#()

The qualitative discussion of the current and noise supassumes a zero of the Bessel functignNote that while the
pressions can be corroborated by exact numerical results. Fanalytical treatment within a high-frequency approximation
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FIG. 3. (a) Time-averaged currentsolid line) and zero- FIG. 4. Time-averaged curretd) and Fano factofb) as a func-

frequency nois¢dashed lingas a function of the driving amplitude tion of the driving amplitudeA for a wire withN=2, 3, 4sites and
for the driving frequency)=A/#%. (b) Corresponding Fano factor the wire-lead coupling strengthi=10A. The other parameters are
for the same datgsolid line) and for the driving frequencie®  En=0, Q=5A/%, and ug=—u =25A.

=1.5A/% (broken and =3A/% (dash-dotted All other param-

eters are as in Fig. 2. the current, the Fano factgsolid line in Fig. 3b)] still as-

] o ) ) sumes a maximum with a value closeRe=1/2. Although
predicts a vanishing current, the exact result is still roughlyihe sharp minima close to the current suppressions have van-
1% of the value in the absence of the driving. Close t0 thgsheq, in between the maxima the Fano factor assumes re-
current suppression, the effective tunnel matrix eleni@s markably low valuegF ~0.2). Figure 3b) also reveals that

is much smaller than the wire-lead couplifigand the con- 5644y for( ~ 3A/4, the high-frequency regime is reached.
nections to the central site of the wire form a double barrier.

Consequently, we again find a Fano facko=1/2. At the
crossoverA=1I", the effective barriers vanish and, there-
fore, the Fano factor assumes its minimum. These exact nu- For strong wire-lead coupling, it is possible to choose a
merical results are well reproduced by the expressionsriving frequency that is large with respect to the wire exci-
(97)+99) obtained within a high-frequency approximations tations, but small as compared to the couplifgthus A
for finite voltage. Figure 2 also reveals that for small driving <7Q <T'. Figure 4 depicts the current and the Fano factor in
amplitudes,A<eV/(N-1), the assumption of a practically this limit for wires with a different number of sites. The
infinite voltage yields the correct results. By contrast, forqualitative difference between these cases can be explained
larger driving amplitudesA>eV/(N-1), the Fano factor by the fact that due to the strong coupling, the first and the
can assume valugs>1, i.e., the shot noise becomes evenlast wire sites hybridize with the leads. Then the setup be-
larger than in the static situation. haves similar to a wire wittN-2 sites and a weak wire-lead
As the coupling strengtli is lowered, the distance be- coupling«A?/T. This means that foN=2 the wire acts as
tween a pair of minima of the Fano factor becomes smallepoint contact while foN=3, we qualitatively have resonant
until the minima finally vanis# (not shown. In this limit, transport through a single level. In both cases no tunneling
the current and the noise are given by the weak-couplingnatrix element of the wire that could be renormalized re-
results(74) and (75), respectively. The corresponding Fano mains and, consequently, fof<3 the current suppressions
factor F=1/2 [cf. the discussion after E¢75)] is indepen- vanish in the strong-coupling limficf. Fig. 4@)]. This sce-
dent of the driving amplitude. nario is also reflected in the behavior of the Fano fafftdg.
Figure 3a) depicts the behavior for a driving frequency 4(b)] which exhibits the characteristic valués=1 (point
which is of the order of the wire excitation®=A/%. Then, contacj for N=2 andF~=1/2 (single resonant levelfor N
the high-frequency approximation is no longer applicable=3. Finally, for N=4 we observe the behavior of a driven
Nevertheless, the average current exhibits clear minima witvire with two sites and weak couplirfd.Then, a vanishing
a reduction of the order 50%. Compared to the high-effective hoppingA.;=0 corresponds to a point contact;
frequency case, these minima are shifted towards smalléhusF =~ 1. Although the behavior of the Fano factor can be
driving amplitudes, i.e., they occur for rati@g#() slightly  explained by drawing analogies to a weakly coupled wire
below the zeros of the Bessel functidpn At the minima of ~ with N-2 sites, the global decay of the current with the

2. Strong wire-lead coupling
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T T T T T T VI. CONCLUSIONS

We have derived with Eq$37)—«40) and(45) expressions
for the dc current, the zero-frequency noise, and the time-
dependent current for the electron transport through ac-
driven nanoscale systems. A cornerstone of our approach is
the relation of the propagator to a non-Hermitian Floquet
equation. This yields explicit formulas for the current and the
noise. Moreover, the connection to Floquet theory allows us
to elucidate various approximation schemes that enable an
efficient computation and, in addition, provide physical in-
sight. Above all, a high-frequency approximation has
emerged to be very useful: Within an expansion if)1the
driven transport problem can be approximated by a time-
independent transport problem with a renormalized tunneling
and effective distribution functions for the lead electrons.
The conductance properties of the latter can be derived with
standard methods. Moreover, for the case of a time-
dependent gating voltage, we have revealed the limitations of
the Tien-Gordon approach: While such a treatment provides
AR the correct expression for the current, it neglects interfer-
ences of different Floquet channels.

FIG. 5. Time-averaged curred) and Fano factofb) as a func- A detailed investigation of the recently found shot-noise
tion of the driving amplitudeA for a wire with N=3 sites in the ~ Suppression provided a deeper understanding of this effect.
presence of an internal bias. The on-site energieEard, E,=0,  In particular, the analytical treatment within a high-
Es=-b. All other parameters are as in Fig. 2. frequency approximation can explain the characteristic emer-
gence of the current suppressions which are accompanied by
a noise maximum and two remarkably low minima. A nu-
merical study fully confirmed the analytical results. For
lower driving frequencies, i.e., beyond the high-frequency
limit, the current suppressions become considerably less pro-
nounced. By contrast, the shot-noise suppression turned out

So far, we have assumed that all on-site energies of thi#® be more stable. Thus, since the current stays remarkably
wire are identical. In an experimental setup, however, thdarge while the noise is controllable, this regime is particu-
applied transport voltage acts also as a static dipole forclarly promising for applications. At first sight, in the limit of
which rearranges the charge distribution in the conductor angtrong wire-lead coupling these phenomena appear quite dif-
thereby causes an internal potential pro‘?ﬂ'éll The self- ferent. A closer look, however, revealed that the strong cou-
consistent treatment of such effects is, in particular in thepling entails a hybridization of the first and the last sites with
time-dependent case, rather ambitious and beyond the scope respective lead. Therefore, the wire behaves qualitatively
of this work. Thus, here we only derive the consequences dfke a weakly coupled wire with two sites less. Moreover, we
a static bias without determining its shape from microscopidiave found that the noise suppressions are quite sensitive to
considerations. We assume a position-dependent static shif internal bias. Once the on-site energies of neighboring
of the on-site energies by an enerdyxs, i.e., for a wire with sites have differences of the order of the wire-lead coupling
N=3 sites, energy, the minima of the Fano factor vanish. A most inter-

esting application of these results is the development of cur-
E,=b, E,=0, E,=-bh. (103  entsources with a controllable noise level.

[[el'/h]

driving amplitude, cf. Fig. @), is not within the scope of
this intuitive picture.

3. Internal bias

Figure %a) demonstrates that the behavior of the average ACKNOWLEDGMENTS

current is fairly stable against the bias. In particular, we still  Wwe thank Gert-Ludwig Ingold, Jérg Lehmann, and
find pronounced current suppressions. Note that simce Michael Strass for helpful discussions. This work was sup-
< a high-frequency approximation is still possible. As aported by the Volkswagen-Stiftung under Grant No. /77 217,
main effect of the bias, we find reduced current maXim&he European Community program IHP under Contract No.

while the minima remain. By contrast, the minima of the HPMF-CT-2001-01416(S.C), and the DFG Sonderfors-
Fano factor[Fig. ¥b)] become washed out: Once the biaschungsbereich 486.

becomes of the order of the wire-lead couplithgs I, the

structure in the Fano factor vanishes and we firrel1/2 for

all driving amplitudesA<eV/(N-1) [cf. the discussion after

Eqg. (102)]. Interestingly, the value of the Fano factor at cur-  Within this work, we focus on models where the driving
rent suppressions is bias independent. enters solely by means of time-dependent matrix elements of

APPENDIX A: AC TRANSPORT VOLTAGE
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the wire Hamiltonian while the leads and the wire-lead cou-here also from the Heisenberg equatiqtd)—16) for the

plings remain time independent. Anpriori different type of  annihilation operators. The ones for the lead operators, Eq.

driving is the application of a time-dependent transport volt-(14), are easily integrated to read

age. In this appendix, we demonstrate that a setup with an

oscillating transport voltage can be mapped by a gauge trans-

formation to a Hamiltonian of the forrfl). Consequently, it

is possible to apply the formalism derived in Sec. Il also to

situations with an oscillating transport voltage. (B1)
We restrict the discussion to the case where the electron . . . .

energies of only the left lead are modified by an externaPNd Crq(t) accordingly. Inserting Eq(B1) into the Heisen-

T-periodic voltageV,(t) with zero time average; thus in the PE€rg equationgld) for the wire operators yields

left lead

_ iv,. [t .
CLq(t) - CLq(to)e—leq(t—to)/h _ ff dre"qu’ﬁcl(t -7
0

. _ | FL/R
€q— €~ EVadl). (A1) Cun="— ﬁ% Hannr (DG = o CNt &url(),

The generalization to a situation where also the levels in the

right lead are7-periodically time dependent is straightfor- i

ward. Since an externally applied voltage causes a potential Ch=- - Hoy(DCy, N=2,...N-1. (B2)
drop along the wiré®>’1we have to assume for consistency h

that for an ac voltage, the wire Hamiltonian also obeys a

time dependence. Ignoring such a time-dependent potenti@wing to the wide-band limit, the dissipative terms
profile enables a treatment of the transport problem withirare memory free. Within the chosen grand-canonical
the approach of Refs. 63 and 64. In the general case, hovensembles the operator-valued Gaussian nogét)
ever, we have to resort to the approach put forward with this=—(i/%) 2,V e" " 0/ic o (to) obeys

work.

We start out by a gauge transformation of the Hamiltonian (&@)y=0, (B3)
(1) with the unitary operator
— i t t r -
Uadt) = exp{ I¢(t)(0101 +Eq CLqCLQ)}' (A2) () = 55,62—77;’12 J ded < (¢).  (B4)
where

The current operator then assumes the form

t

e
P(t) =- —f dt’ Vpd{t') (A3) e

A ’ L0 =, Tieive® - eei0& 1) + e} (B5)
describes the phase accumulated from the oscillating voltage.
The transformatiorfA2) has been constructed such that the
new HamiltonianH(t)=U] H(t)U,—i2U! U,. possesses a
time-independent tunnel coupling. Since, the operatpr
transforms asc;—c.exgd-i¢(t)], the matrix elements
H,(t) of the wire Hamiltonian acquire an additional time
dependence,

The homogeneous set of equations that corresponds to Eq.
(B2) coincides with the equations of motion Eqg6) and
(50), which are solved by the Floquet statag(t)). Thus, the
Floquet statesu,(t)) together with the adjoint statés](t))
allow us to write the solution of EqB2) in closed form. In
the asymptotic limitty— —, it reads

Hnn’(t) - ﬁnn’(t) = Hnn’ (t)e_i(/)(t)(ﬁnll_ ) + evac(t) 5n15n’1- Cn(t) = fx dT<n|U(t,t - T){|1>§L(t - T) + |N>§R(t - T)},
(A4) °

The second term in the Hamiltonia@A4) stems from

-iU! U, Owing to the zero time average of the voltage whereU(t,t-7) is the propagatof56) for the wire electrons.
Vad1), the phase¢(t) is 7 periodic. Therefore, the trans- To obtain the curren€l (t)), we insert the operataiB6)
formed wire Hamiltonian is als@ periodic while the contact into the expressiof40) and use the expectation valu@st).
and the lead contributions are time independent; Eﬁlag, is  With the Green'’s functio32), we find the still unsymmetric

(B6)

of form (1). expression
el’
APPENDIX B: ALTERNATIVE DERIVATION ()= ﬁ J de{T'[Gya(t, O)*fL(e) + TRIGn(t, €)fr(e)
In Ref. 30, the expression87) and (45) for the current +i[Gy4(t,€) = Gy(t, ) (e)}. (B7)

and the noise in the wide-band limit have been derived by
eliminating the leads in favor of a stochastic operator. In thif=or a symmetrization, we eliminate the backscattering terms,
appendix, we detail this approach. Like in Sec. I, we starti.e., terms containings,;, by use of the relatiof
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+ od 4 the matrix element(1|...|]1), we obtain from Eq.(B7)
G (t’E)_G(t'e):'ﬁaG (t,)G(t, ) + 2iG (t,€)2Gl(t,€), for the time-dependent current the symmetric expression
(40).
(B8)

To derive an expression for the zero-frequency noise, we
which follows readily from the Floquet representati(g6)  insert the operatafB6) into the definition(9) of the current-

of the propagator and the Floquet eigenvalue equaiGn  current correlation function and integrate over the times
together with its adjoint. A subsequent Fourier transformaandt. Again, we employ the relatioB8) to bring Sinto the
tion with respect tor=t-t’ yields Eq.(B8). By inserting symmetric form(45).
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