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Abstract. We investigate the role of external electromagnetic fields on the con-
duction properties of bridged molecular wires. In particular, it is analyzed quanti-
tatively how resonant excitations of electrons enhance the dc current and, simulta-
neously, lower the noise level of the current. The results from an exact numerical
treatment are in good agreement with those obtained within an approximation
scheme applicable at resonances.

Thirty years ago, Aviram and Ratner proposed in a seminal work [1] to build
elements of electronic circuits—in their case a rectifier—with single molecules.
In the present days their vision starts to become reality and the experimental
and theoretical study of such systems enjoys a vivid activity [2–4]. Recent
experimental progress has enabled reproducible measurements [5, 6] of weak
tunneling currents through molecules which are coupled by chemisorbed thiol
groups to the gold surface of external leads.

Typical energy scales in molecules are in the optical and the infrared
regime, where basically all of the today’s lasers operate. Hence, lasers rep-
resent a natural possibility to control atoms or molecules and also currents
through them. It is for example possible to induce by the laser field an oscil-
lating current in the molecule which under certain asymmetry conditions is
rectified by the molecule. This results in a directed electron transport even
in the absence of any applied voltage [7, 8]. Another theoretically predicted
effect is the current suppression by the laser field [9, 10] which offers the
possibility to control both the average current and the current noise.

Since the considered frequencies lie below typical plasma frequencies of
metals, the laser light will be reflected at the metal surface, i.e., it does not
penetrate the leads. Consequently, we assume that the leads’ bulk properties
are essentially unaffected by the laser field—in particular each lead remains
close to equilibrium. Thus, it is sufficient to consider the influence of the
driving solely in the molecule Hamiltonian. In addition, the energy of in-
frared light quanta is by far smaller than the work function of a common
metal, which is of the order of 5 eV. This prevents the generation of a photo
current, which otherwise would dominate the effects discussed below. For
a quantitative description of an experiment, it might be necessary to take
into account also the influence of the laser on the leads.

Most theoretical descriptions of the molecular conductivity in static sit-
uations are based on a scattering approach [11–13], or assume that the un-
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Fig. 1. Bridged molecular wire consisting of N = 8 sites of which the first and the
last site are coupled to leads with chemical potentials µL and µR − eV

derlying transport mechanism is an electron transfer reaction from the donor
to the acceptor site and that the conductivity can be derived from the cor-
responding reaction rates [3].

Atoms and molecules in strong oscillating fields have been widely studied
within a Floquet formalism [14,15]. This suggests utilizing the tools that have
been acquired in that area, thus, developing a transport formalism that com-
bines Floquet theory for a driven molecule with the many-particle description
of transport through a system that is coupled to ideal leads [8, 10, 16].

As an idealized model for the wire and the leads, we employ the so-called
bridged molecule setup sketched in Fig. 1. This model has also been used to,
e.g., investigate inelastic effects due to electron-vibrational coupling [17–20]
and heat conduction [21]. A central issue in these works has been the length-
dependence of the conduction thereby elucidating the underlying transport
mechanisms [3]. Here, we address the influence of laser excitations on the
length-dependence of the dc current and the low-frequency noise.

1 The Wire-Lead Model

wire-leads model of Fig. 1. It is convenient to separate the contributions
from the molecule in the laser field, the ideal leads, and the molecule-leads
coupling,

H(t) = Hmolecule(t) + Hleads + Hmolecule−leads. (1)

The irradiated molecule is modeled within a tight-binding description taking
into account N molecular orbitals |n〉, which are relevant for the transport.
Disregarding the electron-electron interaction, the most general form of the
Hamiltonian reads

Hmolecule(t) =
∑

n,n′

Hnn′(t) c†ncn′ , (2)
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where the fermionic operators cn and c†n destroy and create, respectively, an
electron in the molecular orbital |n〉. The sums extend over all tight-binding
orbitals. The T -periodic time-dependence of the single-particle Hamiltonian
Hnn′(t) = Hnn′(t + T ), reflects the influence of the laser field with frequency
Ω = 2π/T . As discussed above, we assume that the leads remain close to equi-
librium and hence can be described by grand-canonical ensembles of electrons
at temperature T and electro-chemical potential µ�, � = L, R. Thus, the lead
Hamiltonian reads

Hleads =
∑

�q

εq c†�qc�q, (3)

where c�q destroys an electron in state q in lead �. All expectation values of

lead operators can be traced back to 〈c†�qc�′q′〉 = δqq′δ��′f(εq − µ�), where

f(ε) = (1 + eε/kBT )−1 denotes the Fermi function. The model is completed
by the molecule-leads tunneling Hamiltonian

Hmolecule−leads =
∑

q

VLq c†Lq c1 +
∑

q

VRq c†Rq cN + h.c. , (4)

that connects the left (right) lead to the donor |1〉 (acceptor |N〉). Since we
are not interested here in the effects that arise from the microscopic details
of the molecule-lead coupling, we restrict our analysis in the following to
energy-independent couplings, i.e., Γ� = 2π

∑
q |V�q|2 δ(ε − εq) = const.

2 Floquet Transport Theory

For the retarded Green function of the wire electrons, one finds after elimi-
nating the leads the equation of motion [10]

[
H(t) − iΣ − ih̄

d

dt

]
G(t, t′) = −δ(t − t′), (5)

where H(t) =
∑

n,n′ |n〉Hnn′(t)〈n′| and 2Σ = |1〉ΓL〈1| + |N〉ΓR〈N | is the
self-energy that results from the coupling to the leads. For the current de-
fined as the change of the charge in the, e.g., left lead, IL = e(d/dt)〈NL〉,
we find after some algebra that it assumes the commonly expected “scatter-
ing form” [13] but with periodically time-dependent transmission probabili-
ties and, as well, an additional contribution that accounts for a T -periodic
charging/discharging of the wire [10, 16]. Only the former contributes to the
time-averaged current

Ī =
e

2πh̄

∞∑

k=−∞

∫
dε

{
T

(k)
LR(ε)fR(ε) − T

(k)
RL(ε)fL(ε)

}
, (6)

where T
(k)
LR(ε) = ΓLΓR|G(k)

1N (ε)|2 is the transmission of an electron with energy
ε from the right lead to the left lead under the absorption (emission) of |k|
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photons if k > 0 (k < 0) and T
(k)
RL(ε) accordingly. G

(k)
1N (ε) denotes the relevant

matrix elements of the Fourier transform of the retarded Green function

G(k)(ε) =

∫ T

0

dt

T eikΩt

∫ +∞

−∞

dτ eiετ/h̄G(t, t − τ). (7)

Note that, consistent with Ref. [22], no “Pauli blocking factors” 1 − f� ap-
pear in the current formula (6). In contrast to a static situation, this is

of relevance here since for a driven system T
(k)
LR(ε) and T

(k)
RL(ε) are in gen-

eral unrelated. Since the coefficients of the equation of motion (5) are T -
periodic, a complete solution can be constructed with the help of the Floquet
ansatz |ψα(t)〉 = exp[(−iεα/h̄ − γα) t] |Φα(t)〉. The Floquet states |Φα(t)〉 =∑

k |Φαk〉 exp(−ikΩt) obey the time-periodicity of the Hamiltonian and fulfill
in a Hilbert space that is extended by a periodic time coordinate the Floquet
eigenvalue equation

[
H(t) − iΣ − ih̄

d

dt

]
|Φα(t)〉 = (εα − ih̄γα)|Φα(t)〉. (8)

Since the eigenvalue equation (8) is non-Hermitian, its eigenvalues εα − ih̄γα

are generally complex valued and the (right) eigenvectors are not mutually
orthogonal. Therefore, we need to solve also the adjoint Floquet equation
yielding again the same eigenvalues but providing the adjoint eigenvectors
|Φ+

α (t)〉. Thus, we find for τ > 0 the retarded Green function

G(t, t − τ) = − i

h̄

∑

α

|ψα(t)〉〈ψ+
α (t − τ)|Θ(τ) = G(t + T , t + T − τ) (9)

and, consequently,

G
(k)
nn′(ε) =

∑

α,k′

〈n|Φα,k′+k〉〈Φ+
α,k′ |n′〉

ε − (εα + k′h̄Ω − ih̄γα)
. (10)

The current noise is given by the symmetrized auto-correlation function
SL(t, t′) = 1

2 〈∆IL(t)∆IL(t′) + ∆IL(t′)∆IL(t)〉 of the current fluctuation op-
erator ∆IL(t) = IL(t) − 〈IL(t)〉. It can be shown that after the decay of all
transients, SL(t, t′) = SL(t + T , t′ + T ) shares the time-periodicity of the
driving. Therefore, it is possible to characterize the noise level by the time-

averaged zero-frequency noise, S̄L =
∫

dτ
∫ T

0 dt SL(t, t−τ)/T . Since the total
charge is conserved, we find S̄L = S̄R = S̄, where [10, 16]

S̄ =
e2ΓLΓR

2πh̄

∑

k

∫
dε

{
ΓLΓR

∣∣ ∑

k′

G
(k′−k)
N1 (εk)[G

(k′)
N1 (ε)]∗

∣∣2fL(ε)f̄L(εk)

+
∣∣ΓL

∑

k′

G
(k′−k)
1N (εk)[G

(k′)
11 (ε)]∗ − iG

(−k)
1N (εk)

∣∣2fL(ε)f̄R(εk)
}

+ same terms with the replacement (L, 1) ↔ (R, N), (11)



Molecular Wires in Electromagnetic Fields 161

with f̄L/R = 1− fL/R and εk = ε+ kh̄Ω. In order to characterize the relative
noise level, we employ the so-called Fano factor F = S̄/e|Ī| [23]. Expres-
sions (6) and (11) contain as special cases prior findings: In the absence of
any driving, the Floquet eigenvalues εα − ih̄γα reduce to the complex-valued

eigenenergies; this implies G
(k)
nn′ = 0 for all k �= 0, yielding the transmission

probability for an electron with energy E of T (E) = ΓLΓR|G(0)
N1(E)|2. Thus,

the current and the noise in the static limit become

I0 =
e

2πh̄

∫
dE T (E)

[
fR(E) − fL(E)

]
, (12)

S0 =
e2

2πh̄

∫
dE

{
T (E)

[
fL(E)[1 − fL(E)] + fR(E)[1 − fR(E)]

]
(13)

+ T (E)
[
1 − T (E)

][
fR(E) − fL(E)

]2
}

,

respectively [24]. In order to achieve for the noise an expression that depends
only on the transmission probability T (E), we have simplified the second
line by use of the relation |ΓL(ε)G11(ε) + i|2 = 1 − T (ε) valid for undriven
conductors [13]. Note that by contrast, in the time-dependent case, the noise
expression (11) cannot be brought into such a convenient form and, thus in
general, still depends on the phases of the propagator.

3 Conduction Properties of Driven Molecular Bridges

As a working model we consider a molecule consisting of a donor and an
acceptor site and N − 2 sites in between (cf. Fig. 1). Each of the N sites
is coupled to its nearest neighbors by a hopping matrix element ∆. The
laser field renders each level oscillating in time with a position-dependent
amplitude. The time-dependent molecule Hamiltonian is

Hnn′(t) = ∆

N−1∑

n=1

(
|n〉〈n+1| + |n+1〉〈n|

)
+ E1|1〉〈1|

+EB

N−1∑

n=2

|n〉〈n| + EN |N〉〈N | + A cos(Ωt)
∑

n

xn|n〉〈n| (14)

where xn = (N + 1 − 2n)/2 is the scaled position of site |n〉. The energy
A equals the electron charge multiplied by the electrical field amplitude of
the laser and the distance between two neighboring sites. The energies of the
donor and the acceptor orbitals, |1〉 and |N〉, are assumed to be at the level
of the chemical potentials of the attached leads, E1 = EN ≈ µL ≈ µR. The
bridge levels En, n = 2, . . . , N − 1, lie EB � ∆ above the chemical potential.

Below, we will evaluate the current and the noise for zero temperature
and use a symmetric coupling, ΓL = ΓR = Γ . The hopping matrix element
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∆ serves as the energy unit; in a realistic wire molecule, ∆ is of the order
0.1 eV. Thus, our chosen wire-lead hopping rate Γ = 0.1∆ yields eΓ/h̄ =
2.56 × 10−5 Ampère and Ω ≈ 10∆/h̄ corresponds to a laser frequency in the
near infrared. For a typical distance of 5Å between two neighboring sites,
a driving amplitude A = ∆ is equivalent to an electrical field strength of
2 × 106 V/cm.

Let us first discuss the static problem in the absence of the field, i.e.
for A = 0. In the present case where the coupling between two neighboring
sites is much weaker than the bridge energy, ∆ � EB , one finds two types
of eigenstates: One group of states is located on the bridge. It consists of
N −2 levels with energies in the range [EB −2∆, EB +2∆]. In the absence of
the driving field, these bridge states mediate the super-exchange between the
donor and the acceptor. The two remaining states form a doublet whose states
are approximately given by (|1〉 ± |N〉)/

√
2. Its splitting can be estimated in

a perturbational approach [25] and is approximately given by 2∆(∆/EB)N−2.
Thus, the wire can be reduced to a two-level system with the effective tunnel
matrix element ∆DA = ∆ exp(−κ(N − 2)), where κ = ln(EB/∆). If the
chemical potentials of the leads are such that µL > ED and µR < EA, i.e.,
for a sufficiently large voltage, the current (12) is dominated by the total
transmission and for Γ � ∆DA can be evaluated to read

I0 =
2e|∆|2

Γ
e−2κ(N−2). (15)

For the explicit calculation see, e.g., Ref. [26]. In particular, one finds an
exponentially decaying length dependence of the current [3,12]. Moreover, in
this limit, it is also possible to evaluate explicitly the zero-frequency noise to
obtain the Fano factor F = S̄/e|Ī| = 1. This value has a direct physical inter-
pretation: Since the transmissions of electrons across a large barrier are “rare
and uncorrelated events”, they obey Poisson statistics and, thus, variance
and mean value are equal which translates to a Fano factor of one [23].

3.1 Resonant Excitations

The magnitude of the current changes significantly when a driving field with
a frequency Ω ≈ EB/h̄ is switched on. The resonant bridge levels merge with
the donor and acceptor states to form a Floquet state. This opens a direct
transport channel resulting in an enhancement of the electron current.

In order to estimate the magnitude of the current through the resonantly
driven wire, we disregard all bridge levels besides the one that is in reso-
nance with the donor and the acceptor. Let us assume that this resonant
bridge level |ψB〉 extends over the whole bridge such that it occupies the
sites |2〉, . . . , |N−1〉 with equal probability 1/

√
N − 2. Accordingly, the over-

lap between the bridge level and the donor/acceptor becomes

〈1|Hmolecule|ψB〉 =
〈1|Hmolecule|2〉√

N − 2
=

∆√
N − 2

(16)



Molecular Wires in Electromagnetic Fields 163

and 〈ψB |Hmolecule|N〉 accordingly, while the resonance condition defines the
energy of the bridge level as

〈ψB|Hmolecule|ψB〉 = h̄Ω (17)

(recall that we have assumed ED = EA = 0).
We apply an approximation in the spirit of the one described in [26]

and derive a static effective Hamiltonian that describes the time-dependent

system. We start by transforming with the unitary operator

S(t) = exp
{
− i

N−1∑

n=2

|n〉〈n|Ωt − i
A

h̄Ω

N∑

n=1

|n〉〈n| sin(Ωt)
}

. (18)

Note that S(t) obeys the T -periodicity of the original wire Hamiltonian (14).
As a consequence, the transformed wire Hamiltonian

H̃molecule(t) = S†(t)Hmolecule(t)S(t) − ih̄S†(t)Ṡ(t) (19)

is T -periodic as well. For h̄Ω � ∆, we can separate time-scales and average
H̃molecule(t) over the driving period. In the subspace spanned by |1〉, |ψB〉,
and |N〉, the time-averaged wire Hamiltonian reads

Hmolecule,eff =

∫ T

0

dt

T H̃molecule(t) =




0 b 0
b 0 b
0 b 0



 , (20)

with the effective tunnel matrix element

b =
J1(A/h̄Ω)√

N − 2
∆, (21)

and J1 the first-order Bessel function of the first kind.
The situation described by the Hamiltonian (20) is essentially the follow-

ing: The central site |ψB〉 is coupled by matrix elements b to the donor and
the acceptor site. Since the latter in turn couple to the external leads with
a self energy Γ/2, their density of states is

ρ(E) =
1

π

Γ/2

E2 + Γ 2/4
. (22)

Then, the tunneling of the electrons from and to the central site is essentially
given by the golden rule rate w = 2π|b|2ρ(0)/h̄ . Like in the static case, we
assume that the chemical potential of the left (right) lead lies above (below)
the on-site energy of the donor (acceptor) and that therefore the donor is
always occupied while the acceptor is always empty. Then, the rate of elec-
trons tunneling from the central site to the acceptor is given by the golden
rule rate times the occupation probability p of the state |ψB〉. Accordingly,
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the rate of electron from the donor to |ψB〉 is given by w times the probability
(1 − p) to find the central site empty. Consequently, the occupation of the
resonant bridge level evolves according to ṗ = w(1 − p) − wp. This equation
has the stationary solution p = 1/2 and, thus, for resonant excitations, the
dc contribution of the time-dependent current is given by

Īres = e w p = e
2A2∆2

(N − 2)h̄3Ω2Γ
. (23)

Here, we have used for small arguments of the Bessel function the approxi-
mation J1(x) ≈ x. The dc current (23) obeys an intriguing scaling behavior
as a function of the wire length: Instead of the exponentially decaying length
dependence (15) that has been found for the static case, in the presence of
resonant driving, a scaling Ī ∝ 1/N emerges. In particular for longer wires,
this means that the external field enhances the conductance significantly.

3.2 Numerical Results

In order to corroborate the analytical estimates presented above, we treat
the transport problem defined by the wire Hamiltonian (14) numerically by
solving the corresponding Floquet equation (8) and a subsequent evaluation
of the expressions (6) and (11) for the dc current and the zero-frequency
noise, respectively. For a wire with N = 5 sites, one finds peaks in the cur-
rent when the driving frequency matches the energy difference between the
donor/acceptor doublet and one of the N − 2 = 3 bridge levels, cf. the solid
line in Fig. 2a. The applied voltage is always chosen so small that the bridge
levels lie below the chemical potentials of the leads. In Fig. 2a the scale of the
abscissa is chosen proportional to (N − 1) such that it suggests a common
envelope function. Furthermore, we find from Fig. 2b that the dc current is
proportional to A2/Γ provided that A is sufficiently small and Γ sufficiently
large. The numerical results indicate that the height of the current peaks

obeys Īpeak ∝ A2

(N−1)Γ which is essentially in accordance with our analytical

estimate (23). The main discrepancy comes from the fact that the overlap
between the resonant level and the donor/acceptor differs from the estimate
(16) by a numerical factor of the order one. Moreover, Fig. 2c demonstrates
the at the resonances, the Fano factor assumes values considerably lower than
one as expected for the transport through a resonant single level [24].

4 Conclusions

We have outlined the Floquet transport formalism which has been derived
originally in Refs. [10, 16] to provide explicit expressions for the current
through time-dependent nanoscale conductors and its zero-frequency noise.
With this formalism, the conductance properties of bridged molecular wires
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Fig. 2. Exact numerical solution within the Floquet formalism. (a) Average current
Ī as a function of the the driving frequency Ω for various wire length N . The scaled
amplitude is A = 0.1∆; the applied voltage µR −µL = 5∆/e. The other parameters
read Γ = 0.1∆, EB = 1∆, and kBT = 0. (b) Average current for various driving
amplitudes A and coupling strengths Γ for a wire of length N = 8. (c) Fano factor
F = S̄/eĪ for the wire length N = 8 and the wire-lead coupling Γ = 0.1∆

have been investigated. This has revealed that resonant excitations from the
levels that connect the molecule to the external leads to bridge levels yield
peaks in the current as a function of the driving frequency. In a regime with
weak driving and weak electron-lead coupling, ∆ � Γ, A, the peak heights
scale with the coupling strength, the driving amplitude, and the wire length.
The laser irradiation induces a large current enhancement of several orders
of magnitude and also can reduce the current noise level. The observation of
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these resonances could serve as an experimental starting point for the more
challenging attempt of measuring quantum ratchet effects [7, 8] or current
switching by laser fields [9, 10].
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