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Is the dynamics of open quantum systems always linear?
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We study the influence of the preparation of an open quantum system on its reduced time evolution. In
contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into
a product of a system density matrix and a bath density matrix the time evolution generally is no longer
governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be
cast into the form of a linear map plus a term that is independent of the initial density matrix of the open
guantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master
equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are
elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected
to an external field. The second spin represents the environment. The field allows the preparation of mixed
density matrices of the first spin that can be represented as a convex combination of two limiting pure states,
i.e., the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced
density matrices onto the corresponding density matrices of the total system is affine only for vanishing
coupling between the spins. In general, the set of the accessible total density matrices is nonconvex.

DOI: 10.1103/PhysRevA.69.052109 PACS nuniber03.65.Yz, 05.30.Ch, 02.50r

I. INTRODUCTION another one for the environment, and if a sufficient number
) o of pure states can be prepared. The assumption of linearity is
Closed systems are knov_vn to l_)e an_ldeallzat|0n- In 9€Ny prerequisite of a Markovian dynamics and of complete
eral, real systems interact with their environment and eXh'b'bositivity [12,13. These properties then lead to the math-
properties that cannot be observed in finite closed systemamatically well characterized class of Lindblad master equa-
such as irreversibility of the time evolution and, related, thetjons. From the physical point of view, however, these equa-
relaxation of observables toward stationary values angions suffer from certain deficiencigs0]. They are restricted
dephasing, or decoherence. Various techniques have been gg-he regime of weak coupling between the considered sys-
veloped to treat the dynamics of open systems without eXtem and its environment. In particular, the weak-coupling
plicitly considering the full Hamiltonian dynamidd]. For  assumption will fail at sufficiently low temperaturfiss, 15.
example, effective equations for the reduced density matrifioreover, there are various general statistical-mechanical
of the considered open system, known as master equationgsoperties that are incompatible with the assumption of a
have been proposed long afi-4] and still are of consider-  \jarkovian dynamicg16].
able_ interest because of their conceptqal s?mp_licity and po- A few microscopic models of systems interacting with
tential usefulnes$s,6]. New challenges in this field of fun- thejr environment can be exactly reduced to Lindblad master
damental physics have come from nanotechnolp@yand  equations with time-dependent coefficiefitd, 18, thereby
quantum computinga]. describing the single-time non-Markovian reduced dynam-
Any equation determining the time evolution of a density jcg
matrix has to obey severa_\l general prope_rti_es Whic_h_ guaran- The dynamics of an open system is determined by both,
tee that the density matrix stays self-adjoint, positive, andhe full dynamics of the considered system interacting with
normalized in the course of time. These general propertiegs environment and the initial state of the complete system.
still leave much freedom and, in order to further restrict pos-The significance of the initial state was emphasized in sev-
sible dynamical laws, additional requirements for the dynamera| works[19-27. In an experiment this initial state is im-
ics have been postulat¢d]. One seemingly natural property posed by a preparation procedure. Here we will be concerned
that often is assumed without even being mentioned is thgnly with equilibrium preparations that lead to a thermal
linearity of the time evolution, which generally is understood equilibrium of the total system in the presence of external
as a consequence of the linearity of the Schrodinger and thgs|ds that only act on the system and that are switched off

Liouville-von Neumann equation for closed systems. Thisinally. In this way, the initial state is described by a canoni-
argument, however, only works by analogy and no proof ofcg| density matrix:

the necessity of this requirement is available. Just on the

contrary Pechukagl0,1]] has recently shown that linearity E_o-1 _ _ v

may only hold if the initial state of the total system factorizes pr=2ex 'B(H ; lel) ' (1)
into a product of a density matrix for the open system and

where g is the inverse temperaturkl, the Hamiltonian gov-
erning the dynamics of the total systeRw (F;) are external,
*On leave from Departamento de Fisica, Universidad Nacionali.e., classical, fieldsX; the corresponding conjugate opera-
Bogota, Colombia. tors of the open system, artETr exg-B(H+Z; F;X))} is
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the partition function of the total system. Here, Tr denotessigns to each reduced initial density matfix one that be-
the trace over the total system. In this way, initial states olongs to the total system:

the total system are reproducibly prepared. The system is

in thermal equilibrium with the environment at a given p=Rips). ()

temperature and is additionally constrained by the externajhe particular form of the blow-up map depends on the ini-
fields Fj. The set of density matrices that can be obtainedja| preparation of the system. Expressing the initial total
upon variation of the fields forms the equilibrium prepa- density matrixp by the reduced initial state with the help of

ration class. The reduced states belonging to this preparghe blow-up map one obtains the reduced time evolution of
tion class are determined by the trace over the environthe system:

ment, which is denoted by dr
ps(t) = Trg UMR(pU'(1). (8

pg = TI’B pF. (2) . : [T i

The reduced time evolution is linear only if the blow-up map
The calculation of this trace is nontrivial in most cases and ifs linear.
general does not lead to the canonical distribution of the Taking into account the structure of generalized master
uncoupled systen®Z g'exp{-BHsg} [14,28-30, whereHsis  equations that may contain an inhomogeneous term one may
the Hamiltonian of the system in the presence of the exask whether an affine time evolution could possibly provide
ternal fields andZg the respective partition function. This a relevant class of time evolution laws. Any affine time evo-
particular form is obtained only in the limit of weak cou- lution of the reduced density matrpg(t) can be written as
pling between the system and the environmg)29,31.  the sum of a term linear ips and another one independent of
In this limit, the equilibrium density matrix of the total ,g j.e.,
system factorizes into a product of a system and an envi-
ronment density matrix. This is an example of the factor- ps(t) =T(Hps+ (1), 9
izing preparation which leads to a product of a particula
density matrix of the environmemi and an arbitrary den-
sity matrix pg of the system:

rwhereT(t) is a linear operator antt) is independent ops.
So affine time evolutions are apparently more general than
linear ones. An affine time evolution as described in .
will result only from an affine blow-up map. Hence, one may
ask under which conditions the blow-up map is affine.
The factorizing preparation is assumed in most theoretical An equivalent characterization of affine blow-up maps
investigations though it is often difficult, if not impossible, to can be given in the following way. Because a density matrix
realize it experimentally. is a positive normalized operator, we require that the
A more general class of preparations has been suggestetbw-up mapR acts on a convex set of reduced density ma-
in the context of the path-integral approach to open systemsices, i.e., a set that contains with each pajr and pg, all
[22]: convex combinations.pg +(1-\)pg for all 0<A<1. We
o e assume next that the considered preparation provides such a
p-= E Ojp O;, (4) convex set of reduced density matrices. For any particular
] preparation one has to check this property. We then further
where pf is defined as in the equilibrium preparation, Eq. May ask under which conditions the blow-up mBppre-

(1), andO; andO are operators that only act on the system'sS€IVes the convexity condition. Put differently, under which
Hilbert space. For applications of this preparation class wéonditions a full density matrix that corresponds to a convex
refer the reader to Ref22]. combination of reduced density matrices again is given by a
The state of the open system after the preparation resul&nvex combination. Then the preparation class also forms a
from the density matrix of the full system at that time by COnvex set. For such a convex blow-up map one obtains

fac —

p'*°= pspp. )

means of the trace over the environment, i.e., RIAps1+ (1 =N)pss] = AR(ps 1) + (1 -MR(ps,). (10)
ps(t) = Trg U(HpUT(D), (5)  This then implies that the blow-up map is affine:
where R(p9) =Lps+ ¢, (1)
u() = ex;{— i—Ht} (6) vv_hereL is a linear operator that maps reduced density ma-
trices onto full density matrices anglis an operator of the

, ) . . full system. A proof of this statement is given in Appendix
is the unitary time evolution operator of the full system andp

p(0)=p the density matrix resulting from the preparation. We note that the mixing parameterhas to be identical
_ According to Eq(5), the reduced density matrix at time  on, the left- and on the right-hand side of Eg0). This is a
is a linear image of the initidull density matrixp under the  ¢onsequence of the fact that the traceRgps) over the Hil-

successive action of the unitary time evolution of the full her gpace of the environment must coincide with the system
system and the operation of the trace. In order to obtain @ensity matrixps;

map from the initialreduceddensity matrixps to its value at
a later timet, we introduce théslow-up map R(ps) that as- Trg R(ps) = ps. (12
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For the factorizing preparatiof8) the blow-up mapRis  which the respective blow-up ma(ps)=p is convex. We
always linear. It simply acts as the multiplication by the ref-recall that the blow-up map is determined by the preparation
erence environment density operajay. In the case of a process of the system. In the process of a preparation the
classical system dynamics the role of density matrices istate of the system is controlled by external fiekshat
taken over by probability densities defined on the respectivédeally act only on the system, as given in Ed) for the
phase space. Then, any preparation can be characterized bggquilibrium preparation. For the considered spin one can
conditional probability density(x|xg) for the statex of the  think of static magnetic fields. For interacting spins, the two
total system given the statg; of the system{19-21. The  Bloch vectors and the correlation matrix will depend on the
corresponding blow-up maR is then given by the multipli- applied magnetic field.
cation with this conditional probability and, hence, is always We next investigate the requirement of the convexity of
linear. No such simple construction scheme is available irthe blow-up magR. A necessary condition for this property
quantum mechanics and Pechuk&8] showed that the fac- to hold is the convexity of the domain of definition &f This
torizing preparation is the only one for which the blow-up implies that for any pair of reduced density matriqé;‘s, k
map is linear, provided that a sufficient number of pure states 1,2 that result from two different values of the field, all
of the reduced system are contained in the preparation classonvex linear combinations can be prepared by means of at
For the convenience of the reader, the precise formulation deast one other valug; of the field:
the theorem and a proof is given in Appendix B. . . .

In the present work, we will consider the influence of the ps®=Npst+ (1 =N)pg?, 17

prepa(ation of an open quantum system on its re_duced Fim\?/ith F5 depending on the field§,, F,, and \. Using the
evolution by means of the simple example of two interactin eneral form of the reduced density matrix in Eg6) one

spins. One of those is co'nsidered as the system, the_other Ofifids a respective equation for the Bloch vectors, reading
plays the role of the environment. The second spin is only a

very crude caricature of a true environment which clearly Si(F3) =AS;(Fy) + (1 = N)Sy(Fy). (18

fails to cause dissipation or dephasing in the system because _ . . .
of its finiteness. Nevertheless, it suffices to illustrate the inNOte that for the equilibrium preparatid(F) is a uniquely

fluence of the preparation on the subsequent dynamics of tHfined function of the field=. This is the case because the

system. derivatives of the Bloch vector components with respect to
We assume that the total system starts from an equilibthe field components form the susceptibility matrix, which is

rium preparation, i.e., its initial state is described by a den&n invertible matrix in thermal equilibrium. Henc,(F) has

sity matrix of the form of Eq(1). It will be shown that in & uniquely defined inversg(S,).

general this preparation renders the time evolution of the We study the further consequences of the convexity con-

reduced systemonlinear. dition (10) of the blow-up map for the spin system in the

equilibrium preparation. Using Eq$17) and (13) for the

total density matrix of the full system in EL0) one finds

the following relations for both the Bloch vector of the sec-
Both interacting spins oy=(0y,0),0)) and o, ond spin and for the correlation matrix:

=(o}, 03,05 with Pauli spin matrices’,, a=1,2,i=X,y,z, _ _

are of total lengtrs=1/2. Thefirst spin o, is considered as S2Fg) FAS(Fy) + (1 =NS(Fa),

the system and the second omrg takes over the role of the

II. TWO SPINS

environment. Every density matrix of the total system then C(Fg) =AC(Fy + (1 -MC(Fy). (19)
assumes the form HereF; is defined by Eq(18). The nontrivial conditiong19)
_1 in general will not be satisfied. Expressing next the fidids
==(1+S, - + . + .C- , 13 ~
p=31+S- 0+ S 0yt 00 Co o) (13 by those Bloch vector§, =S,(F;) that result for the respec-
where tive fields we find, by use of E¢18), the following relations
for the Bloch vectors of the second spin and the correlation
Sa=(00) 14 matrix:
denotes the Bloch vector of the spirr1,2 and thematrix
P SIS+ (1 -V =SS + (1 -N)SLS3],
C=(0,0y) (15
denotes the correlation matrix of the two spins. The dot prod- CINS+(L-M)S{=AC[S{]+ (L -MC[S]. (20

uct denotes the scalar product in three dimensions, €.94ereb : : -
- . . y we introduced the notatio®,[S;]=S,(F) and
Si-e1=Sjoy +S{o]+Sjoj. The reduced density matrix of C[S;]=C(F) where the dependence on the external fieid
:Eg zgzganrg fss )gnl \;iré ?}i;@g g:ggn?gser the environniget, expressed by the corresponding, equivalent value of the
Pl Bloch vectorS; =S, (F). From these equations it follows that
ps=Tr p= %(1 +S - 0y). (16) both S,[S;] andC[S;] are affine functions, see Appendix A.

S ] Therefore they can be represented as
Here we want to study the opposite direction, that is, to go

from pg to p. In particular, we look for conditions under S[S]=A-S;+B,
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C[Sl]:D 'Sl+E, (21)

whereB is a constant vectoA andE are constant, second-
order tensors, anB is a constant third-order tensor. Hence,
these quantities must neither depend on the applied Feld
nor on the Bloch vecto§,;.

IIl. AN EXPLICIT ILLUSTRATION

We consider the equilibrium preparation for the following
simple two-spin Hamiltonian as an example,

H=-F,07+eo5+go;o;. (22)

Here we allow for a field only in the direction. The two
spins interact by theik components. We study the equilib-
rium preparation class that results if the figidassumes all
possible values, = <F,< at the fixed inverse temperature

B:
ptz=Ztexp(- BH}. (23)

Because the Hamiltoniail commutes with the operator
o105 one can diagonalizé in the eigenspaces of/o5. This
diagonalization then yields the four eigenvalus

H=-\(F-e’+g% &=\(F,-e’+¢

E=-(F,+e?+0, &=V(F,+e+g", (24
and the corresponding eigenprojection operakys

F,-e

(ot o)+ Lioiot- ot
I I

1
P,==|1+o0f05-
i 4< 0103

i=1,2, (25)

F,+e g
g ity

(o105 + Ui’ffzy)),

i=3,4, (26)

such thatH==; &P, holds. The canonical density matyiXz
at the inverse temperatugeis a mixture of the pure statés
with the Boltzmann weightsp;=exp{-3&;}/[2{cosHBE,)
+coshBEy)l], ie.,

4

1
pFZ = 2 Pi l:)i = Z(l + 51sz + SZZO'ZZ + Cxxo'i(o'; + nyo'fa'%’
i=1

+C,p107). (27)

The x andy components of the two Bloch vectors vanish.
The nonvanishing components read

S1z = B[sz+(ﬂ‘€11:853) - e}——(ﬁglvBES)],

S, = BIFF(BE1,BES) — €F(BE1, BES)], (28)

where the auxiliary functiong,(x,y) are defined by

PHYSICAL REVIEW A69, 052109(2004)

FIG. 1. The Bloch vector componef$}; as a function of the
field BF, resulting from Eq.(28) for Be=1. With increasing cou-
pling parametesg=0.5,1, 1.5 the slope &,=0 decreases. Appar-
ently, the functionsS,(F) are monotonic and hence possess a
unique inverse.

_ y sinh(x) £ x sinh(y)
" xy[coshx) + coshy)]’

Finally, the nonvanishing elements of the correlation matrix
C are given by

Fi(xy) (29)

Cxx == :89~7:+(,851=:853),
Cyy= B9F-(BE1, BES),

_ cosh{BE;) — coshBE)
" cosh(BE,) + coshBEs)”

As already stated above, in the present case of the equilib-
rium preparation the component of the Bloch vector of the
first spin is a uniquely invertible function of the magnetic
field F,. This can be shown by inspection from Eg9), see

also Fig. 1. We note that the equilibrium preparation contains
the pure system stat@sg:%(liaz) asymptotically in the in-
finite field limit F,— *oo. If one also took into account fields
that couple to the other spin components oy, the eigen-
states of these components could also be prepared asymptoti-
cally. In the case studied here, however, no other pure states
than the eigenstates af, can be prepared. Thus, for this
particular case one of the conditions of the Pechukas theorem
to hold is not met.

(30)

A. Testing convexity of the blow-up map

We now come to the discussion of Eq21) which are
necessary conditions for the blow-up map to be convex. Be-
cause in the considered preparation class onlyztbempo-
nent of the field is varied and because of the symmetries of
the considered Hamiltonian, these equations need only be
checked for the Bloch vector componé&y and the diagonal
elements of the correlation matrix, respectively as functions

of S,
Sy[Sa]=AS, +B,

Cxx[szl] = Dxxszl + Exxv

Cyy[Sal=DySn +Eyy,
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05 F ,@e': 1.0 '139 T 7 IV. DISCUSSION, IMPLICATIONS, AND CONCLUSIONS
We have illustrated Pechukas’ verdict on the linear time
e 0.6 - By =10 7 evolution of open quantum systenfis0] by a simple ex-
@ I ] ample. Moreover, we have demonstrated that the theorem
07 Bg =05 holds for affine time evolutions: If two complete sets of pure
bg =00 system states can be prepared this more general class of evo-
-0-8_1 : 0'5 : (') : 0'5 — lution implies a factorizing preparation of the total initial
' s., ’ density matrix where the environment density matrix must

be independent of the system density matrix. Actually, Pe-
FIG. 2. The Bloch vector componefy, as a function ofS, chukas’ original proof10] applies as well in the affine case.
resulting from Eq. (28) for ge=1 and different valuesgg Nowhere in the proof he made explicit use of the homoge-
=0,0.5,1,1.5. Note that a strictly linear dependence results only foneity condition, i.e.R(Apg) =\R(pg), \ real, that would ren-
the case of vanishing couplirg=0. An approximate linear regime der an affineR a linear map.

exists in a neighborhood &,;,=0. At first, this may only seem a modest generalization of the
original conclusion but it sheds some light on the crucial role
C,/S11=D,S, +E,, (31  of the inhomogeneity term afjeneralizegimaster equations

which appears when the initial density matrix does not fac-

If the blow-up map were convex these equations would havéorize. The present analysis excludes that this terinds-

to result from Eqgs(28) and(30) by eliminating the external Pendenof the initial reduced density matrix. This term, ac-
field F,. There is no need to perform the lengthy calculationtually is not merely an inhomogeneity of the otherwise linear
to see that the above equations hold only if the systemMaster equation but must depend on the reduced density ma-
environment interaction is absent, i.e., if the coupling conrix in a nonlinear way In the cases, in which a Markovian
stant g in the Hamiltonian vanishes. We note that with dynamics is approached for long times this nonlinear term
&1(-F,)=&5(F,) and the symmetries of the auxiliary func- must vanish for sufficiently large times. It will do so, how-
tions F.(x,y)=+F.(y,x), S, becomes an odd function €Ver ina characteristic manner that depends on the particular

whereasC,, is an even function of,. If Eq. (31) was to nitial reduced density matrix.
hold, D, would have to vanish an@,, would have to be a In the present example only one set of pure system states,

constant. This is true if and only §=0. Figures 2 and 3 (he €igenstates af,, are preparable and yet the affinity of

depict the dependences 8, and of the correlation func- e blow-up map implies a factorizing preparation. We note

tions, respectively, 08, for finite coupling strengths. In all that in general the condition on the number of preparable

cases, except fag=0, and for the correlatio,, the devia- PUre states of the Pechukas theorem cannot be relaxed. An
il il il . . .

tions from linearity are strikingly obvious. We note, how- €xa@mple is provided by the work of Karrlein and Grabert

ever, that for small values of the Bloch vector compor@nt [27] who considered a harmonic oscillator coupled to a bath

the componens,, and correlationC,, are almost constant of harmonic oscillators with a nonfactorizing thermal prepa-

4 XX . . . o
and the other correlatior,, andC,, are linear. This behav- ration. This preparation allows for pure position states and
ior is in accordance with a convex blow-up map. Below weStill Iéads to a linear master equation.

will come back to the blow-up in the linear-response regime Another example of a nonfactorizing preparation that
when the external fields are small. leads to a linear time evolution results from the following

preparation proceduré) start with a factorizing density ma-
trix pgpgo at a timet=-t,, t,>0, (ii) turn on the interaction
between the system and the bath, &iid use the density
matrix that has evolved at0 as a result of the preparation.
We term this preparation thiactorize-and-waifpreparation.
The blow-up mafR(ps) then assumes the form

R(pg) = € "MH9G (pg)pee” ™, (32)

whereG; is the linear propagator of the reduced density ma-
trix for the factorizing preparation, i.e.,

1 05 0 05 ) ps(h) = Gi(ps(0)) = Trg & Mpg(0) pgoe™ ™. (33)

S, Here, the inverse of the propagatey is needed in order to
* infer the proper system part of the factorizing density=at

FIG. 3. The nonvanishing correlation functioBig, C,,,C,,asa  —to from the density matrips that is to be prepared &£0.
function of the Bloch vector compone8; for Be=1 and8g=1.5. In view of possible fast relaxation processes and the buildup
The correlation function€,, andC,, clearly deviate from straight of system-bath correlation®3,24,26 after the interaction
lines following from a convex blow-up map, see Eg1). For the  has been switched on, this inverse propagator will not be
correlation functions also an approximately linear regime exists in alefined on the total set of possible density matrif82].
neighborhood 0f5,,=0. Still, it is a linear operator and thus the blow-up m&?2)
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also is linear. It is obvious, however, that no pure states of o=p° (39
the system can be prepared at titaed in this way, i.e., the _ _ _ .
factorize-and-wait preparation does not provide pure statedVith EG. (5) one obtains for the time evolution of the re-
Therefore, the conditions for the Pechukas theorem are n&tuced density matrix,

met and the theorem is thus not in conflict with the linearity F(t) = Tra UL (oEYUT () + Tra o° 40
of the blow-up map of the entangled factorize-and-wait ps) s UOL(po)U'() B P (40
preparation. where we used that the total density matpfkis invariant

Finally, we discuss the equilibrium preparation in the under the full time evolution. Actually this is a linear equa-
limit of weak external forces. In the region close to thermaltion in the reduced density matrps. In order to see this one
equilibrium, Mori's generalized quantum Langevin equationsputs t=0 in Eqg. (40), to express the trace gf° over the
[33] provide a proper description of the time evolution of theenvironment in terms of the reduced density matpix
set of system operators that couple to the external fields. Ihrg pP=ps—Trg L(pg). Hence, for the Mori preparation the
this case, the preparable density matrices of the total systetime evolution of the reduced density matrix is linear.
follow from Eq. (1) in linear approximation in the external This is also in agreement with the findings for the above
fields F;, and hence assume the linear-response {@4h discussed model, see Figs. 2 and 3.

1
pF=p"+ B> J dx(pO) XX — (XD (PO Fi,  (34) ACKNOWLEDGMENTS
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APPENDIX A: CONVEX MAPS ARE AFFINE

1
F_ 0+ f T Ol_XX'_X' OXF'.
Ps=Ps BEi“ 0 AXTr(p")™ 0% = o) () F We prove that a differentiable convex mipfrom a Ba-
35 nach spaceB; into a Banach spacB, is also affine. The

(39 derivative of M(x) at xe B; is defined as the linear map
We recall that the external fields act on the system, i.e., th®M(x):B;—B; that is tangential toM at x. For further
conjugate operators; are system operators. The expectationmathematical details see, e.g., R&]:
values of these operators with respect to the density matrix

P P y [M(x+h) - M(x) - DM(9h, _

pg are linear functions of the external fields by construction lim 0, (A1)
and can be written as Ihll;—0 (Ll
where| ||, i=1, 2 denotes the norm in the respective Banach

- . = — . F = Py = . . . .
X = (Xpa) = TrdX; = (X)o)ps 2 xiFi,  (36) space. The convexity dfl then requires that its domain of
definition D(M) is convex, i.e., with each pait,y of ele-
where the response matrjy; is obtained by inserting Eq. ments of D(M) also all convex linear combinationsx+ (1

(34) into the middle term of Eq(36): =Ny, with 0<A <1, belong toD(M). Moreover, this prop-
1 erty is conserved under the convex mp
Xij = Bfo dx Tr(X; = (X)) (p2) (X, = (X)o) (p2)*. MOWH(L=NY) SAMO) + (L -MM(Y).  (A2)
(37) Taking the derivative with respect %o one finds from Eq.
(A2),

Becausey;; is an invertible matrix we may solve E(B6) for
the external fields;, DM(AX+(1-MY)(X=y) =M(Xx) -M(y).  (A3)

F = 2 X506 = (X))o (38) For A=0 one obtains
. M(x) =D M(y)x+M(y) = D M(y)y. (A4)

In this way the external fields are expressed in terms of therhe first term on the right-hand side is linear with respect to
linear functionakX; —(X;)o) of the system density matrp&.  x and the second and the third term are independertaoid
Using this relation in Eq(34) we find for the blow-up map henceM is affine.

the affine formR(p5)=LpE+ ¢, where

APPENDIX B: PECHUKAS’ THEOREM
Pechukas proved in Ref10] that a preparation is factor-

. izing if the following conditions are satisfiedi) the corre-
= (Xio)ps, sponding blow-up map of the preparation is conv@y;two

1
Lps=B2 f L B0 () (X Tre(X
1)

052109-6



IS THE DYNAMICS OF OPEN QUANTUM SYSTEMS. PHYSICAL REVIEW A 69, 052109(2004)

different complete sets of pure system states can be preparadproduct of the pure state and a density matrix of the envi-
in the considered preparation class. ronment:
The proof consists of two steps. The first step is a conse-
quencepof the positivity of the bIcE)W-up matipo) ar?d makes Ryl = [eiXulx(), R eei]) =eeilx(e),
use of the possibility to prepare pure states of the system.
Assume|y) is a pure state of the system that can be prepared. i=1,2, (B6)
In the first step of the proof it is shown that the de”SitywhereX(z/fi

and .) are bath density matrices. We shall
matrix p of the full system has the form ) Xe) 4

show that they all are the same. For this purpose we make
p =R = [){¥x, (B1)  use of the convexi.ty of thg blow.—up map and consider its
action on the density matrix that is proportional to the pro-
where the environment density matnixin general depends jection P onto the two-dimensional subspagey=3P. The
on the system stat@)). _ _ _action of the blow-up map can be represented in either of
Following Pechukagl0], we consider the diagonal matrix o ways by convex combinations of pure states, see Eq.
element(¢,€e|p| ¢,€) of the density matrixp with a product (B4):
state|¢,e), where ¢ is an element of the system Hilbert
space that is orthogonal on the prepared pure state | )| x (1) + [ (ol X ()
(¢, =0, and|e) is an arbitrary normalized element of the = o X @rlx (1) + | @aX @alx(@). (B7)
environment Hilbert space. The positivity of implies
(¢.€lp|$,€)=0. On the other hand, (¢,ep|d,e Calculating Fhe matrix elgments wi.th the fogr pure statgs
<(#[Trap| )=|(#|$)|?=0. Therefore ¢i, one obtains the following equations relating the reference
density matrices(¢;) and x(¢,):

e =0 B2 :
Pl (52 x| _(loosal? [sinal ) (x(s
must hold for all environment statés) and all system states () = Isin a2 |cosaf? () (B8)
|) L |4). This implies(B1) with an environment reference Xi¥e X2
density matrix and
X =Trep = (Ulpl). (B3) (wm) _ (|cosa|2 [sin af” )(x(¢1)> (59)
Up to this point we have not made use of the convexity of x(¢2) Isinal® [cosal?/\x(,) )

;hf ?:g’tvr'.Up nr:]zp asT(IjI ?grgaoéeowihfiugfsmeg\tlﬁnmem derwe may exclude the trivial cases when the pafrsand ¢
1ty IXx may still dep y *_ coincide and either cdsy=1 or sirf a=1. In all other
In the second step of the proof we first take two pairs of

cases, the four equations only have a solution wyifl#)
orthonormal system statdsy,), |#,) and|¢,), |@,), that span _ . . .
the same two-dimensional subspace: =x(1h2)=x(¢)=x(¢,). Hence, the environment density

matrix is identical for all preparable system density matri-
[ )X in| + [) o] = | @1 1| + |@2){@] =P, (B4)  ces in the considered subspace such that a factorizable

. L ) state of the total system results on this subspace.
where P is the projection operator on this subspace. The |, order to apply this argument to higher-dimensional sys-
apsolute values of the mutual scalar products then are detgsy, Hilbert spaces it must be possible to prepare sufficiently
mined by an anglex: many pure system states. Starting as above with a two-

(W, )2=co o, |(4,0,)?=sirf a, dimensional subspace that can be spanned by two pairs of

preparable baseg/}, {¢}, i=1,2 onenext considers the
2 2 subspace spanned by eithét) and|s) or by |¢,) and|es)

(o, @) =i @ [(42, )" = cOS @ B5  and findsy(1,) = x(i3) for the reference bath operators in the
We assume that the two pairs of statgsand ¢; can be density matrix of the full system. That means that two dif-
prepared. According to the first step of the proof, the fullferent sets of pure states spanning the system’s Hilbert space
density matrix that corresponds to either of the pure states isiust be preparable.
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