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Controlling currents through molecular wires
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Abstract

We investigate the possibility of controlling by means of external laser fields both the current
through molecular wires and the corresponding noise properties. It is found that an appropriate
off-resonant driving field reduces the coherent transport across the molecule resulting in a strong
current suppression. The relative level of transport noise, characterized by a Fano factor, exhibits
characteristic maxima and minima near regimes of current suppression. In a three-terminal
configuration, the field allows one to steer the current selectively towards one terminal.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The ongoing experimental progress in the field of molecular electronics [1–4] has
revived theoretical interest in the transport properties of molecules which are placed
between metallic leads [5]. Indeed during the last few years, the field has progressed rapidly
and at present enjoys intensive activity [6, 7]. Tight-binding models for the wire have been
used to compute current–voltage characteristics, within a scattering approach [8] andfrom
electron transfer theory [5]. The two approaches have the same essentials [9]. On the other
hand, in the limit where the wire electrons lose their quantum coherence, the transport is
dominated by incoherent hopping between neighbouring sites [10, 11].

Typical electronic excitation energies in molecules are in the range up to an eV and,
thus, correspond to light quanta from the optical and the infrared spectral regime where
most of today’s lasers work. It is therefore natural to use such coherent light sources to
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Fig. 1. The molecular circuit consisting ofN = 6 sites of which the sites 1, . . . , L are coupled toL = 4 leads.

excite molecules and to study their influence on the transport properties with the goal of
selectively manipulating both the current and its noise properties. On the other hand, since
suchfrequencies lie below typical plasma frequencies of metals, the laser light will be
reflected at the metal surface, i.e. it does not penetrate the leads. Consequently, we do not
expect major changes of the leads’ bulk properties—in particular each lead remains close
to equilibrium. Moreover, we assume that hot electrons, which might be generated by the
impinging laser, do not influence the transport properties significantly. Thus, we consider
herein the influence of the driving solely in the molecular Hamiltonian. In addition, the
energy of infrared light quanta is far smaller than the work function of a common metal,
which is of the order of 5 eV. This prevents the generation of a photocurrent, which
otherwise would dominate the effects discussed below.

One particularly prominent example of quantum control is the so-called coherent de-
struction of tunnelling (CDT), i.e. the suppression of the tunnelling dynamics in aniso-
lated bistable potential by the purely coherent influence of an oscillating bias [12, 13]. The
crucial point there is that the long-time dynamics in a periodically driven quantum system
is no longer dominated by the energies, but rather by the so-called quasienergies [13–15].
The latter may be degenerate for properly chosen driving parameters yielding a divergent
timescale. Inspired by these results, we address here the question of controlling by the use
of properly tailored laser fields the transport through time-dependentopen systems, i.e.
systems that allow particle exchange with external leads.

Alternatively, the model discussed below can be realized with coherently coupled
quantum dots [16, 17]. For theseso-called artificial molecules, the relevant excitation
frequencies liein the microwave regime.

2. The wire–lead model

We startout by specifying the model Hamiltonian of the entire system as sketched in
Fig. 1. This consists of the molecule in the laser field, ideal leads and the molecule–leads
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coupling Hamiltonian:H (t) = Hmolecule(t)+Hleads+Hmolecule-leads. The irradiated molecule
is modelled by a tight-binding description taking into accountN molecular orbitals |n〉,
which are relevant for the transport. Disregarding the electron–electron interaction, the
most general form of the Hamiltonian reads

Hmolecule(t) =
∑
n,n′

Hnn′(t)c†
ncn′ , (1)

where the fermionic operatorscn andc†
n destroy and create, respectively, an electron in

the molecular orbital|n〉. The sums extend over all tight-binding orbitals. TheT -periodic
time dependence of the single-particle HamiltonianHnn′(t) = Hnn′(t + T ), reflects the
influence of the laser field with frequencyΩ = 2π/T . As discussed above, we assume that
the L leads remain close to equilibrium and hence can be described by grand-canonical
ensembles of electrons at temperatureT and electrochemical potentialµ�, � = 1, . . . , L.
Thus, the lead Hamiltonian readsHleads= ∑

q� εq�c
†
q�cq�, wherecq� destroys an electron

in state q in lead �. All expectation values of lead operators can be traced back to
〈c†

q�cq ′�′ 〉 = δqq ′δ��′ f (εq�−µ�), where f (ε) = (1+eε/kBT )−1 denotes the Fermi function.
The model is completed by the molecule–leads tunnelling Hamiltonian

Hmolecule-leads=
∑
q�

Vq� c†
q� c� + h.c., (2)

that connects each lead directly to one of the suitably labelled molecular orbitals. Since
we are not interested here in the effects that arisefrom the microscopic details of the
molecule–lead coupling, we restrict our analysis in the following to energy-independent
couplings, i.e.Γ� = 2π

∑
q |Vq�|2 δ(ε − εq�) = const.

3. Floquet transport theory

For a two-terminal configuration, one can eliminate the leads to find for the retarded
Green function of the wire electrons the equation of motion[

H(t)− iΣ − i�
d

dt

]
G(t, t ′) = δ(t − t ′), (3)

whereH(t) = ∑
n,n′ |n〉Hnn′(t)〈n′| and 2Σ = |1〉ΓL〈1|+|N〉ΓR 〈N | is the self-energy. For

the current defined as the change of the charge in the, e.g., left lead,IL = −e(d/dt)〈NL 〉,
we find after some algebra that it assumes the commonly expected “scattering form” [18]
but with periodicallytime-dependent transmission probabilities and, as well, an additional
contribution that accounts for aT -periodic charging/discharging of the wire [19]. Only the
former contributes to the time-averaged current

Ī = e

2π�

∞∑
k=−∞

∫
dε

{
T (k)L R (ε) fR(ε)− T (k)RL (ε) fL(ε)

}
, (4)

whereT (k)L R (ε) = ΓLΓR |G(k)
1N (ε)|2 is the transmission of an electron with energyε from the

right lead to the left lead under the absorption (emission) of|k| photons ifk > 0(k < 0)
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and T (k)RL (ε) is defined accordingly.G(k)
1N (ε) denotes the relevant matrix elements of the

Fourier transform

G(k)(ε) =
∫ T

0

dt

T eikΩ t
∫ ∞

0
dτ eiετ/�G(t, t − τ ) (5)

of the retarded Green function. Since the coefficients of the equation of motion (3)
are T -periodic, a complete solution can be constructed with the help of the Floquet
ansatz |ψα(t)〉 = exp[(−iεα/� − γα)t]|Φα(t)〉. The Floquet states|Φα(t)〉 =∑

k |Φαk〉 exp(−ikΩ t) obey the time periodicity of the differential equations and fulfil,
in a Hilbert space that is extended by a periodic time coordinate, the eigenvalue equation[

H(t)− iΣ − i�
d

dt

]
|Φα(t)〉 = (εα − i�γα)|Φα(t)〉. (6)

Since the eigenvalue equation (6) isnon-Hermitian, its eigenvaluesεα− i�γα are generally
complex valued and the (right) eigenvectors are not mutually orthogonal. Therefore, we
need to solve also the adjoint Floquet equation yielding again the same eigenvalues but
providing the adjoint eigenvectors|Φ+

α (t)〉. Thus, we find the retarded Green function

G(t, t − τ ) = − i

�

∑
α

|ψα(t)〉〈ψ+
α (t − τ )|Θ(τ ) = G(t + T , t + T − τ ) (7)

and, consequently,

G(k)
nn′(ε) =

∑
α,k′

〈n|Φα,k′+k〉〈Φ+
α,k′ |n′〉

ε − (εα + k ′�Ω − i�γα)
. (8)

The current noise is given by the auto-correlation functionSL(t, τ ) = (1/2)〈[	IL(t),	IL

(t+τ )]+〉 of the current fluctuation operator	IL(t) = IL(t)−〈IL(t)〉. It can be shown that
SL (t, τ ) = SL (t +T , τ ) shares the time periodicity of the driving. Therefore, it is possible
to characterize the noise level by the time-averaged noise strength at zero frequency,
S̄L = ∫

dτ
∫ T

0 dt SL (t, τ )/T . Sincethe total charge is conserved, we findS̄L = S̄R = S̄,
where [19]

S̄ = e2ΓLΓR

2π�

∑
k

∫
dε


ΓLΓR

∣∣∣∣∣
∑

k′
G(k′−k)

N1 (εk)
[
G(k′)

N1 (ε)
]∗

∣∣∣∣∣
2

fL(ε) f̄L(εk)

+
∣∣∣∣∣ΓL

∑
k′

G(k′−k)
1N (εk)

[
G(k′)

11 (ε)
]∗ − i G(−k)

1N (εk)

∣∣∣∣∣
2

fL(ε) f̄ R(εk)


 (9)

+ same terms with the replacement(L,1) ↔ (R, N),

with f̄L/R = 1 − fL/R andεk = ε + k�Ω . Expressions (4) and (9) contain as special
cases prior findings: in the absence of any driving, the Floquet eigenvaluesεα − i�γα re-
duce to the complex-valued eigenenergies;this impliesG(k)

nn′ = 0 for all k �= 0, yielding

the transmission probability for an electron with energyE of T (E) = ΓLΓR |G(0)
N1(E)|2.



S. Kohler et al. / Superlattices and Microstructures 34 (2003) 419–427 423

Fig. 2. Time-averaged currentĪ (a) as a function of the driving amplitudeA for a wire with N = 3 sites with
on-site energiesEn = 0 and chemical potentialsµR = −µL = 25∆. Theother parameters areΩ = 5∆/�
andΓ = 0.5∆. The triangles mark the results obtained within the master equation approach of [22]. Panel (b)
displays the FanoF factor for these parameters (full curve) and for a smaller wire–lead coupling (dash–dotted
curve).

Thus, the quantities̄I and S̄ agree with the well-known expressions obtained within the
time-independent, non-driven scattering approach [20]. For a system for which the ac
potential is spatially uniform in the driven region, the average current and the noise strength
follow in the weak tunnelling limit already from the static conduction properties [21].

Especially for long wires, the master equation approach presented in [22, 23] allows a
more efficient numerical computation. The central idea behind this approach is to solve
the coherent dynamics by means of a transformation into the basis given by the coherent
Floquet states, i.e. the solution of the eigenvalue problem (6) for Σ = 0. In this basis,
a master equation for the occupation of the Floquet states can be derived. Its solution
describes the state of the wire at asymptotic times and thus, in particular, the corresponding
current. In the situation considered below (cf.Fig. 2(a)), the two results are in perfect
agreement.
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4. Laser-controlled current

4.1. Current and noise suppression in two-terminal devices

As a simple, yet nontrivial application, we consider a wire composed ofN = 3
sites. Each orbital is coupled to its nearest neighbours by a hopping matrix element∆.
The on-site energies are modulated by the influence of the ac dipole field,Hnn(t) =
En − A cos(Ω t)(2 − n), n = 1,2,3. The energyA equals the electric field strength
multiplied by the electron charge−e and the distance between two neighbouring sites.
The wire is assumed to couple equally to the two leads,ΓL = ΓR = Γ , and the laser
frequency is far off resonance,Ω = 5∆/�. For a molecular wire, a typical value for the
hopping matrix element∆ and the coupling strengthΓ is 0.1 eV, leading to a current unit
eΓ/� � 25 µA, while the laser frequency lies in theoptical regime. For a distance of
2 Å between two neighbouring sites, a driving amplitudeA = ∆ corresponds to an electric
field strength of roughly 5×106 V/cm. For the evaluation of the currentĪ and the noisēS,
we restrict ourselves to zero temperature. Then, the Fermi functions turn into step functions
and the energy integrations in equations Eqs. (4) and (9) can be carried out analytically.
This limit is physically well justified for molecular wires at room temperature and for
quantum dots at helium temperature since, in both cases, thermal electron excitations do
not play a significant role.

Fig. 2(a) depicts the dc current and the zero-frequency noise for a wire with equal on-
site energiesEn = 0 and a relatively large applied voltage. As a remarkable feature, we
find that for certain values of the field amplitudeA, the current drops to a value of some
percent of the current in the absence of the field [24]. A perturbation theory for the Floquet
equation (6) for ∆,Γ 	 �Ω yields that the driving results in a renormalized hopping
matrix element∆ → ∆eff = J0(A/�Ω)∆, where J0 denotes the zeroth-order Bessel
function. Then,G1N andGN1 vanish if the conditionJ0(A/�Ω) = 0 is fulfilled [25, 26].
Consequently, the dc current (4) and the zero-frequency noise (9) also vanish.

Therelative noise strength can be characterized by the so-called Fano factorF = S̄/e| Ī |
depicted inFig. 2(b). Interestingly enough, we find that the Fano factor exhibits, as a
function of the driving amplitudeA, both a sharp maximum at current suppression and
two pronounced minima nearby. For a sufficiently large voltage, the Fano factor assumes
at the maximum the valueF ≈ 1/2. Once the driving amplitude is of the order of the
applied voltage, however, the Fano factor becomes much larger. The relative noise minima
are distinct and provide a typical Fano factor ofF ≈ 0.15. Reducing the coupling to the
leads renders these phenomena even more pronounced, since then the suppressions occur
in a smaller interval of the driving amplitude; cf.Fig. 2(b). The overall behaviour is robust
in the sense that approximately the same values for the minima and the maximum are
also found for larger wires, different driving frequencies, different coupling strengths and
slightly modifiedon-site energies, provided that∆, Γ , En 	 �Ω and that the applied
voltage is sufficiently large. The qualitative behaviour can again be understood within a
perturbative approach. With increasing driving amplitude, a crossover from∆eff � Γ
to ∆eff 	 Γ at the current suppression occurs. Both limits correspond to the transport
through a symmetric double barrier and, therefore, are characterized byF ≈ 1/2 [20].
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Fig. 3. Average currents through contacts C1 (solid) and C2 (broken) as a function of the polarization angleϑ
for the three-terminal device depicted in the inset. The chemical potentials areµE = −µC1

= −µC2
= 50∆;

the on-site energiesEn = 0. The driving field is specified by the strengthA = 25∆ and the angular frequency
Ω = 10∆/�; the effective coupling isΓ = 0.1∆ and the temperaturekBT = 0.25∆.

At the crossover∆eff ≈ Γ the effective barriers vanish and,consequently, the Fano factor
assumes its minimum.

4.2. Current router

An experimentally more ambitious configuration consists in a planar three-terminal con-
figuration withN = 4 sites. We borrowfrom electrical engineering the designations E, C1
and C2. Here, an external voltage is always applied such that C1 and C2 have equal electro-
chemical potential, i.e.µC1 = µC2 �= µE. In a perfectly symmetric molecule, where all on-
site energies are equal to each other, reflection symmetry at the horizontal axis ensures that
any current which enters at E is equally distributed among C1,2; thusIC1 = IC2 = −IE/2.

The fact that this structure is essentially two-dimensional brings about a new degree of
freedom, the polarization of the laser field.We assume it to be linear with a polarization
angleϑ as sketched in the inset ofFig. 3. The effective driving amplitudes of the orbitals
that are attached to the leads acquire now a geometric factor which is only the same for
the two orbitals C1 and C2 whenϑ = 0. For any other polarization angle, the above
mentioned symmetry is broken and the outgoing currents may be different from each other.
The difference may be huge, as depicted inFig. 3. Their ratio variesfrom unity forϑ = 0◦
up to the order of 100 forϑ = 60◦. Thus, adapting the polarization angle enables one to
route the current towards one or the other drain.

For a qualitative explanation of the mechanism behind this effect, it is instructive to
look at the time averages of the overlaps|〈n|Φα(t)〉|2 of the Floquet states and the terminal
sitesn = E,C1,C2. Fig. 4 shows these overlaps for three different polarization angles
ϑ . Let usconsider, for instance, the current across contact C1. It is plausible that only
Floquet modes which have substantial overlap with both the site C1 and also the site E
contribute to the current through these terminals. For a polarization angleϑ = −60◦, we
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Fig. 4. The time average〈〈Φα(t)|n〉〈n|Φα(t)〉〉 of the overlaps|〈n|Φα(t)〉|2 of the sitesn = E,C1,C2 and T
(central site) with a Floquet state|Φα(t)〉 for three different polarization anglesϑ . All parameters are as inFig. 3.

can infer fromFig. 4that the Floquet states with indicesα = 1,3 and4 fulfil this condition
and, consequently, a current flows from lead E into lead C1. By contrast, forϑ = 0◦ and
ϑ = 60◦ such current carrying states do not exist and the respective current vanishes.

5. Conclusions

The transport properties of molecular wires and coherently coupled quantum dots can
be influenced significantly by ac fields. In particular, such an external driving can be used
to selectively suppress both the current and its noise. Investigating therelative noise level
characterized by the Fano factor has revealedthat the current suppression is accompanied
by a noise maximum and two remarkably low minima. The underlying physics is domi-
nated bycoherent destruction of tunnelling for the electrons on the molecule. These pheno-
mena can be used to devise novel current sources with controllable noise levels. In a three-
terminal device, the polarization of the laser field can be adjusted such that single exits can
be selectively closed. Then, the current is routed through the respective other terminals.
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