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Stochastic resonance in biological nonlinear evolution models
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We investigate stochastic resonance in the nonlinear, one-dimensional Fisher-Eigen(Fiddglwhich
represents an archetypal model for biological evolution based on a global coupling scheme. In doing so we
consider different periodically driven fithess functions which govern the evolution of a biological phenotype
population. For the case of a simple harmonic fithess function we are able to derive the exact analytic solution
for the asymptotic probability density. A distinct feature of this solution is a phase lag between the driving
signal and the linear response of the system. Furthermore, for more complex systems a general perturbation
theory (linear response approximatipis put forward. Using the latter approach, we investigate stochastic
resonance in terms of the spectral amplification measure for a quadratic, a quartic single-peaked, and for a
bistable fithess function. Our analytical results are also compared with those of detailed numerical simulations.
Our findings vindicate that stochastic resonance does occur in these nonlinear, globally coupled biological
systems.
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I. INTRODUCTION partial differential equatiofPDE): in contrast to the usual

Noise-induced order phenomena continue to attract evdrokker-Planck equation does nothave the form of a con-
growing interest among the practitioners of statistical andinuity equation but instead involves explicitly the “poten-
biological physics, and also among experimental researchefal”
who put these diverse concepts to use. In particular, the fact Ut = - F(x.1)
that an optimally chosen dose of noise can boost the re- T ’
sponse and enhance the ability of information and particleather than its “force”VF(x,t). Note also that the Fisher-
transduction in nonlinear systems is known under the |abe|Eigen equation distinctly differs from nonlinear effective

of stochastic resonandd—4j and_ Browr]ian f.“°‘°f$5—81- .Fokker-Planck equations with self-consistent nonlinear drift
These concepts start to play an increasingly important role iy § yitfusion coefficient§14—20. The conservatiornor-

biological system$1,3,5,7 where noise can assist the func- g :
tional behavior in a beneficial manner. In this spirit, we studymahzatlor) of the overall population follows from EqL) by

within this work the generalized one-dimensiorféisher- 21 integration ovek using appropriate boundary conditions.

Eigen mode(FEM), representing a standard model of bio- The effect of the selective first term on the right-hand side
logical evolution with an intrinsiglobal selection coupling (the) of Eq. (1) is clear. it causes an increase of the local

[9-13. In the Fisher-Eigen model a specisg., some bio- population, if the local fitness valu#&(x,t) is bigger than the

logical population is described by a time-dependent, nor- €nsemble averagé(t) and to a decrease, otherwise. Nonlo-
malized probability densityp(x,t)=0 which is defined on a cality or global coupling means that the change of the local
setG. In the biological contextG is interpreted as the phe- Ppopulation in the phenotype interviad, x+dx] between time
notype space. Furthermore, it is assumed that there existstaand t+dt is also influenced by those parts of the overall
fitness functiorF(x,t) probing each phenotypee G at time ~ population, which are located far away fromin this sense,

t. The evolutionary equation of this model is the nonlinearmodels with nonlocal selection are based on the assumption

Fisher-Eigen equatiotiFEE) that the corresponding system includes long-range informa-
P - tion transfer mechanisms, which is of course typical of bio-
IP_ [F - F(t)]p+DV?p, (1) logical systems.
at Besidesselection the second fundamental feature of bio-

— ) ) logical evolution ismutation In the FEE mutation processes
whereF(t) denotes the time-dependent, average fitness funcyre realized by diffusion in the phenotype spa@e Of

tion course, in real biological systen® is a high-dimensional
_ space. However, for the aim of our studies it is appropriate to
F(t) :J dXFx,t)p(x,t) (2)  confine the discussion to one dimension; more exactly, we
G setG=R throughout this paper.
of the population, and >0 is a mutation or diffusion pa- Our main objective is the investigation of the Fisher-

rameter. Apparently, the FE@) is a nonlocal and nonlinear Eigen model for fitness functions of the type
F(x,t) = Fg(x) + x Ssin(wt), S>0,x € R. (3)

*Electronic address: dunkel@physik.hu-berlin.de This goal is closely related in spirit to the problemssbd-
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chastic synchronizatiorf21,22 and stochastic resonance linear response results by comparing with numerical results
[1-3,23. In particular, we shall be interested in two funda- based on numerically integrated solutions of the REEA
mental situations(i) The time-independent pafy(x) of the  summary of the main results will be given in Sec. VI.
fitness function possesses only a single maximum, as it is the Before starting out, we still want to mention that evolu-

case for a harmonic fitness, i.e., tion processes described by the Fisher-Eigen equétjoran
also serve as role models for evolutionary algorithms of nu-
Fo(X) = - §X2 a>o0: (4) merical optimization. In this latter context the Fisher-Eigen

model is, for obvious reasons, also referred to as “Darwin
strategy.” A detailed discussion of this aspect including ap-
plications to optimization problemgée.g., optimization of
road networkscan be found in Ref425-28§.

and(ii) we also consider examples of the type

Fo(X) = gxz - gx“, ab>0xeR (5)
Il. THE CASE OF A QUADRATIC FITNESS FUNCTION

possessing two equivalent states of maximal fithessg, at

=+./a/b. Note that, for the sake of simplicity, we shall assume

In the biological context, the meaning of a bistable fitnesghroughout this paper that all variables are already given in
function of the type(ii) can be illustrated as follows. Con- scaled, dimensionless form. Our objective is to identify
sider a biological species that is characterized by a certaihether stochastic resonance does, in principle, also emerge
phenotypical feature. Then each vakie G decodes a pos- in nonlinear, globally coupled ensembles of the type of the
sible realization of this feature. Now assume that there coexEisher-Eigen models.
ist two optimal statesx. and x,, corresponding to two
equivalent maximaFy(x,). That is, those members of the A. Solution via an ansatz
species who are described by x, have the highest survival
probability. If changes in the environment occur on time
scales much larger than the reproduction time of a generation a,
of individuals, then the fitness function can be taken as ap- Fo(X) =~ X a>0,
proximately time independenf(x,t) =Fq(x).

On the other hand, realistic biological systems are oftetwhich depicts a single peak at=0. Including a time-
subject to periodic or at least quasiperiodic environmentaperiodic perturbatiorFy(x) is generalized to read
changege.g., seasons or glacial epoghshich should also
be reflected by the fitness function. A simple way to include F(x,t)=- 6_1X2 +xSsin(wt). (6)
such effects is realized in Eq(3), where the time- 2

if‘depe”‘_’e”_‘ fi_tness funct_ioﬁo(x) Is superimposed by a The time-independent problem wigr0 was studied earlier
time-periodic signal. If, as in the above exampiésand(S), i Refs.[29,30. Here we concentrate on the more interesting
the functionFq(x) is even,Fo(-X)=Fq(x), then this symme-  .,qe540. In order to solve the corresponding FEE with

try is broken in the related time-dependent fitness functiony,e quadratic “potentialU(x,t)=-F(x,t), we attempt the
(3). In particular, for the bistable examp(®) this means that, 5.ssian ansatz ' Y

depending on the external periodic signal, now either states

X=X_ or statesx=x, correspond to maximal fitness values. 1
For the casdi) of a quadratic fitness function an exact p(x,t) = %

analytic solution of the FEE can be found by using an ap-

propriate ansatz. By virtue of this exact solution one is, inWhereA, B, and ¢ denote free parameters, which must be

principle, able to compare with results found for driven determined by inserting this ansatz into the F&E By in-

Fokker-Planck models, characterized bylagal coupling tegration the time-dependent normalization consg is

In this part we consider the quadratic fitness funciién

exp{B[Fo(x) + A X sin(wt + ¢) ]}, (7)

[1,23,24. The harmonic case corresponding to E4). will ~ found as
be extensively discussed in Sec. Il. 2 A%B

In pri_nciple, one can formulate the gengric _solution of the Z(t) = /—Wexp[—sinz(wt + ¢)]- (8)
FEE(1) in terms of a series expansion. This will be shown in aB 2a

Sec. lll. Fpr more compliicated example_s, such as(by.it Thus, we can rewrite Eq7) as
becomes impossible to find closed solutions. Hence approxi-
mative linear response techniques must be applied. The cor- aB B

responding methods are developed in Sec. IVA. In Sec.  P(Xt)= \IZ—GXD{—E[a x—Asin(wt+¢)]2}, 9)

IV B 1 it is shown that these techniques yield the exact so- 7

lution for the harmonic casé4). Subsequently, in Secs. simply representing a Gaussian with an oscillating mean
IV B2 and V the perturbation theory is also applied to avalue. Note that due to the special shape of angtave
single-peaked and a double-peaked quartic fitness functiowonfine ourselves to time-periodic solutions, which are auto-
In these examples stochastic resonance effects can be atatically asymptotically stable. By inserting E®) into the

served, which in contrast are distinctly absent for harmonid~EE and subsequently ordering the resulting equation with
fitness functions. In general, we always test the analyticatespect to powers of, one is led to the equation
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Uo+ 01 X+gp, X*=0, (10)
with coefficients

go=a(2aD B?- 1) — A B sin(wt + ¢)[2A Bw coqwt + ¢)

- 2Ssin(wt) + A(1 + 2aD B?)sin(wt + ¢)], (11a

g1 =2aB[A B w coqwt + ¢) — S sin(wt)
+2aD A Bsin(wt + ¢)], (11b)
g,=a’B (1-2aD B?. (110

In order to obey Eq(10) each of theg; must identically
vanish. From the third conditiog,=0 one readily obtains

1
“y2aD’

B, = (12

where onlyB=B, yields a physically relevant solution, since
p(x,t) is required to be normalized. Thus, one finds from
0o.1=0 with B=B, the necessary condition

A= S sin(wt) (13
" Bw coSwt+ ¢) + Ssin(wt + @)
SinceA is supposed to be constant we have
B .
OkgA: Sw[B w cog ¢) +§|r(¢)] S (14
dt  [Bw coqwt+ ¢) +Ssin(wt+ ¢)]

which provides the required condition for the phage
Hence, we find

¢ = - arctariBw) = — arctar< w—) . (15)
v2aD
Inserting this result into Eq13) yields
S S
= (16)

" V1+B%? \1+w?(2aD)’

By virtue of Egs.(12), (15), and(16) we hereby have deter-
mined all parametera, ¢, andB=B, in the ansatz9). It is

now straightforward to calculate characteristic statistical .

quantities for this solution. For example, the mean value i
obtained as

_ A
x(t) = asin(wt +¢), (17)
and the variance becomes a constant,
— 1 2D
o?(t): =x°(t) - X(t)?=— =/ —. (18)
aB a

Performing the integration according to E(R), the en-
semble average of the fitness functiB(x,t) is obtained as
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(b)

FIG. 1. (a) Plot of the analytic solutiop(x,t) for the periodi-
cally perturbed quadratic fitness functidtix,t)=—0.5¢+x sin(t).
The parameters of the solution aB=0.71, $=-0.62, andA
=0.82. (b) Mean valuex(t) (solid line), driving signal S sin(wt)
(dotted ling, and ensemble fitness(t) (dashed-dotted linefor
same parameter values as(a. One can readily observe that the
phase shiftg, i.e., the mean valua(t) follows the perturbation
signal with some retardation.

Fy=- e S
© 2B 4a(1+B%? 4a(l+B2w?)

X (1 -2V1+B2w?)cod2(wt + ¢)]. (19)

Note that in contrast to the simple phase shift %6, the
averager(t) oscillates with a frequency twice as large. Also

note in this context thaE(t) contains merely terms of order
S and <. In Fig. 1 we have plottegh(x,t) together with a

comparison betweex(t), F(t), and the periodic perturbation.
We remark that the time-periodic asymptotic solution de-
rived above is of the same Gaussian type as the solution of

Ihe Fokker-Planck system for the periodically driven har-

monic oscillator. However, due to the different type of evo-
lution equation, explicit differences consist for the phase
shift ¢, the response amplitudg, and the variance?, as a
comparison with the results of Ref24,32 shows.

B. Numerical methods

Unfortunately, for more complicated periodically driven
fitness functiond=(x,1) it is generally impossible to find ex-
act solutions by the procedure outlined in Sec. Il A. Conse-
quently, we present in Sec. IV A a perturbation theory ap-
proach which yields an approximative asymptotic solution of
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a=1.0, $=1.0, ©=1.0, D=1.0 Ill. GENERAL SOLUTION OF THE FISHER-EIGEN
EQUATION

Before perturbation theory is considered in Sec. IV, we
shall discuss the generic solution of the FEE It was al-
ready pointed out in the introduction that the Fisher-Eigen
equation(1) is a nonlinear PDE. Interestingly enough, how-
ever, it can be transformed into a linear PDE, if one uses the
ansatz[11,37]

t
p(x,t)=e(x,t)exp[— J dsF(S)}, (20
0
1.5 T T T
a=1.0,8=1.0, ®=1.0, D=1.0 satisfying at initial timet=0
p(x,0) = o(x,0). (21)

In contrast top(x,t), the non-negative functiop(x,t) is not
normalized. More precisely, one finds from E@O) by
means of an integration that

t
i(t): = JG dxo(x,t) = exp{ fo dsF(s)} , (22

15 : : :
) 0 5 1t0 15 20 and, thus, the general result
. . —- d d ~
FIG. 2. (a) Plot of the numerical solutiop(x,t) of the PDE(1) Ft)=—In| dxo(x,t)=—InZ(t). (23
for the periodically perturbed quadratic fitness functiefx,t)= dt Jo dt

-0.5¢+x sin(t) and an initial distributiorp(x, 0)= &(x). All param-
eters are the same as used in Fig(ld). Driving signal S sin(wt)
(dotted ling, numerical calculated mean valué) (solid line), and Jo
ensemble fitnesE(t) (dashed-dotted linefor the same parameter E
values as in@). One can readily see how after a short relaxation
time the system.approaches the.exact asymptotic solution plgtted Mhis equation deserves to be commented on: In the above
Fig. 1. 'I_'he details of the numerical algorithm can be found in theapproach, we started out from the FEB and obtained Eq.
Appendix of Ref.[31]. (26) by applying the ansat#20). Of course, one could in-
stead also start from the rather general evolutionary equation
the FEE(1). An alternative way to investigate more compli- (24, governing the dynamics of someon-negative non-
cated cases consists in numerically integrating the PDE ~ Normalized densnp(xzt). Then itis straightforward to show
In Secs. IVB and V we shall use the results of numericafthat the relatedhormalizeddensityp(x,t), defined by
simulations in order to test the predictions of the perturbation

Inserting the ansat@0) into the FEE(1) yields

=DV?p + F(x,t)o. (24)

X,t

theory. p(x,t) = L (25)
The exact details of the numerical algorithm used in all J dxo(x.t)

our simulations are explicitly described in the Appendix of G e,

Ref. [31]. Due to this fact, we confine ourselves here to a

brief discussion of the most important aspects: The numeriis governed by the Fisher-Eigen equatidn.

cal integration scheme is based on a linear approximation of We now continue with the analysis of E@4): In order to
the partial derivatives, supplemented by a simple method thaibtain a more familiar standard form we introduce two “po-
preserves non-negativity and normalization of the probabilitytentials” by writing

density. The algorithm was tested by comparing the numeri-

cal results(i) with (exac) analytical solutions of Eq1) that UxB):=—F(x1), Uox):==Fo(x). (26)
can be found for the special case of a nondri¢®n0) qua-
dratic fithess function with Gaussian initial conditiofsee
Ref. [30] for an extensive discussion of these solutipiis) Jap )

with the exact asymptotic solution derived in Sec. Il A for ot =[-DV +Uxb]e. (27

the periodically driver(S>0) quadratic fithess function.

In all these tests the agreement between numerically an@ihe rhs of Eq(27) has a Schrédinger-equation-like structure
analytically calculated curves was very good; i.e., there wa$33,34, though, compared with quantum mechanics a funda-
virtually no difference between the numerical and analyticaimental difference is given by the fact that the left-hand side
results[e.g., compare Figs.(h) and Zb)]. is real valued. With regard to the subsequent discussion it is

These definitions allow us to recast £84) as

056118-4



STOCHASTIC RESONANCE IN BIOLOGICAL. PHYSICAL REVIEW E 69, 056118(2004)

convenient to introduce a time-dependent and time-periodic
[23] operator lnsz dX@n(X). (35)
H(t): = - DVZ+ U(x,) == DVZ+ Ug(x) ~ xSsin wt, Note thatl,,=0 holds forn=odd, if the potential is symmet-
(28) ric, i.e. Ug(X)=Uy(-x). From Eq.(34) it follows that
obeying TN S Sho v
N ~ Fo(t) = —In X0(X,t) = — — 36
H() =H(t+T) (29 T dr Jg S el

with T=27/w. Formally, the structure of the operatd(t) is 59

very similar to that of a quantum-mechanical Hamilton op-

erator (with parametergi=1 and 2n=1/D), which implies S (et

that a solution oj Eq(27) can be expressed in terms of p(x,t) = n=0 "MTn _ (37)
eigenfunctions oH. This will be discussed in the following E:FO Cr I €7

two sections.

In conclusion, for the unperturbed caSe0 the solution of
A. The case of no driving: S=0 the FEE(1) can completely be given in terms of character-
istic quantities of the eigenvalue problg2y).
Let us take a closer look at the stationary situation. As-

; . . ) : " . suming a time-independent solutipf(x) of the FEE(1), we
Since an extensive discussion of this special case with regarc*J g P PFx) e FEE(D)

to the Kramers transition problem can be found in Reg),  nd from Eq.(36) that the stationary valuég of Fo(t) is
see also in Refg33,35, we shall merely present a summary determined by the lowest eigenvalue
of the main results.

Before we deal with the general caSe-0, it might be
useful to briefly consider the unperturbed probl&m0 first.

Assuming a discrete, nondegenerate spectrum of eigen- E?,:—)\o. (39
values, as it is the case for the examples considered below,
the formal solution of the FEEL) with S=0 is given by Moreover, due to Eq(37), the stationary solutiop®(x) is
proportional togy(x), i.e.,
t . o0
p(x,t) = exp{— f dsF (S)] Capn(E™M, (30)
0 ° o ps(x) = ¢0—()O. (39

lo
where ¢, is a £%(G)-normalized eigenfunction of the time-

independent operator
B. The case with nonzero driving: S>0

Ho=~DV?+Ug(x) (31 Generally, there exist many different methods to solve
explicitly time-dependent problems of the ty(&). To name
only a few we mention here the Floquet formali$8®] and
the Kramers-Henneberger oscillating frame representation
5mn=J dX(,D:n(X)(pn(X), |3|0 ©n=N\p On. (32 [37,38, with the latter method widely applied in the theory
G of (rapidly) driven quantum problemi3].

) . In contrast, for our discussion we choose a more conven-
We have denoted by“(G) the space of square-integrable (jona) perturbative approach, which is based on the ansatz
functions onG (where in our cas&=R). In view of Eq.(21)

the coefficients

and\, is the corresponding eigenvalue, i.e.,

o(X,1) = 2 en(X)Cy(t), (40)
n=0

Cn = f dxn(X)P(x,0) (33)
¢ where the time-dependent coefficients are determined by
are determined by the initial condition. In order to identify
the exponential prefactor in E¢30), one integrates Eq30 _ *
overx%nd mak(fs use of the ﬁc)t thafx, t) ig normaﬁzezi. CnlV) = L dxen(3)e (- (42)
This procedure yields
. Because for all examples considered in this work the com-
exp{ ft dsF_o(S)} :f dxo(x,t) = S el e, (34) plete set of orthonormal eigenfunctiofs,} of I:|0 are kr_10wn _
0 G =0 to be real, we can drop from here on the asterisk in spatial
scalar products such as E@l). Inserting the ansatz40)
where we have defined the constants into the evolutionary equatio(®27) yields
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> )\n—stin(wt)+d% en(X)Cy(t) = 0. (42)
n=0

In order to obtain an ordinary differential equati@DE) for
each functiorc,(t) we multiply Eq.(42) by ¢, and integrate

the resulting equation ovex This procedure yields

o

D) + \&(b) + Ssin(wt) X Mc, () =0,  (43)
n=0

where the matrix coefficientsl,,, are given by

Myn=- J . dX@i(X)X@n(X) = M. (44)

Due to the symmetry properties of tg’s in examples with
symmetric fitness functiorf;o(x) =Fy(—x), we find thatM,

=0 holds wheneven+k=even.

PHYSICAL REVIEW E 69, 056118(2004)

i ty ti—g
cty=|1+> dtlj f dt,
i=1 70 0 0

XA(t)A(ty) -+ A(ti)] c(0), (51)

where 1 denotes the unity matrix. The diagonal matrx
does not commute witM and, therefore, also the matrices
A(t;) do generally not commute. More precisely, the matrix
elements of the commutator

[M,A]: =MA - AM (52
can be evaluated to read
[M,A]; = > (MinAndnj = Ni8inMpj) = (N = M) M.
n=0

(53

However, it is straightforward to determim€0)=[c,(0)] in

It is now convenient to introduce in the following a matrix Eq. (51) from the initial conditions, since at time=0 we

notation

ct):=[cn®],  @(x):=[en(¥)],

M:=[Minl, A =[Ay] = [Nl (45)

wheren,k=0,1,2,.... Inthis notationc(t) and ¢(x) can be

viewed ag(infinite-dimensiongl column vectors, wheredd

and A represent matrices. These conventions allow us to

have by virtue of Eq(21)

0(x,0) = EO @n(X)Ca(0) = p(x,0). (54)

In view of the orthogonality of the sdtp,} we find

cn(0) = f . dxen(X)p(x, 0). (55)

rewrite the ansate40) in the form of a column vector scalar |, particular, the choice of special initial conditions can sim-

product

(e(x),c(1): = 2 @n(x)cn(t) = e(x,1), (46)
n=0

and, moreover, the ODH3) as
c(t) ==[A + Ssin(wt)M]c(t), (47)

where, for example,

Mc(t): = [E Mmci(t)] (49)
i=0

plify further calculations, e.g., fop(x,0) ~ ¢y(X) we have
Cnsﬁo(o)zo-

In terms of the scalar produ¢t6), we can summarize the
formal solutions fop(x,t) andF(t) by

(e(x),c(t))
Z(t)

p(x,t) = . ZM=(,ct) (56)
and

F(t) = d9t|n2(t), (57)

where we used, for conveniendss[l,] with I, defined by
Eq. (35). By means of Eq(47) one can also rewrite E@57)

yields again a column vector. The well-known formal solu-as

tion of Eq.(49) is given by

t
c(t):jexp{— J ds[A+Ssin(ws)M]}c(0), (49)
0

LAWY
0= ey

We are thus able to formally write down the exact solutions
for p(x,t) andF(t). Even though the above outlined formal

(58)

whereJ denotes the time-ordering operator. Introducing thetheory in addition possesses merit for numerical studies,
abbreviation these results are of limited use in practice in order to describe
specific quantitative results. A natural obstacle is, for ex-
ample, that one usually does not have knowledge of the exact
eigenfunctionsp, of the unperturbed problem and, as well,
of related quantities such as the matrix eleménis and the

A(t) =-[A + Ssin(wt)M], (50
Eq. (49 is, by definition, equivalent to

056118-6



STOCHASTIC RESONANCE IN BIOLOGICAL. PHYSICAL REVIEW E 69, 056118(2004)

set of eigenvalue3a,. In the following we shall therefore *
pursue an approximation scheme which will enable us to Qj’(x,t):Eali(t)e"‘o‘<pi(x). (65)
estimate the relevant asymptotic behavior of the system dy- i=0

namics to leading order in the driving strengiimear re-

sponse approximation In view of the orthonormality of they; we find the following

ODE for the time-dependent coefficients
IV. PERTURBATION THEORY aqi(t) = — yiay(t) — sin(wt)Mq, (66)

The first aim of this part is to derive a perturbation expan-yhere
sion that yields approximate solutions for the asymptotic
density p?(x,t) and the asymptotic mean valué(t). This Yii= N~ Ag. (67)
will be done in Sec. IV A. Subsequently, in Sec. IV B, these .
results are applied to the single-peaked quadratic and tH@ particular, we observe that(t) =0 holds for a symmet-
single-peaked quartic fitness function, respectively. ric fitness function. The asymptotic solution of E6) for
During the following discussion, we restrict ourselvesi=1,2,... can bavritten as
to situations for which the time-independent p&g(x) of
the fitness functiorF(x,t) satisfies the symmetry property ay(t) = Mio{Lcos(wt) __ sin(wt)] (68)
Fo(—X)=Fy(x). Moreover, we demand as before that the 7.2 + w? 7.2 + o’

spectrum of the related operatdy is discrete and nondegen- Consequently, due ;=0 for symmetric problems, only

erate. terms with odd numbereids contribute in Eq(65), yielding

We attempt to expand the problem with respect to powers t %2 + w?

A. Small S expansion 1 * o
p(x,t) = - @o(X) + S Mo| 5——coqwt)
0
of the signal strengtl$. To this end we assume that we can

write the solution of the perturbed problem in the form v
v wzsm(wt) oi(X) [ +0O(S). (69)
*® i
oy = % Seixb). (59) Thus, we find for the linear respongk,33,39,40 of the re-

lated asymptotic mean value the result
Inserting this ansatz into E¢27) yields

o " —a o M| Y
9 . X(t) =S, —{ coq wt) - sm(wt)}
‘ESEQFES[— DV?+ Uy(x) — xSsin(wt)]e;. 1 lo LA +e? ¥+ o’

i=1 i=0 60 +0(S), (70
Considering the contributions of ord&r separately, we ob- where
tain the following hierarchy of equations:

it = f dxxp;(x). (72)
G

J
EQO =[DV?-Uq(¥]eo. (61)
Put differently, given the eigenvalue differencgs=\;—\g
and the eigenfunctiong;(x) of the unperturbed problem, we
i, .
atgi_[DV UgxJei +x sin(@t)e;-y (62) dynamics. Moreover, if the eigenvalue differencgsare
strongly increasing for=1,2,...,then it should even be suf-
fori=1,2,....Apparently,oq(x,t) is simply the solution of ficient to merely consider the, contribution in Eq(70), i.e.,
the unperturbed problem and, therefore, asymptotigally

erscripta M
perscripta) () ~ s Aot - 7211 _sin(ot) | = %(1).
w w
25(x,t) = exH— Ao ¢o(), (63) °on '
(72
and, thus,
This can still be simplified to
@o(X)
pi(xt) =——+0(9 =pix) + O(S). (64) SM
lo R == Twzsinmt - ), (73)
oVyitw
Next, we consider the dynamics gfi(x,t). A plausible an- '
satz reads where the phase shift is given by
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r( w) 1. Quadratic fitness function
arcta 74 . . L
¢ "1 749 Let us first consider the quadratic fithess functiegix)
he related litude f . =-ax?/2 as discussed in Sec. Il. In this case, we can make

The related amplitude function use of the well-known results for the eigenvalues and dipole

1 w1 My moments of the quantum harmonic oscillafd?], yielding

X10 maxxl(t) =- T, o i+ (75 1
AL = \'2aD<n + 5) (79
will be referred to aspartial response amplitudén the
following. This very quantity will be invoked below to and
characterize the spectral amplification for stochastic reso- D \1/4
nance[1,4]]. In particular, we shall compare analytical esti- Mo = — (_) hts el 80
mates foryqo with numerical results for théotal response kn 2a (n- Ko+ 1) ¥ ): (80)
amplitude
P Thus, we have
1
Xiot: = ZMaxc(t), (76) | a 5an M <8D)1"‘
S =1\/== =ny2abD, —=|—| ,
t ““Ngp M7 b \a

defined as the ratio between the amplitudexf) and the
driving amplitudeS. In contrast toy;o, for quartic fitness D \¥4
functions the total amplitudg,,; can only be determined by Mio= 2a (81)

means of computer simulations, since the exact sol0&@n

remains unknown. Since according to Eq82) also M;,=0 for i>1 holds, the

linear response resu{¥0) for the harmonic potential coin-

cides with the exact resulL7) given in Sec. Il. In particular,

for the quadratic fitness function the partial response ampli-
We shall now apply the results of the preceding section taude y,, precisely equals the total response amplitygg

two simple examples, representing single-peaked fitnesg/e also remark that for a quadratic fitness function there

functions. From these applications it will become clear thatexists no optimal diffusion strengtB; put differently, the

the partial response amplitugeg, from Eq.(75) can be used related partial response amplitugg,= x: €xhibits a mono-

to predict the appearance of stochastic resonance in the FENbnically increasing behavior towards saturation, see Fig.
Before we start discussing the first example, the following3(a). Consequently, stochastic resonance cannot occur for

remark is in order: Since we intend to calculgtg, we must  this particular example.

know the quantitiesu,, lg, M4q, andy;, which follow from

the first two eigenfunctions and eigenvalues of the unper-

turbed operatoH,. Unfortunately, for arbitrary fitness func-

tions the eigenvalue problem fét, cannot be solved exactly

and one has to use, for example, standard variational meth- x4

ods [42,43. For fitness functiong,(x) possessing a single Fo(x) = 9, 9- 0. (82

maximum or for corresponding potentidlg(x) =—Fy(x) ex-

hibiting a single minimum, respectively, it is appropriate to For EQ.(82) the optimization parameter is explicitly deter-

B. Application to single-peaked fitness functions

2. Quartic fitness function

We now consider the fitness function

use the orthogonal, normalized test functions mined as
/3
20\ 14 _1(3g 1
@o(X) = (;) exp(— ax?), a= 2(4D ; (83)
yielding for the linear response amplitude the result
2 1/4
@1(X) = Z(i) X exp(— ax?) (77) <4D)1’3 1 4
7T T
X107 39/ \(6D%9)R+ w?

as approximations of the first two eigenfunctions, wheliie

the variational parameter. These test functions yield Thus, in contrast to the case with a quadratic fitness function,

there exists now an optimal value
(277)1/4 (277)1/4 1 3
lo=|—1] . ={—=| , Mp=—-—F, =4Da. |w
0 o M1 o3 10 2\@ "1 a D.= 6_g , (85)

78 for which the partial amplitudey;g assumes a maximum.
These results are valid whenever test functions of the fornThis can be interpreted as the appearancgathastic reso-
(77) are applied. In particular this implies that in the case ofnancein the Fisher-Eigen model. In Fig. 3 we depict the
a quadratic fitness function or potential these become exacspectral amplification measuféd1,44 x,, for different val-
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_ — " 4 et (®=030) =
12 Fo(x)=-05x 16 Fol=-025x" 30 (>=030)
| (@=0.15)
(@=0.15)
08
=
R 0.6
0.4
02}
. , , ‘ .
0 01 02 03 04 05
(@) P

FIG. 4. Comparison between numerically calculated values of
the total amplitudeyy; (filled squares and triangleand analytical
V. i curves g (solid and dotted lingsfor the quartic fitness function

/ F(x,t)=-0.25x*+Sxsin(wt) with parametersg=1 and S=0.1.
From inspection, the numerical results do confirm the stochastic
resonance effect predicted by the partial amplitygle which is a
result of first-order perturbation theory &

V. DOUBLE-PEAKED FITNESS FUNCTION

A. Introductory remarks

(b) ' I'D ' ' In the remainder of this work we now concentrate on the
archetypal driven model of a bistable fithess function, i. e.,
FIG. 3. Partial response amplitudeg, for (a) the single-peaked
quadratic fitness functiofFy(x)=-0.52, and for (b) the single- F(xt) = Exz_ 9X4+XSSin ot abS>0xeR
peaked quartic fitness functidfy(x)=—0.25* at different driving 20 4 R ' '
frequenciesw. For the quartic weighting facta=1, see Eq(82), (86)
the maxima ofy; in (b) are located at the valu@=\w®/6. Thus,
linear perturbation theory predicts that stochastic resonance is apAs before we shall assume that all quantities are given in
sent in the case of the harmonic fitness function, but likely to OCCUiscaled, dimensionless formin the context of stochastic
for the quartic fitness function. resonanc&SR) and stochastic synchronization, this problem
has been extensively studied for Fokker-Planck and quantum
) ) processes during the past two decafles3,21,23,4h The
ues ofw. However, in order tqnumerically prove whether  phenomenon of SR originated from its possible role in the
the FEM indeed does exhibit the stochastic resonance behagxplanation for the periodically recurrent climatic changes
ior with quartic fitness function we performed numerical cal-[1,46,47. Here we deal with the question whether a similar,
culations. This is so, because infinitely many contributionsnoise-induced phenomenon may occur in biological systems
stemming from higher-order eigenfunctions of the, in thisdescribed by the Fisher-Eigen evolution equation in &y.
case, nonvanishing matrix elemeiMsg, M5, ... towards the With regard to biological evolution, the bistable model
full amplitude x;,; have been neglected. fitness function86) describes the following situation.
Nevertheless, this preliminary result does indicate that the First, let us consider the nondriven case, iS=0. Then
nonlinearity of the fitness function plays a decisive role forthe fitness functiori86) assumes the time-independent shape
the possible occurrence of the stochastic resonance phenom-
enon: The results of the numerical simulations, shown in Fig. Fo(X) = §x2 - Ex“. (87)
4, indeed confirm that stochastic resonance does occur. One 2 4

should, however, also note that the numerically found valueﬁhhus for some biological species describedighere exist
Xiot &re quantitatively not well fitted by the linear response,, o s:tates of maximal fitness a& +x., corresponding to

result y,o. _Accordlng to our opinion this deviation is due to two different phenotypes, where
the following two reasons: On the one hand, as already

pointed out above, the total amplitugg; also contains con- a
tributions of higher matrix elementsz, Mso, ... that are =\ (88)
neglected iny;o. On the other hand, the quality of the ap-

proximationy;, is also limited by the quality of the applied In the equilibrium situation most members of the species will
test functions. In other words, better estimates of the tru@ossess a phenotype close to eithgf, 6r —x,,. Deviations
eigenfunctions are likely to result in a better agreement befrom the optimal phenotypesxt are due to mutations. Fur-
tween xio: and y1o. thermore, since~, is symmetric, the corresponding time-
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0.7 : : ; : :
10 n _ D=1.00 —— ap =
06" a=1.0,b=1.0, 8=0.0 D=0.02 - | &_t = [F - F(t)]p + szp, (92)
051 . .
where the rescaled fitness function takes the form
-~ 04r
> H \
— / 4 ; } 2
E: | i ;o | X2 X )
= 03 aUAaN F(x,t)= = - = +x Ssin(wt). (93)
; 4 2 4
0.2+ / 1
01r
0 B. Results of perturbation theory

RO 0 ! 2 3 In the following we shall determine estimates for the par-
tial response amplitude;q in the two limiting cases of
FIG. 5. Numerically calculated stationary solutipf(x) of Eq.  strong and weak diffusio®. According to Sec. IV, for this
(89) for the unperturbed system witB=0. Depending on the mu- purpose we need to evaluate the quantiveg, o, ©1, and
tation parameteD the stationary distribution can either possess oney; for the operator
central peak or two symmetric peaks.
~ , Xt X
: _ o o , Ho=-DVo+—-—. (94)
independent equilibrium distributiop®(x), which is defined 4 2
as the solution of
0 =[Fo(X) - FoSlp(x) + DV2p(x), (89) 1. Strong diffusion limit
In the strong diffusion limitD — e, the influence of the
is also symmetricpS(x) =p3(—Xx). As illustrated in Fig. 5, the central well of the fithess function on the dynamics of the
explicit shape of the stationary distributigd(x) essentially system becomes negligible. This fact is also illustrated by
depends on the size of the mutati@iffusion) parameteD. Fig. 5, where it can be deduced that for large valueld ahe
Considering the influence of external drivin>0, the  stationary distribution of the unperturbed problem exhibits
explicitly time-dependent part in E¢86) can be interpreted only a single maximum ak=0. The explanation for this
as some weak external perturbation, which periodically im+esult is that due to the strong diffusion or dominating mu-
proves or decreases the fitness values of certain phenotypdations, respectively, large parts of the population occupy
Typical candidates for such effects could be periodic climatgphenotype regions with low fitness values. Therefore, if we
changes in biological systems, or also market cycles in ecoieglect the central well of the fitness functions, which is
nomic systems, to name but a few. Regarding such phenongaused by the quadratic termg(x), we are in the position

ena, one should expect that the driving period to apply the stochastic resonance results for the quartic fit-
ness function derived in Sec. IV B 2, cf. Fig. 4. In particular,
_ 2w Eqg. (85) implies that stochastic resonance effects may only
T= w (90 be observable if the driving frequenayis sufficiently large

In terms of the eigenvalue spectrum of the related opera-

characterizing the time scale of the external perturbation, isor |:|0 with potentialUq(x) =—Fq(x), the condition of “strong
very large compared with the lifetime of members of thediffusion” can be conceived as follows:

species. Hence, in such cases b&tand o will be very

“small” parameters, intuitively justifying the use of the per- No > Up(0) =0, (95)
turbation theory outlined above.

In the following section we shall discuss results that havevherex,=0 is the position of the local maximum afq(X).
been obtained by applying this perturbation theory to theOn the other hand, if there exist sufficiently many eigenval-
Fisher-Eigen equatiofl) for the double-peaked fitness func- U€SAg<A;< - <\, such that
tion (86). Beforehand, it is useful to introduce the scaled

quantities A <0, (96)
X - D then we shall speak of the “weak diffusion limit.” This con-
X=—, T:taxﬁv D=—, vention is in agreement with the notion of “deep” and “shal-
Xm X low” potentials in quantum mechanics.
- S ® ~ 2. Weak diffusion limit
S=—, w=—5, P =Xy px1). (91)
axg,

For the opposite limit of weak diffusio — 0, corre-
sponding to deep potentia(¢hat is, potentials with a high
This is equivalent to setting=b=1. For the sake of conve- barrien, there exist several methods to obtain the quantities
nience we drop all tildes to obtain the following rescaledM, 1o, w4, and y;. As before in Sec. IV B 2, we put the
version of the Fisher-Eigen equatiob): variational method to work, using the orthogonal functions

aXm
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N, = ' ' R 2 4
eolX) =" {extl~ alx— 1%] + exf - a(x+ 7]} B Np-o Fol)=0mx-029
\
(972 g
[3]
£
Nl 2 2 g
e1(X) = ={exd - a(x- 1)7] - exd - a(x+ 1)°]} =
V2 2
=
(97b)
as approximations of the first two eigenfunctions, wheliie 05 - ‘ s s s s
the variational parameter and o 02 04 06 08 1 12
- -1/2 [ -1/2 @ P
NO: _(1 +e_2a) ) le _(1_9_2[1) ' P 4 w=1.0
2a 2a 8l  Fy(x)=0.5c" - 0.25¢ 0.7
. =0.5
(98) . _l} &8_?
are normalization constants. These test functions yield % o=
g7\ 1 8r\¥4 1 g
'o:<—> T m:(—) Nl <
a Vvl+e o Vl-e 2
1
Mio=~T— (99)
10 \‘rl — e—4a
and the eigenvalue difference emerges as ®) b
3 - 20+ 320°D FIG. 6. Stochastic resonance in the weak diffusion limit for the
v = W (100 double-peaked fitness functidf(x,t)=0.5¢—0.25¢+x Ssin(wt).
o o

Diagrams(a) shows the analytical linear response estimates for the
Hence, the partial response amplitugg can be written as ~ Partial amplitudey;, obtained by applying the Ritz method. Dia-

gram(b) depicts the corresponding numerically calculated total am-
1+ coth @) plitude x;ot for driving parameter§=0.1. According to diagrarnte),
T 5 2" the analytical estimates foyo indicate the possibility of stochastic

2\s'y%+w . o s
resonance provided the driving frequency dsfficiently large

Unfortunately, for the operatq®4) the optimization param- «>0.1. As shown in(b), the numerical results confirm the exis-
eter & cannot be calculated analytically, because the RitZence of a weak stochastic resonance effect in the case of external
variational condition leads to a transcendental equationfor Nigh frequency driving, i.e., foi=0.7.
Using a harmonic approximation near the minimalgfx)

X10 (101)

yields lar, these observations provide evidence that, in principle,
also in the weak diffusion limit the simple(two-

|Ug(Xm)| 1 eigenfunction linear response approximation can be used to

sD  Vap’ (102) predict whether stochastic resonance for the bistable quartic

fitness function in fact occurs. The significant quantitative

and, therefore, deviation of the analytical estimatgs, in Fig. 6a) from the

3D+ 1 exact(numerically determinedvaluesy;,; in Fig. &b) is due
y, = (\—)_ (103  tothe same reasons as discussed at the end of Sec. IV B 2. In
4 sinn(1/\D) particular, the breakdown of the perturbation theory Ebr

— 0 comes as no surprise, for it was recently sh¢@®4Q
that applicability of the linear response method is restricted
to the parameter region/S> 1.

In Fig. 6 we depict the comparison between the partial am
plitude x10, based on this estimate ¢f, and the numerically
calculated full amplitudey,,. As seen from Fig. &), the
partial amplitude result does predict the existence of a sto-
chastic resonance regime, provided that the driving fre-
quencyw is sufficiently large The corresponding numerical
results for the total response amplitugg, confirm this the- In this work, the phenomenon of stochastic resonance in
oretical prediction. This becomes clear from Fighpwhere the FEM has been identified. In the FEM the evolutionary
the lines with w<0.5 exhibit a monotonically decreasing dynamics of an ensemble is governed by a global coupling.
behavior. In contrast, the curves with=0.7 andw=1.0  Therefore, the dynamical equation of this model has the form
show a weak local maximum; i.e., stochastic resonance chaof a nonlinear partial differential equation for the population
acteristics are emerging for this set of parameters. In particudensity and is composed of a homogeneous part and a diffu-

VI. CONCLUSIONS
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sive part. The dynamics of the nonlinear Fisher-Eigen equa- According to the results of Sec. V, linear response theory
tion can equivalently be mapped onto a linear equationcan also be used in order to predict stochastic resonance
Thus, the occurrence in this type of nonlinear master equaeffects in the case of a double-peaked, quartic fithess func-
tion is distinctly different from stochastic resonance in glo-tion. Here, a weak stochastic resonance effect is observable
bally coupled Fokker-Planck mean-field-type situatiph§]  only if the frequency of the external signal is sufficiently
and also distinct from the phenomenon of spatiotemporalarge. This result follows from the linear perturbation theory
stochastic resonance in coupled nonlinear, dynamical, andith respect to the driving amplitudg, and has been cor-
excitable system$48-57. It could be shown both analyti- roborated by numerical simulations of the Fisher-Eigen
cally and numerically that in the presence of periodic drivingequation. We therefore conclude that, although the quantita-
the FEM can feature stochastic resonance effects. tive agreement is essentially limited by the quality of re-
In particular, we have calculated the exact asymptotic soguired eigenvalue approximations, linear response methods
lution for the case of a simple quadratic fitness function within principle provide a useful tool to predict the appearance of
sinusoidal driving. A main finding is that for this quadratic stochastic resonance in the FEM.
fitness function stochastic resonance effect:dpboccur. In
contrast, for the more complicated case of_ a smgle—pea_ked, ACKNOWLEDGMENTS
quartic fitness functioiSec. IV B 2 stochastic resonance is
observable. Moreover, this phenomenon can be quantita- This work was supported by the DFG via the collabora-
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