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‘We consider the statistical properties of action potentials generated by clusters of sodium
and potassium channels due to channel noise and/or external stimulation. Since the
fluctuations are related to the cluster size, a size-resonance effect — analog to stochastic
resonance — is observed that facilitates optimal decoding of small external stimuli at
optimal cluster sizes. Furthermore, in analogy to the coherence resonance effect, the
channel-noise induced firing patterns exhibit a resonant-like temporal coherence as a
function of the cluster size even in the absence of a periodic stimulus. In the presence of
additional synaptic noise, SR occurs only for large cluster sizes which possess suboptimal
internal noise levels.

Keywords: Excitable membranes; ion channel clusters; channel noise; spiking rate; in-
trinsic coherence resonance; intrinsic stochastic resonance.

1. Introduction

Clustering of ion channels is a frequently observed phenomenon in nature. It occurs
naturally in myelinated neurons, where the active sodium channels are concentrated
at the nodes of Ranvier acting as signal boosters. But it also occurs in neurons
that are not myelinated, e.g. in retinal neurons, where myelination would interfere
with vision [1]. The mechanisms for clustering of ion channels and receptors are
subject of current investigations in neurobiology and cell-biology. Some theories
are based on attractive interactions between the channel proteins [2], others on
the formation of micro-domains (“rafts”) in the membrane with higher affinity for
signaling proteins, and still others the involvement of the cytoskeleton anchoring
the channels by a sub-membrane undercoat [1]. In this paper we review recent
papers that explore the novel idea that ion channel clustering enhances neuronal
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information encoding [3,4]. In these papers, it has been shown that small signals
may be better detected by smaller clusters of ion channels. The essential idea
is based on the theory of stochastic resonance [5,6]. A subthreshold signal can
be encoded by an excitable system when an optimal amount of noise is added to
the signal. In the case of ion channel clusters, the fluctuations are generated by the
thermal opening and closing of ion channels. The number of ion channels determines
the amplitude of the fluctuations of the membrane potential. Thus instead of tuning
the noise, one can tune the size, resulting in a system-size resonance first reported
in [3,4,7] (see also [8,9]). While the principle idea is straightforward, there are some
more subtle issues in transferring the concept of excitable systems and stochastic
resonance to small systems. For large clusters, action potentials are generated
when the membrane potential exceeds a threshold value. As the ion channel cluster
becomes smaller, the threshold softens and becomes conceptually irrelevant. The
threshold-crossing criterion is replaced by a criterion based on channel kinetics [10].
Second, the relation between size and noise is not simple and monotonous. The
spontaneous spiking rate as a function of the cluster size exhibits a maximum.
A sequence of detailed studies of this novel form of stochastic resonance, for the
particular case of clustered sodium and potassium channels, is being reviewed in
this paper. In Sec. 1 we will briefly introduce the stochastic Hodgkin—Huxley model.
In Sec. 2 we will discuss and evaluate some of the methods of solution. In Sec. 3 we
review previous results and present some novel results.

2. The Stochastic Hodgkin—Huxley Model

We adopt the classic model for the ion channels introduced by Hodgkin and Huxley
that mimics the potassium channel by four identical gates that stochastically switch
between an open state and a closed state. The probabilities p,, for the four gates
n =1,2,3,4 to be open are described by the rate equations

Pu(t) = — (ax(v) + B (v)) pu(t) + ax(v), (1)

where ax (v) and Ok (v) are the membrane-voltage v dependent opening and closing
rates
0.01(10 — v)

exp ((10 — v)/10)

The trans-membrane voltage v is measured here and in all equations below
in mV with respect to the physiologic cellular resting potential of —65mV. The
potassium channel is open only when all four gates are open, i.e. with probability
P1p2p3p4.

The sodium channel consists of four gates. Three identical fast gates increase
their opening probability ¢,, n = 1,2, 3 when the voltage v becomes larger than the
resting potential. The slower fourth deactivation gate decreases its open probability
g4 when the membrane potential increases. The gate variables obey the following
rate equations:

ax(v) = — . Bi(v) = 0125 exp (—i) . (2)
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with the opening and closing rates

0.1(25 — v)
exp ((25 —v)/10)

alf\la(v) = —> ﬁf;a(v) = 4.0exp (—i) ,
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1
B exp ((30 —v)/10) + 1~

ofa(v) = 0.07exp (—35) () )

20
The membrane voltage is measured in mV with respect to the resting potential.
Although each individual ion channel opens and closes independently, the open-
ing and closing rates (for the n gate, they are «,, and ,) are regulated by the
same membrane potential. As a consequence, all ion channels are globally coupled
through the membrane potential. For the density of the sodium and potassium chan-
nels (number of channels per area) we use px. = 60 um~2 and pg = 18 um~2, re-
spectively. The single-channel conductances of the sodium and potassium channels
are given by Yna = Yk = 20 pS. Using a membrane capacitance of ¢ = 1 uF/cm? [11]
we end up with the following equation for the membrane potential

p— (MK ey M ey L)) b, )
v=——"2—((Ww—-w —2  (p—vw — (v—w lex )
Tk Nk K TNalVNa Na TL ! ¢

where Ioxt = Ciext(t) denotes an externally applied current per area of the membrane
and vV = —12mV, vy, = 115mV,v; = 10.6 mV the reversal potentials of the

potassium systems, sodium system and leakage system, respectively. The time
constants are given by

1
TK = %ms,
1
TNa — Eoms,
7, = 3.3ms. (6)

The numbers of open K* and Na® channels, NpP" and NP, respectively,
have to be determined as a function of time by stochastic simulations with methods
described in the next section.

The time scale of synaptic noise is about one order of magnitude smaller than
channel noise (see e.g. in [12]). Thus we can consider synaptic noise as Gaussian
white noise &;(t) with

(1) =0,
(€ (D)8 (t)) = oot — 1), (7)

where o5 describes the strength of the synaptic noise. Since synaptic noise leads
to elementary events in the synapse that are integrated, it has to be added to the
right hand side of Eq. 5, i.e.

0= — (N}C;pen (U _ Urev) + Nl(\)]z—en (U — ,Ulr\«]e:) + i (U - Ul)) +icxt(t) +§s(t) . (8)

K
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2.1. Tracking the number of open ion channels

In order to integrate Eq. 8, the number of open potassium and sodium channels
needs to be determined. The simplest and most accurate method is to simulate
each gate of each channel under the assumption that the opening and closing of
the gates is a Markov-process. This method is inefficient since many simulated
transitions of gates do not change the state of the channel (open or closed) and
thus have no impact on the membrane voltage. More efficient schemes are based
on representing the cluster of ion channels by the occupation numbers of channel-
states. The potassium channel can be in five different states, 19,1,2,3,4, which are
characterized by 0, 1,2, 3, 4 gates open. Given the opening and closing rates of each
gate by ax and Ok (see Egs. 2), transition rates between the four states can be
easily obtained. The kinetic scheme of a potassium channel is shown in Fig. 1.
Similarly, the sodium channel, is characterized by the kinetic scheme in Fig. 2. The
difference to the potassium channel is the slow deactivation gate that leads to a
more complicated kinetic scheme.

4oy, 3an 20, Qn

[120] G [n1] 2, [122] 2, 23] . [14]

Fig. 1. Kinetic scheme for a stochastic potassium channel.

3am 20m, Qm,
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3om 200m Am
[moho] — [mlho] — [mgho] ?’[mgho]

Fig. 2. Kinetic scheme of a sodium channel.

The states of the sodium and potassium channels in the cluster are fully specified
by the numbers of potassium channels [ng] in the states n; and the number of
sodium channels [m;h;] in the states m;h;. The number of activated potassium
and sodium channels is given by [n4] and [msh,], respectively. Let, for example,
the transition rate between the two states S; and S be vs,s, and the populations
of these states be [n1] and [nz]. Then, the probability p that a channel switches
within the time interval (¢,t + d§t) from state S7 to Sz is given by p = vg,5,0t. The
probability that, [dn12] = [n1(t)] — [n1(t + 6t)] = [n2(t + 6t)] — [n2(t)], channels
switch from state S to state Sy in the same time interval satisfies the binomial
distribution

P([6n1a]) = (%2]12}) plomal(] — p)(fml=lomaa]) (9)

Thus the number of switching channels between the states is sequentially drawn
from binomial distributions. If the cluster of channels is large i.e. [n1] is large, the
number of switching channels is also large in the average. Thus, in the time interval
0t larger channel clusters experience more transitions.
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In order to update the state of the population of ion channels with time, we
have to create rules in what sequence the states are updated. The simple stochastic
methods, described in the previous section, does not require such rules. In order
to enforce positive occupation numbers we update the occupation numbers sequen-
tially, starting with the process with the largest rate and so forth.

2.2. Langevin approach

Based on a the truncation of a Kramers—Moyal expansion of the master equations
for single gates, Fox and Lu [13,14] have derived the following set of Ito—Langevin
equations for the gating variables n,m and h for large ion channel clusters (i.e.
when the number of channels in the cluster is large)

o an(l=n) = Ban + 7, (1),

dt

d —

Th=on(l=h) = Buh+7,(1),

d —

2 = (L =m) = Bum + G (1), (10)

where the variables g, (t), g5, (t), g,,(t) denote Gaussian, zero-mean white noise with

2 a,fn

(9, (0)7, (")) = Ne o + 5, ot —t),
T 0,)) = o 501,
GO (0) = o b 1) (1)

Here Nk and Ny, denote the total number of potassium and sodium channels.
It is necessary to include restriction to guarantee that m, n and h do not leave
the unit interval [0, 1]. The differential equation for the membrane potential is
the classic Hodgkin-Huxley equations where m3h determines the fraction of open
sodium channels and n* the fraction of open potassium channels, i.e.

1 1 1
0=— <_n4 (v—v) + —mPh (v — V&) + — (v — U1)> +iext () +&s(t) . (12)
TK TNa L

Equations (10), (11), (12) have to be integrated numerically in order to predict a
neuronal spike train with the spikes occurrences at t;, ¢ = 0, ..., V.

3. Results
3.1. Spike rates

While in the original, deterministic Hodgkin—-Huxley model action potentials occur
only for external current stimuli that exceed a threshold, the intrinsic channel noise
can initiate spontaneous spikes even in the absence of external stimuli [15-19]. The
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Fig. 3. The mean spiking rate k& which is given as the inverse of the mean interspike interval,
cf. Eq. 13, is plotted against the number of potassium ion channels for Iext = 0 (solid lines) and
Text = 10 A /cm? (dotted lines) using direct Markov simulations (a) and the Langevin approach
(b). The vertical line in Fig. 3(b) corresponds to the maximal Nk in Fig. 3(a).

mean interspike interval, i.e.

N

) 1
(T) = lim ;(ti —ti-1), (13)
becomes a function of the number of ion channels. The inverse mean interspike
interval defines the spiking rate k = 1/(T). Fig. 3 shows the dependence of the
spiking rate k on the number of potassium ion channels Nk (the number of sodium
ion channels Ny, is kept proportional, Ny, = %NK, to the number of potassium ion
channels). For o = 10 uA/ cm? the kinetic scheme simulations and the Langevin
approach shows pretty good agreement except for small clusters Nx < 10. For
vanishing external current (lexy = 0) the methods do not compare as well. Sim-
ilar discrepancies between the master equation description and the corresponding
Fokker—Planck approximation in a weak noise limit are known for a long time [20].

The spontaneous spiking rate & becomes a non-monotonic function of the size
of the cluster. It shows a distinct maximum near Nx = 7, cf. Fig. 3(a), within
the stochastic kinetic scheme description. For a small number of ion channels, the
stochastic opening of a single sodium channel results with large likelihood in an
action potential. Therefore, the rate of spontaneous action potentials initially in-
creases with the number of channels. For a larger number of ion channels, however,
the common membrane voltage couples the random opening and closing events
more tightly. This results in the collective events stemming from a larger portion
of ion channels available at the same time. In the corresponding regime, an ex-
ponential decrease of the spiking rate occurs with the increasing patch size for a
deterministically subthreshold driving Ioy; < 6.26 uA/cm?. Since the generation of
spontaneous action potentials is caused merely by the channel noise stemming from
the fluctuations of the number of open ion channels, a decreasing noise level or an
increasing number of ion channels, respectively, leads to a less probable activation
of the cell membrane. With an additional, externally applied positive and con-
stant current, the barrier crossing to excitation becomes generally more probable.
This results in increasing spiking rate. In the regime of super-threshold constant
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Fig. 4. Same figures as Fig. 3 but for the coefficient of variation C'V, cf. Eq. 14.

current driving ey > 9.762 uA/cm? a different effect takes place. Here, for large
clusters, where the spiking events are determined by the excitable properties of the
macroscopic Hodgkin—Huxley description of the neuron, the spiking rate decreases
with increasing cluster sizes to approach an asymptotic value. For small cluster
sizes it increases with increasing cluster size for firing events are determined by
single-channel kinetics (see discussion above and Fig. 3(b)).

3.2. Coherence resonance

We next address the regularity of spontaneous action potentials. A proper measure
is the coefficient of variation, C'V, a measure of coherence, which is given as the
ratio of the standard deviation of interspike time-intervals from the corresponding
mean value to the mean value:

(12) - (1)?

V="

(14)

In (14), (T?) := % > (t; —t;—1)? is the mean-squared interspike interval. For a fully
disordered point process (the case of Poisson process) the coefficient of variation
CV assumes the value CV = 1, while for more ordered processes it assumes smaller
values and for a deterministic signal C'V’ vanishes.

Figure 4 depicts the coefficient of variation for different constant driving currents.
The CV reveals the phenomenon of intrinsic coherence resonance [3,4]. At an
optimal dose of internal noise, i.e. an optimal number of ion channels, the CV
for Iyt = 0 exhibits a minimum, where the spike train becomes distinctly more
ordered. This maximum in temporal coherence occurs at a cluster size at which
the spontaneous firing rate exhibits the maximum. For increasing applied external
constant current the spike generation becomes more rhythmic. For a strong driving
Iext > 9.763 uA/cm?, CV tends to zero in the limit of infinite numbers of ion
channels, cf. Fig. 4(b).

3.3. Stochastic resonance

After studying the impact of constant current driving we focus next our attention
on the effect of stochastic resonance (SR). We address the effect of genuine intrinsic
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Fig. 5. The signal-to-noise ratio SN R and the spectral amplification n of an external subthreshold
sinusoidal stimulus with amplitude A = 1.0 uA/cm? and angular driving frequency Q = 0.3 ms~!
for different observation areas: (a) and (c) no synaptic noise; (b) and (d) the SNR and 7 versus
the synaptic noise for the system sizes indicated by the arrows in (a) and (c): Nx = 144, solid
lines through the crosses; Nk = 288, long dashed line connecting the pluses; Nx = 576, short
dashed line through squares; Nx = 1152, dotted line connecting the triangles. The situation with
no internal noise (i.e. formally Nx — o0) is depicted by the dotted line connecting the circles.

stochastic resonance, where the response of the system to a subthreshold external
stimulus is optimized solely due to internal, ubiquitous channel noise. Therefore,
we apply a sinusoidal driving current to the cell membrane with the ion channel

cluster:
Toxt(t) = A sin(Qt), (15)

with the driving amplitude A and the angular driving frequency €. Such a driving
influences the spiking rate and the relative fluctuations of the spikes. A quantitative
measure of the encoding of the sinusoidal signal in the spike train can be derived
from the power spectrum S(w) given as:

2
. 1 —twty
S(w) = lim T zn:e , (16)

T—oo

with T is the total integration time and the t,, denote the times of spike occurrences.
Most notably, we found a narrow peak at the driving frequency 2. Due to the finite
length of the spike trains, this peak is not d-shaped, but is slightly broadened. From
S(w) we compute the signal-to-noise ratio SNR and the spectral amplification 7
(ratio of the powers at the frequency € of the spike train and the ac-signal).

In the absence of synaptic noise, cf. Fig. 5(a) and (c), we discover the effect of
genuine intrinsic stochastic resonance, where the response of the system to the sub-
threshold external stimulus is optimized solely due to internal, ubiquitous noise.
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For the given parameters, SR in the spectral amplification of signal occurs for
Nk ~ 180 and in the signal-to-noise ratio for a different value Nk = 580. Starting
from Nk ~ 180 the growing internal noise monotonically deteriorates the amplitude
of system response at the driving frequency. Moreover, upon reaching Nk = 580 it
deteriorates the quality of signal transduction which is measured by SN R.

Under such circumstances, one would predict that the addition of an external
noise (which corresponds to the conventional situation in biological SR studies)
cannot improve n and SN R further, i.e. the conventional SR will not be exhibited.
In order to verify this prediction, we add synaptic noise. The corresponding results,
depicted in Fig. 5(b) and (d) fully confirm the above prediction. Conventional SR
therefore occurs only for large ion channel clusters beyond an optimal size and it
reaches a saturation in the limit Nx — oo (limit of the deterministic Hodgkin—
Huxley model).

4. Conclusions

In conclusion, we have investigated stochastic resonance in a stochastic general-
ization of the Hodgkin—-Huxley model. The spontaneous fluctuations of the ion
channel conductance due to individual stochastic ion channel dynamics has been
systematically taken into account by two methods: firstly, we have simulated the
evolution of the membrane potential based upon a Markov-simulation of the kinetic
of the potassium and sodium ion channels, secondly, we have followed a Langevin
approach. Within the both methods we have shown that the excitable membrane
patches exhibit a spontaneous spiking activity due to the omnipresent internal noise.
The main results of this study refers to the phenomenon of intrinsic stochastic reso-
nance. Here, the intrinsic channel noise alone give rise to SR (see Fig. 5). Moreover,
SR induced by synaptic noise only occurs for sufficiently large clusters of ion chan-
nels, where the internal noise strength is not at its optimal value.
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