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A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In
particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic
equation is applied to studyanalytically directed quantum transport at strong friction in arbitrarily shaped
ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum
tunneling and quantum reflection these quantum corrections can induce both, a sizable enhancement or a
suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such
quantum fluctuations.
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I. INTRODUCTION

Brownian motors are small physical machines that oper-
ate far from thermal equilibrium by extracting energy fluc-
tuations to generate work against external loads[1,2]. They
present the physical analog of biomolecular motors that di-
rect intracellular transport and control motion and sensation
in cells [3]. In contrast to these molecular biomotors, how-
ever, the molecular sized physical engines necessitate—
depending on the nature of particles to be transported and
their operating temperature—a description that accounts as
well for quantum features such as tunneling and quantum
reflection. For this class of quantum Brownian motors, recent
theoretical studies[4,5] have predicted that the transport be-
comes distinctly modified as compared to its classical coun-
terpart. In particular, innate quantum effects such as tunnel-
ing induced current reversals, power-law-like quantum
diffusion transport laws, and quantum Brownian heat engines
have been observed with recent, guiding experiments that
involve either arrays of asymmetric quantum dots[6] or cell
arrays composed of different Josephson junctions[7].

The present field of classical Brownian motors is very
well established[1–3]. In contrast, this is not the case in the
quantum regime. It is mainly due to the mutual interplay of
quantum mechanics, dissipation, and nonequilibrium driving
that the theoretical description of such nonequilibrium, dis-
sipative quantum Brownian motor devices is notoriously dif-
ficult. The present state of the art of the theory is character-
ized by specific restrictions such as, e.g., an adiabatic driving
regime, a tight binding description, a semiclassical analysis,
or combinations thereof[4,5]. As such, the study of quantum
Brownian motors is far from being complete and there exists
an urgent need of further developments. The analytic study
of quantum Brownian transport forarbitrarily shapedspa-
tially periodic ratchet potentials presents such a challenge.
This goal is addressed here within the strong friction regime,
where the underlying quantum dynamics can be modeled by
a recently put forward, ingenious quantum generalization of
Smoluchowski dynamics[8].

Classically, a system coupled to a thermal bath at tem-
peratureT is described in terms of Langevin equations or
corresponding Fokker-Planck equations[9]. For a Brownian

particle this yields the Kramers equation which in the strong
friction limit reduces to the Smoluchowski equation. In
quantum statistical physics the description of Brownian mo-
tion dynamics is distinctly more intricate; it has been worked
out, however, in some detail within limited generality using,
e.g., the assumption of a linear bath dynamics or a weak
coupling limit. For the latter case, quantum master equations,
e.g., of Lindblad form, have been derived[10,11].

II. QUANTUM SMOLUCHOWSKI DYNAMICS

Recent work within the strong friction limit shows that
quantum Brownian motion can be described by a generalized
Smoluchowski equation that accounts for leading quantum
corrections[8,12]. For a particle of massM moving in the
potentialVsxd, Ankerholdet al. proposed a quantum Smolu-
chowski equation(QSE) for the diagonal part of the density
operatorrstd, i.e., the rate of change of the probability den-
sity Psx,td=kxurstduxl in position spacex assumes the form
[8]

gM
]

] t
Psx,td =

]

] x
Veff8 sxdPsx,td +

]2

] x2DeffsxdPsx,td, s1d

whereg denotes friction. The effective potential reads

Veffsxd = Vsxd + s1/2dlV9sxd, s2d

wherein the prime denotes the derivative with respect to the
coordinatex. The prominent parameter

l = s"/pMgdlns"bg/2pd, b = 1/kBT, s3d

describes quantum fluctuations in position space andkB is the
Boltzmann constant. The effective diffusion coefficient reads
[8]

Deffsxd = DAnksxd = b−1f1 + lbV9sxdg. s4d

Note that Eq.(1) is valid wheneverkBT!"g.
This so-derived quantum-Smoluchowski equation exhib-
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its, however, a disturbing short-coming: In clear contradic-
tion to the validity of the second law of thermodynamics, Eq.
(1) yields for an arbitrary,asymmetricperiodic ratchet poten-
tial Vsxd of periodL at zero-external bias anon-zero, station-
ary average velocitykvl=JL (or equivalently, a nonvanishing
probability currentJ). This is so because the expression for
the current reads

kvl =
L

gM

1 − expfCsLdg

E
0

L

dxDAnk
−1 sxdexpf− CsxdgE

x

x+L

du expfCsudg
,

s5d

whereCsxd=e0
xduVeff8 sud /DAnksud upon inspection is nonpe-

riodic with CsLdÞ0. Thus a finite stationary drift emerges;
i.e., a Maxwell demon seemingly is at work at stationary,
thermal equilibrium.

III. DEMON-FREE QUANTUM-SMOLUCHOWSKI
DYNAMICS

Next, we put forward a clear-cut modification of the
above quantum-Smoluchowski equation which does not
cause such a fake perpetual motion phenomenon. First, we
observe from theory[8] that theleadingstrong friction quan-
tum correction involves the second order derivative of the
potentialVsxd, see Eq.(4). Following prior works[8,12] we
shall consistently neglect(in the high friction limit) higher
order contributions inl, which in fact would involve also
higher order derivatives of the potential. This new, modified
quantum Smoluchowski equation(MQSE) is derived from
the following set of construction criteria: We seek a new
diffusion coefficient that(i) in leading order reproduces the
previous result in Refs.[8,12], and (ii ) does not exhibit a
Maxwell demon behavior, i.e., the modified dynamics yields
in thermal equilibrium a vanishing probability current, and
additionally, (iii ) the dynamics reproduces the correct ther-
mal quantum position probability for strong friction[13].
The construction criterion(ii ) of zero flux together with the
correct leading order result for the thermal position probabil-
ity in (iii ) then fixes the form of the diffusion function
FfV9sxdg=a−1f1−bV9sxdg−1 uniquely. The two constantsa
andb read explicitlya=b andb=lb.

Upon an expansion ofFfV9sxdg into a series inl the two
diffusion functions do coincide in first order with respect to
the quantityesxd= ulbV9sxdu,1, as required by the condition
in (i). Therefore this improved modified quantum-
Smoluchowski equation(1) is given by a modified diffusion,
reading

Deffsxd = Dmodsxd = b−1f1 − lbV9sxdg−1. s6d

Note that from a mathematical viewpoint our thermal MQSE
dynamics assumes the form of a Padé-like, nonperturbative
result in place of Eq. (4). The thermal quantum-
Smoluchowski stochastic dynamics in this strong friction
limit is thus equivalent to classical Brownian dynamics
within the effective potential(2) and the new, state-

dependent diffusion coefficient given in Eq.(6). The corre-
sponding(MQSE) Langevin equation reads in the Ito repre-
sentation[10]

gMẋ = − Veff8 sxd + Î2gMDmodsxd jstd, s7d

where the dot denotes the time derivative andjstd is (classi-
cal) Gaussian white noise of vanishing mean and correlation
kjstdjssdl=dst−sd. The above scheme is close in spirit with
the approximation method of colored noise driven dynamics
in terms of corresponding effective Markovian processes
[14].

IV. QUANTUM BROWNIAN MOTOR TRANSPORT

A finite transport emerges when the system operates far
from thermal equilibrium[2]. In the present context, we in-
vestigate overdamped, quantum Brownian motors[4,5] with
the quantum fluctuations characterized by the parameterl in
Eq. (3). To this aim, we complement the thermal quantum
dynamics in Eq.(7) with a slowly waggling nonthermal, de-
terministic, or random forcehstd, i.e.,

gMẋ = − Veff8 sxd + Î2gMDmodsxdjstd + hstd. s8d

In dimensionless form we then obtain

ẏ = − Weff8 syd + Î2Dmodsydĵssd + ĥssd, s9d

where the position of the Brownian motor is scaled asy
=x/L, time is rescaled ass= t /t0, with the characteristic time
scale readingt0=MgL2/DV [the barrier heightDV is the
difference between the maximal and minimal values of
Vsxd]. During this time span, a classical, overdamped particle
moves a distance of lengthL under the influence of the con-
stant forceDV/L. The effective potential isWeffsyd=Wsyd
+s1/2dl0W9syd, where the rescaled potentialWsyd
=Vsxd /DV=Wsy+1d possesses a unit period and a unit bar-
rier height. The dimensionless parameterl0=l /L2 describes
quantum fluctuations over the characteristic lengthL. For
example, the valuel0=0.01 means that, roughly speaking,
the difference between quantum and classical fluctuations of
the position of the Brownian particle is significant over dis-
tances of the orderÎl0L=0.1L. The rescaled diffusion func-
tion Dmodsyd reads

Dmodsyd = b0
−1f1 − l0b0W9sydg−1. s10d

The dimensionless, inverse temperatureb0=DV/kBT is a
ratio of the activation energy in the nonscaled potential and
the thermal energy. The rescaled Gaussian white noise is

ĵssd=sL /DVdjstd and the rescaled, nonthermal force reads
ĥssd=sL /DVdhstd.

As a specific realization, we next consider nonthermal
fluctuations modeled by Markovian, two-state noise,ĥssd
=h−a,aj, that switches with a raten between the levelsa and
−a. This problem can be solved analytically in the adiabatic
limit, i.e., if n→0. In this limit the stationary averaged di-
mensionless velocity readskẏl=J=s1/2dfJsad+Js−adg,
where
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Jsad =
1 − exps− b0ad

E
0

1

dy Dmod
−1 sydexpf-b0Csy,adg E

y

y+1

dz expfb0Csz,adg
s11d

and

Csy,ad = Wsyd + s1/2dl0W9syd − s1/2dl0b0fW8sydg2

− s1/4dl0
2b0fW9sydg2 + al0b0W8syd − ay. s12d

Its classical behavior, i.e.,l0=0, has been studied in Ref.
[15].

The influence of the quantum corrections is presented in
Figs. 1–4. The role of quantum noise enters via two func-
tions: The effective potentialWeffsyd and the effective diffu-
sion functionDmodsyd. The quantum correction to the poten-
tial depends logarithmically weakly on temperature. The
crucial correction stems from the diffusion which increases
as the temperature decreases. The prominent quantum effects
appear for lower temperatures. In Figs. 1–4, we take for the
rescaled quantum fluctuations a parameter value ofl0
=10−4 lns103b0d. This choice assures that the quantum
Smoluchowski regime is fully valid down to low tempera-
tures of the orderb0<10. In Fig. 1 we depict the current vs
the dichotomic noise levela. We deduce that the quantum
corrections reduce the absolute value of the current(the
maximal absolute quantum correction is
ul0b0W9sydu=0.202). Note that the current value approaches
zero for a vanishing noise amplitudea→0 (solid line) and,
as well, for very large amplitudea→`. The modification of
the diffusion coefficient turns out to be essential for small

amplitudesa of the nonequilibrium two-state noise; this re-
gime describes the nearequilibrium behavior with the di-
rected current approaching zero. In clear contrast, the use of
the conventional quantum Smoluchowski equation(QSE) in
Eq. (4) (dotted) yields a nonphysical,(although small) posi-
tive current value. It should be pointed out, however, that far
away from equilibrium (for a.0.5) the two forms of
quantum-Smoluchowski dynamics yield practically identical
results.

The analytic expression for the current allows one to
study arbitrarily shaped ratchet profiles. As examples we
consider different cases from the family of more complex
shaped asymmetric periodic potentials

Wsyd = W0hsins2pyd + 0.4 sinf4psy − 0.45dg

+ b sinf6psy − 0.45dgj, s13d

whereb is a shape parameter andW0 is chosen such that the
barrier height is normalized to unity. This ratchet potential
exhibits an intriguing current reversal vs the noise amplitude
a. The maximal absolute quantum correction is
ul0b0W9sydu=0.06. There occur two regimes: one regime of
small noise levelsa for which the amplitude of the quantum
current is enhanced and one at larger noise amplitudes where
the classical current exceeds its quantum counterpart. A most
salient intermediate regime occurs for which theclassical
current is positive while the quantum current remains nega-
tive. The point of the physically relevant quantum current
reversal is shifted towards larger noise levels. Use of the

FIG. 1. Stationary velocitykẏl vs the two-state noise amplitude
a for both a strongly damped quantum Brownian motor(solid line)
and its classical counterpart(dashed line) is depicted for the poten-
tial (see the right inset) of unit barrier height, Wsyd=
−W0fsins2pyd+0.25 sins4pydg, with W0<0.454. The theory(dot-
ted line) in Ref. [8] yields a nonphysical(although small) quantum-
Maxwell demon behavior at small noise amplitudesa (see the left
inset); further away from equilibriumsa.0.5d the QSE and the
MQSE predictions practically coincide within line thickness. The
chosen dimensionless inverse temperature isb0=5.

FIG. 2. The dependence of the stationary currentkẏl vs the
two-state noise levela is depicted for the potential(13) with b
=0.3 (inset) for the modified quantum-Smoluchowski(MQSE)
theory(solid line), the conventional quantum-Smoluchowski(QSE)
theory (dotted), and the classical case(dashed line), respectively,
for an inverse dimensionless temperatureb0=2. Note that the maxi-
mal absolute correction is actually rather small:ul0b0W9sydu=0.06
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quantum-Smoluchowski diffusion theory of Refs.[8,12]
yields a fake, positive-valued current at small dichotomic
noise strength(dotted line), being accompanied by a non-
physical (!) current reversal, see Fig. 2. We find again that
the expected convergence between the two theories occurs
far away from thermal equilibrium.

In Figs. 3 and 4 we elucidate the role of temperature.
Equation(10) shows that the quantum corrections increase
monotonically as temperature decreases. We must refrain,
however, from analyzing the limit of extreme low tempera-
ture. This is so because the quantum corrections then grow
too large, causing the diffusion to pass from positive to non-
physical, negative values upon exceeding the threshold value
1; clearly, the strong friction quantum theory is valid only
below this threshold. In fact, for correction values close to
threshold, the nondiagonal, density matrix elements assume
nonzero decoherence values that can no longer be neglected
with the quantum-Smoluchowski theory. Figures 3 and 4 de-
pict these increasing quantum corrections with decreasing
temperature for two different potentials and different di-
chotomic noise levels. For the potential(13) with b=0.3, see
the inset in Fig. 2, for large temperatures both the classical
current and the quantum current are negative. With decreas-
ing temperature the interplay between reflection and tunnel-
ing causes a larger(in absolute value) quantum current; upon
crossing the point of classical current reversal this behavior
is interchanged. At even lower temperatures quantum correc-
tions cause a smaller current value. The conventional and the
modified quantum theories yield similar results, see Fig. 3.
For the potential(13) with b=0.62, see the inset in Fig. 4,
and for the dichotomic noise levela=1, there is no classical
current reversal. For very large temperatures the quantum
current agrees with the classical one and, with decreasing
temperature, first increases and then changes the direction,
see the upper inset in Fig. 4. The conventional theory com-
pletely misses these particular quantum features and predicts
a similar current as the classical Smoluchowski equation
does, see Fig. 4.

V. CONCLUSIONS

By use of a distinct modification of quantum-
Smoluchowski theory we have developed a strong friction
quantum approximation that is in agreement with both ther-
mal equilibrium statistics and—above all—with the second
law of thermodynamics. This so obtained, modified quantum
theory can be applied to far from equilibrium transport where
it facilitates closed form expressions(in terms of quadra-
tures) for directed, quantum Brownian motor transport. Our
tractable results hold true away from the semiclassical limit
and, additionally, can readily be applied to experimentally,
arbitrarily shaped ratchet profiles. Note that this presents an
important advance over prior studies of quantum ratchets
[4,5] that often require the use of manageable, stylized po-
tential forms. Our investigation additionally manifests a rich
spectrum of quantum Brownian motor behaviors, exhibiting
both quantum induced enhancement and suppression of
transport, as well as shifted current reversals.

These novel features can advantageously be put to work
for quantum ratchets on the micro- and nanoscale[2]. More-
over, the structure of our quantum-Smoluchowski dynamics
can be generalized to higher dimensional overdamped situa-
tions as, e.g., for quantum noise-induced directed transport
on surfaces. In particular, our method and these quantum
ratchet signatures can be utilized to optimize transport prop-
erties in superconductors by controlling the motion of vorti-
ces and magnetic flux quanta[16,17].
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FIG. 3. The directed noise-induced transportkẏl of the quantum
Brownian motor(solid line) vs the dimensionless inverse tempera-
tureb0 for the ratchet potential(13) with b=0.3, see inset in Fig. 2,
is compared with its classical limit(dashed line) and the conven-
tional quantum theory in Eq.(4) (dotted line). The dichotomic noise
level is set ata=5. The variations of the quantum corrections are
depicted with the shaded background.

FIG. 4. Comparison of classical and quantum noise induced
directed transport as in Fig. 3 vs inverse temperature for a different
dichotomic noise levela=1 and for a different ratchet potential(13)
with b=0.62, see the lower inset. The notation and symbols are the
same as in Fig. 3. For this potential the classical current does not
change the direction. The standard quantum Smoluchowski equa-
tion predicts a positive current whereas the modified quantum
Smoluchowski equation leads to a positive current only for small
values ofb0 and then yields a current in the opposite direction. For
this current reversal see the upper inset.
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