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Abstract

We investigate di3erent mechanisms for the control of directed transport of particles on two-
dimensional periodic and symmetric substrates, based on the application of a crossed static and
a bi-harmonic (harmonic mixing) $eld. We focus on inertial systems in the low friction regime,
using a prototypical model for atom-surface di3usion, and demonstrate that a proper control of
current reversals can be achieved at moderate $eld strengths by tuning either the static $eld or
changing the relative phase of the harmonic mixing signal, respectively.
c© 2004 Elsevier B.V. All rights reserved.
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0. Introduction

Transport phenomena in periodic potentials are ubiquitous in $elds such as physics,
chemistry and biology [1]. For systems wherein the noise intensity (for instance the
scaled temperature kT ) is signi$cantly smaller than the transport barriers, the transport
is governed by noise-assisted activation as described by rate theory in condensed media
[2–4] with periodic potential landscapes.
Renewed interest in the $eld of directed transport stems from the theme of

ratchet physics where unbiased, noise-induced transport emerges away from thermal
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equilibrium as a result of the action of Brownian motors [5–7]. Likewise, deterministic
directed transport can result in time-dependent driven systems that exhibit a symmetry
breaking of either spatial (ratchet potential) or of dynamic origin. This area has wit-
nessed many interesting new developments and has found way into novel applications
for directing, selecting or pumping particles on the mesoscopic and microscopic scale
[8,9]. The technological applications cover mainly classical transport applications [8],
but extend as well into the quantum domain [8,10].
The vast majority of present theoretical and experimental ratchet studies have focused

on one-dimensional geometries. In recent years, however, a variety of two-dimensional
systems [11–16,18–20] and even three-dimensional microIuidic, intriguing Brownian
motor systems have caught the attention of theoretical [21] and experimental [22]
practitioners of ratchet physics. As has been pointed out in Ref. [16], two-dimensional
systems possess the option to enhance and/or to control the symmetry breaking and
the resultant transport features such as recti$cation. Ratchet physics has also found
its way into the separation of biological molecules by use of time-varying $elds
through two-dimensional arrays of obstacles [23], while recti$cation features have been
observed [16] for overdamped particles interacting with two-dimensional symmetric
periodic substrates driven with a dc-drive along one direction and a circular ac-drive.
In fact, a device has recently been fabricated that is able to control a priori the motion
of magnetic Iux quanta on a tailored niobium superconducting $lm [17].
In the present work we study an inertial system in the underdamped domain, with

a two-dimensional symmetric potential driven by a constant bias $eld in combination
with a time-periodic harmonic mixing $eld that acts along perpendicular directions.
A harmonic mixing signal consists of two cosinusoidal periodic coherent perturbations
at a fundamental frequency and its second harmonic. This perturbation is of vanishing
mean but possesses nonvanishing, odd-numbered moments (dynamical symmetry break-
ing [24]). The overdamped limit with harmonic mixing signals in one-dimensional, spa-
tially periodic potentials has been studied classically and quantum mechanically before
[25]. Our present class of systems also generalizes the physics at work in dissipa-
tive one-dimensional, deterministic inertial ratchet systems exhibiting chaotic dynamics
[26–29,31,32].
In a recent work [19] some of us investigated the di3usive and directed transport in

this system under a single ac $eld, and observed intriguing current reversals. With this
work, we extend our previous studies with our objective centering on the possibility
to control at will the current in the two-dimensional plane, via the mutual interplay
of harmonic mixing-induced directed transport and an externally applied bias force
in the perpendicular direction. The tunable parameters that can readily be used for
control are the frequency of the periodic signal, the relative strength of the two forcing
amplitudes and its relative phase. This manipulation of signal parameters is in practice
much simpler to implement as compared to a method where one tinkers with the ratchet
potential parameters. The underlying potential is given by the experimental facts and
often is symmetric by nature; see below. Thus the symmetry breaking must be induced
dynamically by the time-dependent driving force.
The initial motivation to study this system emerges from the possibility to control the

migration of atomic and molecular adsorbates on surfaces using electric $elds (surface
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electro-migration [33]). First applications of the ratchet e3ect to electromigration are
hinted at in the theoretical studies by Kehr [34] and more explicitly by Der*enyi et al.
[35], who predicted a surface smoothing during growth when applying an ac-electric
$eld. This phenomenon has been corroborated already experimentally [36]. The ratchet
e3ect in those theoretical one-dimensional studies arises because of the spatial asymme-
try of the potential at step edges (the Schwoebel barrier). One-dimensional studies of
di3usion under weak electric $elds have also been put forward by Talkner et al. [37].
Recent scanning tunnelling microscopy (STM) experiments have shown that electric
$elds can change the di3usion mechanisms [38] or induce rotations of molecules ad-
sorbed on surfaces [39], opening the possibility to mechanically manipulate individual
molecules.
In this case, we consider the transport of atoms on large terraces represented by

a two-dimensional symmetric surface, and address the question of how to control the
motion in either direction by applying crossed $elds. The classical dynamics is
described by the couple of equations (in scaled units) 1

,x = − 9V (x; y)
9x − bẋ − fx(t) ;

,y = − 9V (x; y)
9y − bẏ − fy ; (1)

where the potential has the form [19]

V (x; y) =
1
4�2

{(Vr + 1) − Vr[cos (2�x) + cos (2�y)]

+ (Vr − 1) cos (2�x) cos (2�y)} : (2)

The Wigner–Seitz cell for this potential has a minimum at V (0; 0)=0 and a barrier
for transport along the x- or y-direction at V (± 1

2 ; 0) = V (0;± 1
2 ) =

1
2�

2. The param-
eter Vr is half the ratio between the maximum and the saddle-point of the nonscaled
potential [19], and determines the barrier for transport along the diagonal directions,
V (± 1

2 ;± 1
2 )=Vr=�

2, and the strength of the potential coupling (for Vr =1 the potential
is separable). The value of the friction coeOcient b and of the parameter Vr are usually
$xed by the experimental conditions. Here we set b = 0:07 and Vr = 5

8 , which corre-
spond to a model for di3usion of Na atoms on a symmetric Cu(0 0 1) surface $tted to
experiment [40]. This very system operates in the low friction regime.
The ac-driver fx(t) producing the harmonic mixing signal is chosen to be of the

form

fx(t) = e1 cos (!t) + e2 cos (2!t + �) (3)

with ! = 0:75 $xed throughout this work, while fy is a static $eld. Note that there
is no dc component in the x-direction, therefore recti$cation in x is due to a ratchet
e3ect. The amplitudes fy; e1; e2 and the phase � are the tunable parameters we use

1 Distances are divided by the spatial period a and times multiplied by the natural frequency of vibration
!0 =2�

√
Vs=2ma2, where m is the particle mass and Vs the barrier for transport along the symmetric x- and

y-directions.
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to control the transport process. These are also easily varied in most experimen-
tal situations. In Sections 1 and 2 the phase is set equal to zero, and e2 = 0:05 is
$xed whenever we consider fx(t) �= 0. The role played by the phase is addressed in
Section 3. The quantity of interest here is the net current of particles, de$ned by

〈v〉 ≡ lim
t→∞

〈x(t) − x(0)〉
t

= lim
n→∞

〈x(nT ) − x(0)〉
nT

; (4)

taking as unit of time the driver period T = 2�=!.

1. Onset of directed transport under crossed �elds

Before investigating the control of transport in the 2D plane, it is interesting to
discuss the onset of directed motion in this underdamped system due to both dc- and
ac-$elds, and the inIuence of the potential energy coupling. Consider $rst the separable
(Vr = 1) case. Along y, where we have only a static $eld component, there are two
thresholds for the onset of directed transport. The $rst one is given by the condition
that the net energy change per spatial period in a limit cycle is enough to surmount the
potential barrier [1], which for potential (2) is f1

y=2b=�2 ∼ 0:014. The second threshold
corresponds to the case where the e3ective potential Veff(0; y)=V (0; y)±fyy has no
minima, f2

y = 1=2� ∼ 0:16. For fy¿f2
y , only running solutions of the equations of

motion (1) are possible, while for f1
y 6fy6f2

y we have hysteretic behavior between
a pinned and a running solution [1]. The hysteresis region is marked with dashed lines
in Fig. 1. We notice that for the corresponding overdamped system only the second
threshold is present; consequently, the onset of directed transport takes place at much
higher $eld strengths compared to the underdamped case.
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Fig. 1. Flux in the y-direction as a function of the static $eld fy for di3erent amplitudes of the ac-$eld
fx(t). Thick solid line: e1 = e2 = 0. Dotted line: e1 = 0:083; e2 = 0:05. The threshold conditions f1

y =2b=�2,
f2
y = 1=2� for the separable potential are plotted with dashed lines (see text). The inset shows an attractor

pinned in y and running in x for fy = 0:03; e1 = 0:083; e2 = 0:05.
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For the potential energy coupling considered here, Vr = 5
8 , by increasing the static

$eld the pinned solution is more stable than the running one until fy ∼ 0:12 (Fig. 1,
thick solid line). The direction of the Iux in y can be exactly inverted by changing
the sign of fy, due to the spatial symmetry. If we switch on the bi-harmonic signal in
the perpendicular x-direction, it produces a signi$cant e3ect on the net current along y,
albeit there is no ac-component in this direction (Fig. 1, dotted line). Running solutions
in y are stabilized by the crossed $eld, and the onset of directed transport along y
takes place at fy ∼ 0:02, much closer to the f1

y -threshold. Obviously, this is entirely
due to the potential energy coupling. Moreover, we can observe pinned solutions in
y; giving zero Iux in this direction, and running in the perpendicular direction, as the
one depicted in the inset of Fig. 1.
With respect to the x-direction, chaos does play a dominant role in the deterministic

transport properties [19,27–30]. For e2 �= 0 and any value of the phase � one could in
principle observe a ratchet e3ect in x, due to the breaking of the temporal symmetry
fx(t + T=2) = −fx(t) [41]. Note, however, that in the underdamped limit b → 0 one
has to deal also with the symmetry fx(−t + T=2) = fx(t), and the condition, � �= 0; �,
may be required for inertial systems with very low friction values. Despite the fact that
recti$cation is not ruled out, there can exist large intervals of the tunable amplitude e1
where the net Iux numerically is practically zero. This can be appreciated in Fig. 2,
where we depict the current along x-direction and the stroboscopic bifurcation diagram
in the corresponding velocity vx. The existence of periodic or chaotic attractors for
a given set of initial conditions is related to the presence—or not—of mode locking
between the period of the particle inside the potential well and the period of the external
driver [42].
The threshold conditions discussed above for the static $eld fy are only valid for

the amplitude e1 in the linear response approximation. However, they are important
in establishing the existence of running orbits [19]. For instance, close to the value
e1 = f2

y ∼ 0:16 running periodic attractors with period 1 appear. We remark that the
mere existence of these attractors does not guarantee a net Iux, since, for e2=0, orbits
traveling in opposite directions are equally stable and the average current is zero. For
e2 �= 0, and as a consequence of nonlinear response due to harmonic mixing (see
Section 3), a particular orbit is more probable than others giving rise to net Iux and
current reversals. This is what we observe in Fig. 2a for 0:166 e16 0:18. An increase
of the amplitude e2 leads to stabilization of speci$c periodic attractors [19,30]. Here
we seek di3erent stabilization mechanisms, while trying to control the transport for
moderate $eld strengths below the threshold f2

y , a goal that is not possible within
overdamped systems. This also is a more favorable situation in real experiments where
strong $eld amplitudes are more diOcult to achieve.
In Fig. 2b, we depict how the crossed static $eld a3ects the dynamics in x. It

stabilizes wide chaotic regions, and can drastically change the transport features in the
perpendicular direction x by favoring di3erent attractors, as can be seen in the top
panel of this $gure. In fact, most of the periodic attractors observed in the regular
windows in Fig. 2a (where fy = 0) are no longer strictly periodic for fy = 0:1. They
form narrow quasi-periodicity bands in the bifurcation diagram, due to the strong drift
motion in y. In the next section we discuss how the static $eld plays a constructive
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Fig. 2. Flux in the x-direction (top panels) and the corresponding bifurcation diagrams of the individual
particle velocities as a function of the $rst harmonic amplitude e1 of the harmonic mixing $eld, for di3erent
values of the static $eld applied along the y-direction: (a) fy = 0. (b) fy = 0:1.

role in order to control the directed motion induced by the harmonic mixing signal
acting in x-direction.

2. Control of directed transport generated by a crossed static �eld

Here we choose some speci$c values of the ac-$eld amplitude e1 shown in Fig. 2,
and investigate in detail the e3ect induced by the static $eld fy in the transport prop-
erties. In Fig. 3 we plot again the current along the x-direction and the corresponding
bifurcation diagram of vx, this time as a function of fy, for e1=0:083 (a), and e1=0:095
(b), respectively. In the $rst case, we note that a current reversal in x occurs by tuning
the $eld in y, from 〈vx〉 = − 1

2 to 〈vx〉 = 1
2 . An inspection of the periodic solutions

seen in the corresponding bifurcation diagram reveals the mechanism for this reversal:
there are two competing running attractors of period 2, plotted in Fig. 4a, with op-
posite velocities. Upon inspecting Fig. 3a the current reverses its sign around for
fy = 0:042, where a bifurcation from a regular periodic orbit to a chaotic attractor
occurs. The corresponding chaotic region comprises the interval fy ∈ [0:042; 0:024]
within which the current undergoes its sign change from 1

2 towards − 1
2 . Due to



412 S. Sengupta et al. / Physica A 338 (2004) 406–416

Fig. 3. Flux in x-direction and the corresponding bifurcation diagrams as a function of the static $eld fy ,
for $xed amplitudes of the bi-harmonic $eld along x: (a) e1 =0:083; e2 =0:05 and (b) e1 =0:095; e2 =0:05.
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Fig. 4. Attractors corresponding to di3erent ac- and dc-$eld strengths shown in Fig. 3. (a) e1=0:083; e2=0:05.
Solid line: fy =0. Dashed line: fy =0:1 (see Fig. 3a). (b) e1 = 0:095; e2 = 0:05. Solid line: fy =0. Dashed
line: fy = 0:1 (see Fig. 3b).

symmetry, the same phenomenon occurs again for corresponding negative valued fy;
see in Fig. 3a. It should be emphasized that this mechanism is precisely the same that
is at work in one-dimensional chaotic ratchets, as it has been investigated by Mateos in
Refs. [27,28].
Note that the inherent symmetry structure in the equations of motion in (1,2) imply

that the direction of the current in x is independent of the sign of fy while the direction
in y is the opposite; compare also with Fig. 1. Next, we discuss a simple method to
control the direction of the current in x without changing the static $eld strength.
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In Fig. 3b, for a slightly larger value of the amplitude e1, we have a completely
di3erent phenomenon: a region with average negative Iux in x yields no directed
transport upon increasing (decreasing) the $eld fy. This is again readily understood
upon inspecting the corresponding attractors, see Fig. 4b. For zero static $eld, we have
running chaotic solutions with a small bias in the negative x direction. A nonzero $eld
fy stabilizes the chaotic motion in x, rendering it periodic, but pinned in this direction,
yielding no net current. Notice that this solution is the opposite case to that depicted
in the inset of Fig. 1, where a particle is pinned in y while running in x. Therefore,
by tuning properly the crossed static $eld fy we can completely control the transport
along the x-direction.

3. Phase control of directed transport

For a one-dimensional ratchet potential with a bi-harmonic ac-$eld, it has been
shown by Barbi et al. [30] that the relative phase of the $eld a3ects considerably
the directed transport. This is due to the fact that there is an interplay between the
dynamical symmetry breaking due to harmonic mixing and the ratchet e3ect induced
by the asymmetric potential landscape. Here, all the recti$cation along x is entirely
due to the time-dependent signal, and therefore the phase can be used to change the
transport in a controllable way.
The existence of a net current in x can be predicted by calculating the response of

the system to the external $eld, which is proportional to the average velocity [1,43].
One can expand the adiabatic response function R in a Taylor series in fx(t),

R(fx) = R1fx + R2f2
x + R3f3

x + · · · : (5)

For e2 �= 0, the leading nonzero contribution to the average response is given by the
third-order term

RR= 3
2 �R3e

2
1e2 cos�+ · · · ; (6)

Then, we deduce that a response equal in magnitude but opposite in sign is obtained
by a phase shift � → � + �. This is veri$ed numerically in Fig. 5 calculating the
net Iux in x as a function of �. We use the same parameter set for the bi-harmonic
$eld than used for Fig. 3a, e1 = 0:083; e2 = 0:05, and di3erent static $eld strengths.
Thus, one can readily reverse the direction of the motion by imposing a relative phase
change.

4. Conclusions

In the present work, we have explored the control possibilities of crossed electric
$elds on the directed transport of particles moving on two-dimensional periodic sub-
strates. To this end we have focused on an underdamped system in the low friction,
moderate $eld regime (for this system, a $eld strength f ∼ 0:05 produces an energy
gain equal to the barrier for transport), generalizing previous studies on 2D overdamped
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Fig. 5. Flux in the x-direction as a function of the relative phase � of the bi-harmonic signal, for e1 =0:083,
e2 = 0:05 (see Fig. 3a). (a) fy = 0 and (b) fy = 0:1.

systems [16] with di3erent crossed $elds. We have also chosen a static $eld in one
direction and a harmonic mixing signal in the other one, emphasizing the role of the
potential energy coupling in the way each $eld a3ects the transport in the perpendicu-
lar direction. The system investigated represents a model for transport of Na atoms on
a Cu(0 0 1) surface [40], therefore the results presented here can be of relevance for
the control of surface electromigration [33,35,38], but are also applicable to particle
separation in 2D devices [15,21,23], transport of vortices in superconductors [17,44]
or electron currents through semiconductors [9].
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We have demonstrated that by using as tuning parameters the static $eld strength
fy, or the $rst harmonic amplitude e1, as well as the relative phase of the ac-$eld,
a detailed control of the directed transport in the 2D-plane is possible. The realiza-
tion of this control can likely be more simply implemented in experiments than a
method which is based on re-structuring the symmetry of the surface potential. The
symmetry breaking brought about by the second harmonic signal leads to recti$ca-
tion e3ects while the crossed steady $eld provides an appealing Iexibility in con-
trolling this transport. In particular, current reversals in the x-direction can be ob-
tained by changing the static $eld in y, due to stabilization of di3erent attractors.
A crossed $eld can also pin a running solution in the perpendicular direction causing
the resultant current to vanish. Because of the nonlinear, phase-dependent response to
the bi-harmonic signal the relative phase can be used to change a priori the direction
of the current in x-direction.
The approach pursued here also generalizes some recent proposals for control and

manipulation of 1D Hamiltonian and weakly damped inertial systems [45,46] by
symmetry breaking.
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