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Nonlinear signal mixing in a ratchet device
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Abstract. – The nonlinear signal mixing of two, generally incommensurate, rectangular driv-
ing forces is used to control overdamped transport in Brownian ratchet devices. The interplay
between the relative phase and the frequency ratio of the two driving forces is sufficient to
generate an intriguing transport action that can be put to work to optimize shuttling and sepa-
ration of particles in a variety of physical and technological applications. Analytic results for a
striking multiple current reversal behavior are obtained for doubly rocked and rocked-pulsating
Brownian ratchets. This tunable signal mixing can readily be implemented and exhibits an
even richer behavior than those realized by the hard-to-implement, modifiable ratchet profiles.

Ratchets are nonlinear devices that, due to their intrinsic asymmetry, are capable of rec-
tifying an external symmetric signal [1]. The simplest ratchet model is a Brownian particle
diffusing in a periodic, asymmetric potential in one dimension. The input signal can be ei-
ther deterministic (e.g. ac drive) or stochastic and time-correlated [2]; in particular, an ac
signal can be injected so as to tilt periodically the ratchet potential (rocked ratchet [3]) or to
modulate its amplitude with time (pulsated ratchet [4]).

Here, we study the case of a ratchet subjected simultaneously to two ac signals with periods
T1 = 2π/Ω1 and T2 = 2π/Ω2. We consider two distinct cases: a) the two input signals are both
additive and model a doubly rocked ratchet; b) one signal ac drives the ratchet, while the other
one multiplicatively modulates its amplitude (rocked-pulsated ratchet). We stress that experi-
mental realizations of both cases are relatively straightforward to implement in the laboratory
(mostly affordable variations of experimental set-ups widely reviewed in the literature [1]).
As an example of case a), we mention transport of magnetic flux quanta (vortices) in super-
conducting devices [5], whereas some molecular motor experiments [1] fall into category b).
Asymmetric SQUIDS [6, 7] and Josephson junctions arrays [8] allow simple implementations
of both doubly rocked and rocked-pulsated ratchets, as such devices can be conveniently
c© EDP Sciences



180 EUROPHYSICS LETTERS

Fig. 1 – (a) Ratchet potentials. High- and low-barrier configurations V±(x) of the modulated potential
V (x, t), i.e. V±(x) = V0(x)(1±A2) (dotted curves) with A2 = 0.5. Reference ratchet potential (solid
curve): V0(x) = qx/l1 for 0 < x < l1; = q − q(x − l1)/l2 for l1 < x < l = l1 + l2, with q = 1, l1 = 0.9,
and l = 1; the barrier height ∆V0 coincides with q. (b) Response curve j(A) of the potential V0(x)
driven by a rectangular force A1(t) with A1 = A in the adiabatic limit Ω1 → 0 at zero temperature
D = 0 (dashed curve), and low temperature D/∆V0 = 0.05 (solid curve). (c) Input signals A1(t)
(dashed), and A2(t) (solid) with Ω2 = 3Ω1 (upper) and Ω2 = 2Ω1 (lower); also: φ1 = φ2 = 0, A1 = 1,
and A2 = 0.9. (d) Net currents j±(Ω2, A2) in the tilted rocked ratchet V0(x)∓|A1|x for A1 = A2 ≡ A,
Ω2 = 1.5, and D = 0; V0(x) parameters: q = 0.4, l1 = 0.7, and l = 1.

driven by independent external signals (either additive or multiplicative). Finally, a variety of
tunable physical systems can be effectively controlled through the combined action of two (ei-
ther independent or correlated) applied signals, like colloids in arrays of optical tweezers [9],
interacting binary mixtures driven on (asymmetric) period substrates [10], ferrofluids [11],
dislocation transport in crystalline solids [12,13], or electron pumping in quantum dots [14].

The key result of this letter is that, no matter how we feed two periodic signals into a
ratchet device, signal mixing determines a rich behavior of the ratchet dynamics depending
on the ratio Ω2/Ω1 and both signal phases and amplitudes. In particular, we prove that the
rectification of a primary signal by a Brownian ratchet can be controlled more effectively by
applying a secondary (additive or multiplicative) signal with tunable frequency and phase,
than by tinkering with the ratchet potential parameters. The latter is often difficult to imple-
ment experimentally, while tailoring the driving can be readily accomplished. Although the
complexity of chaos cannot be observed in overdamped, adiabatically driven ratchet systems,
the control of the relative phase and the frequency ratio of the driving provides a versatile
way to control particle transport.
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To start, let us consider the Brownian ratchet model: an overdamped Brownian particle
x(t) diffusing in a piecewise linear asymmetric potential V0(x) (shown in fig. 1a). Two rectan-
gular input signals, Ai(t) = Ai sgn[cos(Ωit + φi)] with i = 1, 2, Ai ≥ 0, and sgn[. . . ] denoting
the sign of its argument [. . . ], act on the particle according to the Langevin equation

ẋ = −V ′(x, t) + Aa(t) + ξ(t), (1)

where ξ(t) is a stationary Gaussian white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(0)〉 = 2Dδ(t), and

V (x, t) = V0(x)
[
1 + Am(t)

]
. (2)

Equation (1) allows two distinct ways of coupling an additional control signal A2(t) to a
rocked ratchet driven by A1(t): a) doubly rocked ratchet : Am(t) = 0, Aa(t) = A1(t) + A2(t);
b) rocked-pulsated ratchet : Aa(t) = A1(t), Am(t) = A2(t) with A2 ≤ 1. In our analytical
discussion we assume that intra-well relaxation occurs on a much shorter time scale than
either both periods T1 and T2 (fully adiabatic), or one period, T1 or T2 (partially adiabatic).
Moreover, without loss of generality, adopting a piecewise linear substrate potential V0(x), as
in fig. 1a, greatly simplifies the presentation below.

Doubly rocked ratchet. The advantage of taking the fully adiabatic limit (Ω1, Ω2 → 0)
is that the output j(Ω1, Ω2, A1, A2) of a doubly rocked ratchet is expressible analytically
(see eq. (4) in ref. [3]) in terms of the current j(A) of the well-studied one-frequency rocked
ratchet [3], corresponding to setting A1 = A, A2 = 0 with Ω1 → 0 (fig. 1b). Note that here
j(A) is a symmetric function of A, j(A) = j(−A) = A[µ(A) − µ(−A)]/2, where µ(A) is the
nonlinear mobility of an overdamped particle running down the tilted ratchet potential V0(x)−
Ax. By inspecting fig. 1c, one concludes that the overall ratchet current j(Ω1, Ω2, A1, A2)
results from the interplay of the two usual one-frequency currents j(A1 + A2) and j(A1 −A2)
driven by the ac amplitudes A1+A2 and A1−A2, respectively, i.e. for any positive integers m, n

j

(
Ω1, Ω2 = Ω1

2m − 1
2n − 1

, A1, A2

)
= javg(A1, A2) − (−1)m+n p(∆n,m)

(2m − 1)(2n − 1)
∆j(A1, A2), (3)

while the rectified current assumes the baseline value javg(A1, A2) = 1
2 [j(A1−A2)+j(A1+A2)]

in all other cases. Therein, ∆n,m ≡ (2n − 1)φ2 − (2m − 1)φ1 mod 2π, and

∆j(A1, A2) =
1
2
[
j(A1 − A2) − j(A1 + A2)

]
. (4)

The φ1, φ2 modulation is fully described by the multiplicative phase factor p(φ) = |π −
φ|/π − 0.5.

Let us state a few important remarks: 1) The doubly-rocked-ratchet current (in the
fully adiabatic limit) is insensitive to Ω1, Ω2, except at “integer-valued odd harmonics”, i.e.
Ω2/Ω1 = (2m − 1)/(2n − 1). Its intensity coincides with the “baseline” value javg(A1, A2);
spikes with decreasing amplitude ∆j(A1, A2)/(2m − 1)(2n − 1) show up at large, integer-
valued odd harmonics; 2) The sign of the spike factor ∆j(A1, A2) is sensitive to the signal
amplitudes A1, A2. For instance, if we choose A1, A2 so that A1 + A2 and |A1 − A2| fall
onto the rising (decaying) branch of j(A) in fig. 1b, then ∆j(A1, A2) is negative (positive);
3) The current spikes at Ω2/Ω1 = (2m− 1)/(2n− 1) depend on the initial value of φ2 and φ1,
and for a fixed φ1, their amplitude oscillates proportional to the modulation factor p(∆n,m).
All these properties are illustrated in fig. 2, where results from numerical simulation are dis-
played vs. the angular frequency Ω2 at fixed Ω1. We remark that the overall sign of our
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Fig. 2 – Rectified Brownian ratchet current driven by two rectangular signals A1(t), A2(t) with fixed
amplitudes: (a), (b) doubly rocked ratchet, (c) rocked-pulsated ratchet. (a) Numerical simulations
for φ1 = φ2 = π and Ω1 = 0.01 (open circles) and fully adiabatic approximation (green line and green
crosses). The baseline javg(A1, A2) =

1
2
[j(A1 − A2) + j(A1 + A2)] is indicated by the green line; the

spikes at some selected “integer-valued odd harmonics” are marked with green crosses (×); (b) Fully
adiabatic approximation for φ1 = φ2 = 3π/2 (main panel) and φ1 = 3π/2, φ2 = π/2 (inset). In both
cases, A1 = 3, A2 = 2, D = 0.6, and V0(x) as in fig. 1. (c) Numerical simulations in the fully adiabatic
regime with A1 = 4, A2 = 0.5 and Ω1 = 0.01; noise level: D = 0.4. Main panel: φ1 = φ2 = π (fully
adiabatic approximation); inset: simulation (open circles) vs. the fully adiabatic approximation (×)
for φ1 = π and φ2 = 0. V0(x) parameters are: q = 2, l1 = 0.9, l = 1.

doubly rocked ratchet is always determined by the polarity of V0(x) (positive in fig. 1a), as
|∆j(A1, A2)| < |javg(A1, A2)| for any choice of A1, A2.

In the partially adiabatic regime, where only one frequency tends to zero (say, Ω1 → 0)
multiple current inversions are possible (fig. 3); this is in clear contrast to the adiabatic,
singly rocked case [3]. The underlying mechanism hinges on the step structure [3] of the one-
frequency rocked-ratchet current in the nonadiabatic regime (see fig. 1d), where Ω2 is small
but finite. For instance, in the limit Ω1 → 0 the net current of the doubly rocked ratchet (a)
can be easily approximated to

j(Ω1 	 Ω2, A1, A2) =
1
2
[
j+(Ω2, A2) + j−(Ω2, A2)

]
, (5)
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Fig. 3 – Rectified current in the doubly rocked ratchet with A1 = A2 = A, T1 = 103, T1/T2 = 240.
Simulation data for D = 0 (solid triangles), 5 · 10−3 (dots), 0.05 (open triangles). The stepwise solid
curve is our prediction for D = 0 (see text). Potential parameters are as in fig. 1d. Inset: as in the
main panel but for A2 = 0.9A1, and D = 0.005 (red dots), 0.02 (black dots).

where j±(Ω2, A2) is the average current across the static tilted ratchet potential V0(x)∓|A1|x
driven by the rectangular signal A2(t). Note that for Ω2 � Ω1, the commensuration spikes (3)
can be neglected as they decay proportional to Ω1/Ω2.

In order to clarify the resulting current structure (5), in fig. 3 we consider the simplified
case A1 = A2 ≡ A and Ω2 � Ω1. During one half longer period T1/2, the total ac force
Aa(t) switches many times either between 0 and 2A, or between 0 and −2A with frequency
Ω2. The adiabatic condition requires that the higher forcing frequency Ω2 is lower than the
deterministic relaxation rate Ωq = q/2l2, i.e. the Brownian particle reaches a V0(x) minimum
during each half period T2/2 when Aa(t) = 0. As a consequence, the particle moves an
integer number of unit cells l during each short period T2, thus determining the step-like
structure of the currents j± displayed in fig. 1d. A straightforward analytical calculation of
the average particle velocity to the right (left) yields v±(A) = ±nl/T2 for A

(n+1)
± < A < A

(n)
±

and v±(A) = 0 for A < A
(1)
± , with

A
(n)
± =

1
2

(
(2n − 1)l ± δl

2T2
∓ f +

√[
(2n − 1)l ± δl

2T2
± f

]2

+
Q2

l1l2
+

2Q

T2

)
(6)

with the half difference f = Q(l1 − l2)/(2l1l2) of the stopping forces and δl = l1 − l2. The
analytical expression [v+(A) − v−(A)]/2 for the ratchet current compares very well with the
simulation data displayed in fig. 3. We notice that on increasing A, the resulting ratchet
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current develops a negative tail made of entrained rectangular teeth of the same size. Such
a negative tail persists in the presence of noise, although the teeth get gradually suppressed,
thus implying, at variance with the fully adiabatic limit, a robust inverted output signal.
Finally, for A1/A2 
= 1, the ratchet characteristics grow much more complicated, though still
expressible in terms of eq. (5), and may exhibit multiple current inversions (fig. 3, inset).

Rocked-pulsated ratchet. The mixing of an additive and a multiplicative signal provides
a control mechanism of potential interest in device design. In the fully adiabatic limit, the
ac-driven Brownian particle can be depicted as moving back and forth over two alternating
ratchet potentials V±(x) = V0(x)(1 ± A2). Both potential configurations V±(x) are capable
of rectifying the additive driving signal A1(t); the relevant net currents j̄±(A1) are related to
the curve j(A) plotted in fig. 1b: j̄±(A1) = (1±A2) j[A1/(1±A2)] with D → D/(1±A2). On
separating the time interval (2n− 1)T1 into a time-uncorrelated sequence of (2m− 1) shorter
driving cycles T2 along V±(x) (we assumed m > n, see fig. 1c), one eventually casts the total
ratchet current into the form (3) with

javg(A1, A2) = (1/2)
[
j̄−(A1) + j̄+(A1)

]
, ∆j(A1, A2) = (1/2)

[
v−(A1) − v+(A1)

]
, (7)

where v±(A1) = A1[µ±(A1)+µ±(−A1)]/2. We recall that in our notation µ±(A) is the static
mobility of the tilted potentials V±(x) − Ax.

One can show that |∆j(A1, A2)| may grow larger than |javg(A1, A2)| and, therefore, a
current reversal may take place for appropriate values of the model parameters, as shown by
the simulation results of fig. 2c. In fact, a relatively small modulation of the ratchet potential
amplitude at low temperature can easily reverse the polarity of the simply rocked ratchet
V0(x). Let us consider the simplest case possible, Ω1 = Ω2 and φ1 = φ2: As the ac drive
points in the “easy” direction of V0(x), namely to the right, the barrier height V (x, t) is set at
its maximum value ∆V0(1+A2); at low temperatures, the Brownian particle cannot overcome
it within a half ac-drive period T1/2. In the subsequent half period the driving signal A1(t)
changes sign, thus pointing against the steeper side of the V (x, t) wells, while the barrier
height drops to its minimum value ∆V0(1 − A2): Depending on the value of ∆V0/D, the
particle may have a better chance to escape a potential well to the left than to the right,
thus making a current reversal possible. Of course, the net current may be controlled via the
modulation parameters A2 and φ2, too.

For both, the doubly rocked case a) and the rocked-pulsating case b), eq. (3) is symmetric
under m ↔ n exchange. This implies that, as long as the fully adiabatic approximation is
tenable, each spectral spike (m,n) of the ratchet current is mirrored by a spike (n,m) of
equal strength (see fig. 2). This is not true, e.g., in the partially adiabatic regime, where the
dynamics depends critically on whether Ω1/Ω2 or Ω2/Ω1 tends to zero. In the former limit
additional current inversions may be observed.

The rich and intriguing effects we have investigated with this work should not be mistaken
for a manifestation of harmonic mixing (HM) [15, 16], namely the mechanism where two or
more linearly superimposed periodic input signals may develop a phase-dependent dc output
as an effect of nonlinearity. Notice that HM may occur in a symmetric device, too. More
importantly, a simple perturbation argument [15] leads to conclude that in case a) HM for
a symmetric device in the fully adiabatic regime is totally suppressed by using rectangular
waveforms. Moreover, rectification induced by the interplay of additive and multiplicative
signals rests upon a sort of synchronized gating mechanism peculiar to case b). In this regard,
such a mechanism can also not be considered as a HM manifestation; rather, it exhibits some
similarities with the problem of polychromatic driven stochastic processes, like the control of
Stochastic Resonance [17,18].
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