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We study the influence of the preparation of an open quantum system on its reduced time evolution. In
contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into
a product of a system density matrix and a bath density matrix the time evolution generally is no longer
governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be
cast into the form of a linear map plus a term that is independent of the initial density matrix of the open
quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master
equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are
elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected
to an external field. The second spin represents the environment. The field allows the preparation of mixed
density matrices of the first spin that can be represented as a convex combination of two limiting pure states,
i.e., the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced
density matrices onto the corresponding density matrices of the total system is affine only for vanishing
coupling between the spins. In general, the set of the accessible total density matrices is nonconvex.
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I. INTRODUCTION

Closed systems are known to be an idealization. In gen-
eral, real systems interact with their environment and exhibit
properties that cannot be observed in finite closed systems,
such as irreversibility of the time evolution and, related, the
relaxation of observables toward stationary values and
dephasing, or decoherence. Various techniques have been de-
veloped to treat the dynamics of open systems without ex-
plicitly considering the full Hamiltonian dynamics[1]. For
example, effective equations for the reduced density matrix
of the considered open system, known as master equations,
have been proposed long ago[2–4] and still are of consider-
able interest because of their conceptual simplicity and po-
tential usefulness[5,6]. New challenges in this field of fun-
damental physics have come from nanotechnology[7] and
quantum computing[8].

Any equation determining the time evolution of a density
matrix has to obey several general properties which guaran-
tee that the density matrix stays self-adjoint, positive, and
normalized in the course of time. These general properties
still leave much freedom and, in order to further restrict pos-
sible dynamical laws, additional requirements for the dynam-
ics have been postulated[9]. One seemingly natural property
that often is assumed without even being mentioned is the
linearity of the time evolution, which generally is understood
as a consequence of the linearity of the Schrödinger and the
Liouville–von Neumann equation for closed systems. This
argument, however, only works by analogy and no proof of
the necessity of this requirement is available. Just on the
contrary Pechukas[10,11] has recently shown that linearity
may only hold if the initial state of the total system factorizes
into a product of a density matrix for the open system and

another one for the environment, and if a sufficient number
of pure states can be prepared. The assumption of linearity is
a prerequisite of a Markovian dynamics and of complete
positivity [12,13]. These properties then lead to the math-
ematically well characterized class of Lindblad master equa-
tions. From the physical point of view, however, these equa-
tions suffer from certain deficiencies[10]. They are restricted
to the regime of weak coupling between the considered sys-
tem and its environment. In particular, the weak-coupling
assumption will fail at sufficiently low temperatures[14,15].
Moreover, there are various general statistical-mechanical
properties that are incompatible with the assumption of a
Markovian dynamics[16].

A few microscopic models of systems interacting with
their environment can be exactly reduced to Lindblad master
equations with time-dependent coefficients[17,18], thereby
describing the single-time non-Markovian reduced dynam-
ics.

The dynamics of an open system is determined by both,
the full dynamics of the considered system interacting with
its environment and the initial state of the complete system.
The significance of the initial state was emphasized in sev-
eral works[19–27]. In an experiment this initial state is im-
posed by a preparation procedure. Here we will be concerned
only with equilibrium preparations that lead to a thermal
equilibrium of the total system in the presence of external
fields that only act on the system and that are switched off
finally. In this way, the initial state is described by a canoni-
cal density matrix:

rF = Z−1expH− bSH − o
j

FjXjDJ , s1d

whereb is the inverse temperature,H the Hamiltonian gov-
erning the dynamics of the total system,F=sFjd are external,
i.e., classical, fields,Xj the corresponding conjugate opera-
tors of the open system, andZ=Tr exph−bsH+o j FjXjdj is
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the partition function of the total system. Here, Tr denotes
the trace over the total system. In this way, initial states of
the total system are reproducibly prepared. The system is
in thermal equilibrium with the environment at a given
temperature and is additionally constrained by the external
fields Fj. The set of density matrices that can be obtained
upon variation of the fields forms the equilibrium prepa-
ration class. The reduced states belonging to this prepara-
tion class are determined by the trace over the environ-
ment, which is denoted by TrB:

rS
F = TrB rF. s2d

The calculation of this trace is nontrivial in most cases and in
general does not lead to the canonical distribution of the
uncoupled system,ZS

−1exph−bHSj f14,28–30g, whereHS is
the Hamiltonian of the system in the presence of the ex-
ternal fields andZS the respective partition function. This
particular form is obtained only in the limit of weak cou-
pling between the system and the environmentf3,29,31g.
In this limit, the equilibrium density matrix of the total
system factorizes into a product of a system and an envi-
ronment density matrix. This is an example of the factor-
izing preparation which leads to a product of a particular
density matrix of the environmentrB and an arbitrary den-
sity matrix rS of the system:

rfac = rSrB. s3d

The factorizing preparation is assumed in most theoretical
investigations though it is often difficult, if not impossible, to
realize it experimentally.

A more general class of preparations has been suggested
in the context of the path-integral approach to open systems
[22]:

rO = o
j

Ojr
FOj8, s4d

where rF is defined as in the equilibrium preparation, Eq.
s1d, andOj andOj8 are operators that only act on the system’s
Hilbert space. For applications of this preparation class we
refer the reader to Ref.f22g.

The state of the open system after the preparation results
from the density matrix of the full system at that time by
means of the trace over the environment, i.e.,

rSstd = TrB UstdrU†std, s5d

where

Ustd = expH−
i

"
HtJ s6d

is the unitary time evolution operator of the full system and
rs0d=r the density matrix resulting from the preparation.

According to Eq.(5), the reduced density matrix at timet
is a linear image of the initialfull density matrixr under the
successive action of the unitary time evolution of the full
system and the operation of the trace. In order to obtain a
map from the initialreduceddensity matrixrS to its value at
a later timet, we introduce theblow-up map RsrSd that as-

signs to each reduced initial density matrixrS one that be-
longs to the total system:

r = RsrSd. s7d

The particular form of the blow-up map depends on the ini-
tial preparation of the system. Expressing the initial total
density matrixr by the reduced initial state with the help of
the blow-up map one obtains the reduced time evolution of
the system:

rSstd = TrB UstdRsrSdU†std. s8d

The reduced time evolution is linear only if the blow-up map
is linear.

Taking into account the structure of generalized master
equations that may contain an inhomogeneous term one may
ask whether an affine time evolution could possibly provide
a relevant class of time evolution laws. Any affine time evo-
lution of the reduced density matrixrSstd can be written as
the sum of a term linear inrS and another one independent of
rS, i.e.,

rSstd = TstdrS+ Istd, s9d

whereTstd is a linear operator andIstd is independent ofrS.
So affine time evolutions are apparently more general than
linear ones. An affine time evolution as described in Eq.s9d
will result only from an affine blow-up map. Hence, one may
ask under which conditions the blow-up map is affine.

An equivalent characterization of affine blow-up maps
can be given in the following way. Because a density matrix
is a positive normalized operator, we require that the
blow-up mapR acts on a convex set of reduced density ma-
trices, i.e., a set that contains with each pairrS1 andrS2 all
convex combinationslrS1+s1−ldrS2 for all 0,l,1. We
assume next that the considered preparation provides such a
convex set of reduced density matrices. For any particular
preparation one has to check this property. We then further
may ask under which conditions the blow-up mapR pre-
serves the convexity condition. Put differently, under which
conditions a full density matrix that corresponds to a convex
combination of reduced density matrices again is given by a
convex combination. Then the preparation class also forms a
convex set. For such a convex blow-up map one obtains

RflrS,1 + s1 − ldrS,2g = lRsrS,1d + s1 − ldRsrS,2d. s10d

This then implies that the blow-up map is affine:

RsrSd = LrS+ w, s11d

whereL is a linear operator that maps reduced density ma-
trices onto full density matrices andw is an operator of the
full system. A proof of this statement is given in Appendix
A.

We note that the mixing parameterl has to be identical
on the left- and on the right-hand side of Eq.(10). This is a
consequence of the fact that the trace ofRsrSd over the Hil-
bert space of the environment must coincide with the system
density matrixrS:

TrB RsrSd = rS. s12d
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For the factorizing preparation(3) the blow-up mapR is
always linear. It simply acts as the multiplication by the ref-
erence environment density operatorrB. In the case of a
classical system dynamics the role of density matrices is
taken over by probability densities defined on the respective
phase space. Then, any preparation can be characterized by a
conditional probability densityrsx uxSd for the statex of the
total system given the statexS of the system[19–21]. The
corresponding blow-up mapR is then given by the multipli-
cation with this conditional probability and, hence, is always
linear. No such simple construction scheme is available in
quantum mechanics and Pechukas[10] showed that the fac-
torizing preparation is the only one for which the blow-up
map is linear, provided that a sufficient number of pure states
of the reduced system are contained in the preparation class.
For the convenience of the reader, the precise formulation of
the theorem and a proof is given in Appendix B.

In the present work, we will consider the influence of the
preparation of an open quantum system on its reduced time
evolution by means of the simple example of two interacting
spins. One of those is considered as the system, the other one
plays the role of the environment. The second spin is only a
very crude caricature of a true environment which clearly
fails to cause dissipation or dephasing in the system because
of its finiteness. Nevertheless, it suffices to illustrate the in-
fluence of the preparation on the subsequent dynamics of the
system.

We assume that the total system starts from an equilib-
rium preparation, i.e., its initial state is described by a den-
sity matrix of the form of Eq.(1). It will be shown that in
general this preparation renders the time evolution of the
reduced systemnonlinear.

II. TWO SPINS

Both interacting spins s1=ss1
x,s1

y,s1
zd and s2

=ss2
x,s2

y,s2
zd with Pauli spin matricessa

i , a=1,2, i =x,y,z,
are of total lengths=1/2. Thefirst spins1 is considered as
the system and the second ones2 takes over the role of the
environment. Every density matrix of the total system then
assumes the form

r = 1
4s1 + S1 · s1 + S2 · s2 + s1 ·C · s2d, s13d

where

Sa = ksal s14d

denotes the Bloch vector of the spina=1,2 and thematrix

C = ks1s2l s15d

denotes the correlation matrix of the two spins. The dot prod-
uct denotes the scalar product in three dimensions, e.g.,
S1·s1=S1

xs1
x+S1

ys1
y+S1

zs1
z. The reduced density matrix of

the system is given by the trace over the environmentsi.e.,
the second spind, and hence becomes

rS= Tr2 r = 1
2s1 + S1 · s1d. s16d

Here we want to study the opposite direction, that is, to go
from rS to r. In particular, we look for conditions under

which the respective blow-up mapRsrSd=r is convex. We
recall that the blow-up map is determined by the preparation
process of the system. In the process of a preparation the
state of the system is controlled by external fieldsF that
ideally act only on the system, as given in Eq.s1d for the
equilibrium preparation. For the considered spin one can
think of static magnetic fields. For interacting spins, the two
Bloch vectors and the correlation matrix will depend on the
applied magnetic field.

We next investigate the requirement of the convexity of
the blow-up mapR. A necessary condition for this property
to hold is the convexity of the domain of definition ofR. This
implies that for any pair of reduced density matricesrS

Fk, k
=1,2 that result from two different values of the field, all
convex linear combinations can be prepared by means of at
least one other valueF3 of the field:

rS
F3 = lrS

F1 + s1 − ldrS
F2, s17d

with F3 depending on the fieldsF1, F2, and l. Using the
general form of the reduced density matrix in Eq.s16d one
finds a respective equation for the Bloch vectors, reading

S1sF3d = lS1sF1d + s1 − ldS1sF2d. s18d

Note that for the equilibrium preparationS1sFd is a uniquely
defined function of the fieldF. This is the case because the
derivatives of the Bloch vector components with respect to
the field components form the susceptibility matrix, which is
an invertible matrix in thermal equilibrium. Hence,S1sFd has
a uniquely defined inverseFsS1d.

We study the further consequences of the convexity con-
dition (10) of the blow-up map for the spin system in the
equilibrium preparation. Using Eqs.(17) and (13) for the
total density matrix of the full system in Eq.(10) one finds
the following relations for both the Bloch vector of the sec-
ond spin and for the correlation matrix:

S2sF3d = lS2sF1d + s1 − ldS2sF2d,

CsF3d = lCsF1d + s1 − ldCsF2d. s19d

HereF3 is defined by Eq.(18). The nontrivial conditions(19)
in general will not be satisfied. Expressing next the fieldsFi
by those Bloch vectorsS1

i =S1sFid that result for the respec-
tive fields we find, by use of Eq.(18), the following relations
for the Bloch vectors of the second spin and the correlation
matrix:

S2flS1
1 + s1 − ldS1

2g = lS2fS1
1g + s1 − ldS2fS1

2g,

CflS1
1 + s1 − ldS1

2g = lCfS1
1g + s1 − ldCfS1

2g. s20d

Hereby we introduced the notationS2fS1g=S2sFd and
CfS1g=CsFd where the dependence on the external fieldF is
expressed by the corresponding, equivalent value of the
Bloch vectorS1=S1sFd. From these equations it follows that
both S2fS1g andCfS1g are affine functions, see Appendix A.
Therefore they can be represented as

S2fS1g = A ·S1 + B,
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CfS1g = D ·S1 + E, s21d

whereB is a constant vector,A andE are constant, second-
order tensors, andD is a constant third-order tensor. Hence,
these quantities must neither depend on the applied fieldF
nor on the Bloch vectorS1.

III. AN EXPLICIT ILLUSTRATION

We consider the equilibrium preparation for the following
simple two-spin Hamiltonian as an example,

H = − Fzs1
z + es2

z + gs1
xs2

x. s22d

Here we allow for a field only in thez direction. The two
spins interact by theirx components. We study the equilib-
rium preparation class that results if the fieldFz assumes all
possible values, −̀,Fz,` at the fixed inverse temperature
b:

rFz = Z−1exph− bHj. s23d

Because the HamiltonianH commutes with the operator
s1

zs2
z one can diagonalizeH in the eigenspaces ofs1

zs2
z. This

diagonalization then yields the four eigenvaluesEi,

E1 = − ÎsFz − ed2 + g2, E2 = ÎsFz − ed2 + g2,

E3 = − ÎsFz + ed2 + g2, E4 = ÎsFz + ed2 + g2, s24d

and the corresponding eigenprojection operatorsPi,

Pi =
1

4
S1 + s1

zs2
z −

Fz − e

Ei
ss1

z + s2
zd +

g

Ei
ss1

xs2
x − s1

ys2
ydD ,

i = 1,2, s25d

Pi =
1

4
S1 − s1

zs2
z −

Fz + e

Ei
ss1

z − s2
zd +

g

Ei
ss1

xs2
x + s1

ys2
ydD ,

i = 3,4, s26d

such thatH=oi EiPi holds. The canonical density matrixrFz

at the inverse temperatureb is a mixture of the pure statesPi
with the Boltzmann weightspi =exph−bEij / f2hcoshsbE1d
+coshsbE3djg, i.e.,

rFz = o
i=1

4

piPi =
1

4
s1 + S1zs1

z + S2zs2
z + Cxxs1

xs2
x + Cyys1

ys2
y

+ Czzs1
zs2

zd. s27d

The x and y components of the two Bloch vectors vanish.
The nonvanishingz components read

S1z = bfFzF+sbE1,bE3d − eF−sbE1,bE3dg,

S2z = bfFzF−sbE1,bE3d − eF+sbE1,bE3dg, s28d

where the auxiliary functionsF±sx,yd are defined by

F±sx,yd =
y sinhsxd ± x sinhsyd
xyfcoshsxd + coshsydg

. s29d

Finally, the nonvanishing elements of the correlation matrix
C are given by

Cxx = − bgF+sbE1,bE3d,

Cyy = bgF−sbE1,bE3d,

Czz=
coshsbE1d − coshsbE3d
coshsbE1d + coshsbE3d

. s30d

As already stated above, in the present case of the equilib-
rium preparation thez component of the Bloch vector of the
first spin is a uniquely invertible function of the magnetic
field Fz. This can be shown by inspection from Eq.(29), see
also Fig. 1. We note that the equilibrium preparation contains
the pure system statesrS= 1

2s1±szd asymptotically in the in-
finite field limit Fz→ ±`. If one also took into account fields
that couple to the other spin componentssx, sy, the eigen-
states of these components could also be prepared asymptoti-
cally. In the case studied here, however, no other pure states
than the eigenstates ofsz can be prepared. Thus, for this
particular case one of the conditions of the Pechukas theorem
to hold is not met.

A. Testing convexity of the blow-up map

We now come to the discussion of Eqs.(21) which are
necessary conditions for the blow-up map to be convex. Be-
cause in the considered preparation class only thez compo-
nent of the field is varied and because of the symmetries of
the considered Hamiltonian, these equations need only be
checked for the Bloch vector componentSz2 and the diagonal
elements of the correlation matrix, respectively as functions
of Sz1:

Sz2fSz1g = ASz1 + B,

CxxfSz1g = DxxSz1 + Exx,

CyyfSz1g = DyySz1 + Eyy,

FIG. 1. The Bloch vector componentSz1 as a function of the
field bFz resulting from Eq.(28) for be=1. With increasing cou-
pling parameterbg=0.5,1,1.5 the slope atFz=0 decreases. Appar-
ently, the functionsSz1sFd are monotonic and hence possess a
unique inverse.

FONSECA ROMERO, TALKNER, AND HÄNGGI PHYSICAL REVIEW A69, 052109(2004)

052109-4



CzzfSz1g = DzzSz1 + Ezz. s31d

If the blow-up map were convex these equations would have
to result from Eqs.(28) and(30) by eliminating the external
field Fz. There is no need to perform the lengthy calculation
to see that the above equations hold only if the system-
environment interaction is absent, i.e., if the coupling con-
stant g in the Hamiltonian vanishes. We note that with
E1s−Fzd=E3sFzd and the symmetries of the auxiliary func-
tions F±sx,yd= ±F±sy,xd, S1z becomes an odd function
whereasCxx is an even function ofFz. If Eq. (31) was to
hold, Dxx would have to vanish andCxx would have to be a
constant. This is true if and only ifg=0. Figures 2 and 3
depict the dependences ofSz2 and of the correlation func-
tions, respectively, onSz1 for finite coupling strengths. In all
cases, except forg=0, and for the correlationCzz, the devia-
tions from linearity are strikingly obvious. We note, how-
ever, that for small values of the Bloch vector componentS1z
the componentS2z and correlationCxx are almost constant
and the other correlationsCzz andCyy are linear. This behav-
ior is in accordance with a convex blow-up map. Below we
will come back to the blow-up in the linear-response regime
when the external fields are small.

IV. DISCUSSION, IMPLICATIONS, AND CONCLUSIONS

We have illustrated Pechukas’ verdict on the linear time
evolution of open quantum systems[10] by a simple ex-
ample. Moreover, we have demonstrated that the theorem
holds for affine time evolutions: If two complete sets of pure
system states can be prepared this more general class of evo-
lution implies a factorizing preparation of the total initial
density matrix where the environment density matrix must
be independent of the system density matrix. Actually, Pe-
chukas’ original proof[10] applies as well in the affine case.
Nowhere in the proof he made explicit use of the homoge-
neity condition, i.e.,RslrSd=lRsrSd, l real, that would ren-
der an affineR a linear map.

At first, this may only seem a modest generalization of the
original conclusion but it sheds some light on the crucial role
of the inhomogeneity term of(generalized) master equations
which appears when the initial density matrix does not fac-
torize. The present analysis excludes that this term isinde-
pendentof the initial reduced density matrix. This term, ac-
tually is not merely an inhomogeneity of the otherwise linear
master equation but must depend on the reduced density ma-
trix in a nonlinear way. In the cases, in which a Markovian
dynamics is approached for long times this nonlinear term
must vanish for sufficiently large times. It will do so, how-
ever, in a characteristic manner that depends on the particular
initial reduced density matrix.

In the present example only one set of pure system states,
the eigenstates ofsz, are preparable and yet the affinity of
the blow-up map implies a factorizing preparation. We note
that in general the condition on the number of preparable
pure states of the Pechukas theorem cannot be relaxed. An
example is provided by the work of Karrlein and Grabert
[27] who considered a harmonic oscillator coupled to a bath
of harmonic oscillators with a nonfactorizing thermal prepa-
ration. This preparation allows for pure position states and
still leads to a linear master equation.

Another example of a nonfactorizing preparation that
leads to a linear time evolution results from the following
preparation procedure:(i) start with a factorizing density ma-
trix rS0rB0 at a timet=−t0, t0.0, (ii ) turn on the interaction
between the system and the bath, and(iii ) use the density
matrix that has evolved att=0 as a result of the preparation.
We term this preparation thefactorize-and-waitpreparation.
The blow-up mapRsrSd then assumes the form

RsrSd = e−si/"dHt0Gt0
−1srSdrB0e

si/"dHt0, s32d

whereGt is the linear propagator of the reduced density ma-
trix for the factorizing preparation, i.e.,

rSstd = Gt„rSs0d… = TrB e−si/"dHtrSs0drB0e
si/"dHt. s33d

Here, the inverse of the propagatorGt is needed in order to
infer the proper system part of the factorizing density att=
−t0 from the density matrixrS that is to be prepared att=0.
In view of possible fast relaxation processes and the buildup
of system-bath correlationsf23,24,26g after the interaction
has been switched on, this inverse propagator will not be
defined on the total set of possible density matricesf32g.
Still, it is a linear operator and thus the blow-up maps32d

FIG. 2. The Bloch vector componentSz2 as a function ofSz1

resulting from Eq. (28) for be=1 and different valuesbg
=0,0.5,1,1.5. Note that a strictly linear dependence results only for
the case of vanishing couplingg=0. An approximate linear regime
exists in a neighborhood ofS1z=0.

FIG. 3. The nonvanishing correlation functionsCxx,Cyy,Czzas a
function of the Bloch vector componentSz for be=1 andbg=1.5.
The correlation functionsCxx andCyy clearly deviate from straight
lines following from a convex blow-up map, see Eq.(31). For the
correlation functions also an approximately linear regime exists in a
neighborhood ofS1z=0.
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also is linear. It is obvious, however, that no pure states of
the system can be prepared at timet=0 in this way, i.e., the
factorize-and-wait preparation does not provide pure states.
Therefore, the conditions for the Pechukas theorem are not
met and the theorem is thus not in conflict with the linearity
of the blow-up map of the entangled factorize-and-wait
preparation.

Finally, we discuss the equilibrium preparation in the
limit of weak external forces. In the region close to thermal
equilibrium, Mori’s generalized quantum Langevin equations
[33] provide a proper description of the time evolution of the
set of system operators that couple to the external fields. In
this case, the preparable density matrices of the total system
follow from Eq. (1) in linear approximation in the external
fields Fj, and hence assume the linear-response form[34]

rF = r0 + bo
i
E

0

1

dxsr0d1−xsXi − kXil0dsr0dxFi , s34d

wherer0 denotes the equilibrium density matrix of the total
system in the absence of external fields andkXl0 the average
of the operatorX with respect to the density matrixr0. The
corresponding density matrix of the reduced systemrS

F

=TrB rF then becomes

rS
F = rS

0 + bo
i
E

0

1

dxTrBsr0d1−xsXi − kXil0dsr0dxFi .

s35d

We recall that the external fields act on the system, i.e., the
conjugate operatorsXi are system operators. The expectation
values of these operators with respect to the density matrix
rS

F are linear functions of the external fields by construction
and can be written as

kXj − kXjl0l ; TrSsXj − kXjl0drS
F = o

i

x jiFi , s36d

where the response matrixxi j is obtained by inserting Eq.
s34d into the middle term of Eq.s36d:

xi j = bE
0

1

dx TrsXi − kXildsr0d1−xsXj − kXjl0dsr0dx.

s37d

Becausexi j is an invertible matrix we may solve Eq.s36d for
the external fieldsFi,

Fi = o
j

x−1
i jkXj − kXjl0l. s38d

In this way the external fields are expressed in terms of the
linear functionalkXj −kXjl0l of the system density matrixrS

F.
Using this relation in Eq.s34d we find for the blow-up map
the affine formRsrS

Fd=LrS
F+w, where

LrS
F = bo

i,j
E

0

1

dxsr0d1−xsXi − kXil0dsr0dxx−1
i jTrSsXj

− kXjl0drS
F,

w = r0. s39d

With Eq. (5) one obtains for the time evolution of the re-
duced density matrix,

rS
Fstd = TrB UstdLsrS

FdU†std + TrB r0, s40d

where we used that the total density matrixr0 is invariant
under the full time evolution. Actually this is a linear equa-
tion in the reduced density matrixrS. In order to see this one
puts t=0 in Eq. s40d, to express the trace ofr0 over the
environment in terms of the reduced density matrixrS:
TrB r0=rS−TrB LsrSd. Hence, for the Mori preparation the
time evolution of the reduced density matrix is linear.
This is also in agreement with the findings for the above
discussed model, see Figs. 2 and 3.
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APPENDIX A: CONVEX MAPS ARE AFFINE

We prove that a differentiable convex mapM from a Ba-
nach spaceB1 into a Banach spaceB2 is also affine. The
derivative of Msxd at xPB1 is defined as the linear map
DMsxd :B1→B2 that is tangential toM at x. For further
mathematical details see, e.g., Ref.[35]:

lim
ihi1→0

iMsx + hd − Msxd − DMsxdhi2

ihi1
= 0, sA1d

wherei ·ii, i =1,2 denotes the norm in the respective Banach
space. The convexity ofM then requires that its domain of
definition DsMd is convex, i.e., with each pairx,y of ele-
ments ofDsMd also all convex linear combinations,lx+s1
−ldy, with 0,l,1, belong toDsMd. Moreover, this prop-
erty is conserved under the convex mapM:

M„lx + s1 − ldy… = lMsxd + s1 − ldMsyd. sA2d

Taking the derivative with respect tol one finds from Eq.
sA2d,

DM„lx + s1 − ldy…sx − yd = Msxd − Msyd. sA3d

For l=0 one obtains

Msxd = D Msydx + Msyd − D Msydy. sA4d

The first term on the right-hand side is linear with respect to
x and the second and the third term are independent ofx and
henceM is affine.

APPENDIX B: PECHUKAS’ THEOREM

Pechukas proved in Ref.[10] that a preparation is factor-
izing if the following conditions are satisfied:(i) the corre-
sponding blow-up map of the preparation is convex;(ii ) two
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different complete sets of pure system states can be prepared
in the considered preparation class.

The proof consists of two steps. The first step is a conse-
quence of the positivity of the blow-up mapRsrSd and makes
use of the possibility to prepare pure states of the system.
Assumeucl is a pure state of the system that can be prepared.
In the first step of the proof it is shown that the density
matrix r of the full system has the form

r = Rsuclkcud = uclkcux, sB1d

where the environment density matrixx in general depends
on the system stateucl.

Following Pechukas[10], we consider the diagonal matrix
elementkf ,eur uf ,el of the density matrixr with a product
state uf ,el, where f is an element of the system Hilbert
space that is orthogonal on the prepared pure statec,
kf ,cl=0, anduel is an arbitrary normalized element of the
environment Hilbert space. The positivity ofr implies
kf ,eur uf ,elù0. On the other hand, kf ,eur uf ,el
ø kfuTrBr ufl= zkfuclz2=0. Therefore

ruf,el = 0 sB2d

must hold for all environment statesuel and all system states
ufl' ucl. This impliessB1d with an environment reference
density matrix

x = TrSr = kcurucl. sB3d

Up to this point we have not made use of the convexity of
the blow-up map and therefore the reduced environment den-
sity matrix x may still depend on the system stateucl.

In the second step of the proof we first take two pairs of
orthonormal system states,uc1l, uc2l anduw1l, uw2l, that span
the same two-dimensional subspace:

uc1lkc1u + uc2lkc2u = uw1lkw1u + uw2lkw2u ; P, sB4d

where P is the projection operator on this subspace. The
absolute values of the mutual scalar products then are deter-
mined by an anglea:

usc1,w1du2 = cos2 a, usc1,w2du2 = sin2 a,

usc2,w1du2 = sin2 a, usc2,w2du2 = cos2 a. sB5d

We assume that the two pairs of statesci and wi can be
prepared. According to the first step of the proof, the full
density matrix that corresponds to either of the pure states is

a product of the pure state and a density matrix of the envi-
ronment:

Rsucilkciud = ucilkciuxscid, Rsuwilkwiud = uwilkwiuxswid,

i = 1,2, sB6d

where xscid and xswid are bath density matrices. We shall
show that they all are the same. For this purpose we make
use of the convexity of the blow-up map and consider its
action on the density matrix that is proportional to the pro-
jection P onto the two-dimensional subspace,rS= 1

2P. The
action of the blow-up map can be represented in either of
two ways by convex combinations of pure states, see Eq.
sB4d:

uc1lkc1uxsc1d + uc2lkc2uxsc2d

= uw1lkw1uxsw1d + uw2lkw2uxsw2d. sB7d

Calculating the matrix elements with the four pure statesci,
wi, one obtains the following equations relating the reference
density matricesxscid andxswid:

Sxsc1d
xsc2d

D = Sucosau2 usin au2

usin au2 ucosau2
DSxsw1d

xsw2d
D sB8d

and

Sxsw1d
xsw2d

D = Sucosau2 usin au2

usin au2 ucosau2
DSxsc1d

xsc2d
D . sB9d

We may exclude the trivial cases when the pairsci and wi
coincide and either cos2 a=1 or sin2 a=1. In all other
cases, the four equations only have a solution withxsc1d
=xsc2d=xsw1d=xsw2d. Hence, the environment density
matrix is identical for all preparable system density matri-
ces in the considered subspace such that a factorizable
state of the total system results on this subspace.

In order to apply this argument to higher-dimensional sys-
tem Hilbert spaces it must be possible to prepare sufficiently
many pure system states. Starting as above with a two-
dimensional subspace that can be spanned by two pairs of
preparable baseshcij, hwij, i =1,2 onenext considers the
subspace spanned by eitheruc1l and uc3l or by uw1l and uw3l
and findsxsc1d=xsc3d for the reference bath operators in the
density matrix of the full system. That means that two dif-
ferent sets of pure states spanning the system’s Hilbert space
must be preparable.
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