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Abstract

We investigate the possibility of controlling by means of external laser fields both the current
through molecular wires and the corresponding noise properties. It is found that an appropriate
off-resonant driving field reduces the coherent transport across the molecule resulting in a strong
current suppression. The relative level of transport noise, characterized by a Fano factor, exhibits
characteristic maxima and minima near regimes of current suppression. In a three-terminal
configuration, the field allows one to steer the current selectively towards one terminal.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The ongoing experimental progress in the field of molecular electrofdiey has
revived theoretical interest in the trgowst properties of molecules which are placed
between metallic lead]. Indeed during the last few years, the field has progressed rapidly
and at present enjoys intensive activiby T]. Tight-binding models for the wire have been
used to compute current—voltage chaeaistics, within a scattering approadj fndfrom
electron transfer theorp]. The two approaches have the same essenfial©h the other
hand, in the limit where the wire electrons lose their quantum coherence, the transport is
dominated by incoherent hopping between neighbouring sit@d [l].

Typical electronic excitation energies in molecules are in the range up to an eV and,
thus, correspond to light quanta from the optical and the infrared spectral regime where
most of today’s lasers work. It is therefore natural to use such coherent light sources to
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Fig. 1. The molecularircuit consisting ofN = 6 stes of which the sites,1. ., L are coupled td. = 4 leads.

exdte molecules and to study tleénfluence on the transport properties with the goal of
sekctively manipulating both the current and its noise properties. On the other hand, since
suchfrequencies lie below typical plasma frequencies of metals, the laser light will be
reflected at the metal surface, i.e. it does natgimte the leads. Consequently, we do not
expect major changes of the leads’ bulk prajpes—in particular each lead remains close
to equilibrium. Moreover, we assume that hot electrons, which might be generated by the
impinging laser, do not influence the transport properties significantly. Thus, we consider
herein the influence of the driving solely in the molecular Hamiltonian. In addition, the
energy of infrared light quanta is far smaller than the work function of a common metal,
which is o the order of 5 eV. This prevents the generation of a photocurrent, which
otherwise would dominate the effects discussed below.

One patrticularly prominent@mple of quantum control ie so-called coherent de-
struction of tunnelling (CDT), i.e. the suppression of the tunnelling dynamics irs@n
lated bistable potential by the purely coherent influence of an oscillating b4 B]. The
crucial point there is that the long-time dynamics in a periodically driven quantum system
is no longer dominated by the energies, but rather by the so-called quasien&BES |
The latter may be degenerate for properly chosen driving parameters yielding a divergent
timescale. Inspired by these results, we address here the question of controlling by the use
of properly tailored laser fields the transport through time-depenafmnt systems, i.e.
systems that allow particle exchange with external leads.

Alternatively, the model discussed below can be realized with coherently coupled
guantum dots 16, 17]. For theseso-called artificial molecules, the relevant excitation
frequencies lien the microwave regime.

2. Thewire-lead mode

We startout by specifying the model Hamiltonian of the entire system as sketched in
Fig. 1 This mnsists of the moledea in the laser field, ideaklds and the molecule—leads
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coupling HamiltonianH (t) = Hmolecule(t) + Hieadst- Hmolecule-leads The fradiated molecule
is modelled by a tight-binding description taking into accotihimolecula orhitals |n),
which are relevant for the transport. Disredjag the electron—ele@n interaction, the
most general form of the Hamiltonian reads

Hmolecudt) = Y  Hon (GG (1)

nn

where the fernonic operatorg, and cl destroy and create, respectively, an electron in
the molecular orbitaln). The sums extad over all tight-binding orbitals. Th&-periodic
time dependece of the single-particle Hamiltoniad, (t) = Hp (t + 7), reflects the
influence of the laser field with frequenfy= 27 /7. As discissed above, we assume that
the L leads remain close to eijbrium and hence can be described by grand-canonical
ensembles of electrons at temperaftlirand electrochemical potentigk, £ = 1,..., L.
Thus, the lead Hamiltonian reaéfeags= > qt Gq@CqZCq@, wherecy, destroys an eIectron

in stateq in lead ¢. All expectation vaIues of lead operators can be traced back to
(c ecqf@/) = Sqqdeer T (eqe—pe), wheref (€) = (1+¢e/%8T)~1 denotes the Fermi function.
The model is completed by the neaiule—leads tunnelling Hamiltonian

Hmolecule-leads= Z Vqe ng ¢ +h.c, (2
qt
that connects each lead directly to one of th#ably labelled matcular orbitals. Since
we are not interested here in the effectst thasefrom the microscopic details of the
molecule—lead coupling, we restrict our analysis in the following to energy-independent
couplings, i.ely =27 Y, |Vgel? 8 (€ — €qe) = const.

3. Floquet transport theory

For a twoterminal confguration, one can eliminate the leads to find for the retarded
Green function of the wire ele@ns the equativof mation

[H(t)—ix—ih%] G(t,t) =8t —t), (3)

whereH (t) = > v IN)Ha (D (' and 20 = |1) I (1] +[N) I'r(N] is the self-energy. For
the curent defined as the change of the charge in the, e.g., left lead,—e(d/dt) (N},

we find after some algebrhat it assumes the commonly expected “scattering fodf] [
but with periodicallytime-dependent transmission probabilities and, as well, an additional
contribution that accounts fora-periodic charging/discharging of the wirgd. Only the
former contributes to the time-averaged current

2715 Z /de T{F;(e)fR(e) ng(e)fL(e)] @)

WhereTL('g (e)=11_ FR|G(1,\)l (€)|? is the transmission of an electron with eneegyom the
right lead to the left lead under the absorption (emissiorjkjophotons ifk > 0(k < 0)
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and Tr(ekL) (e) is defined accordingl;,G(lk,\)l (¢) denotes the relevant matrix elements of the
Fourier transform

T . 00 .
G<k>(e):f %ékm/ dr /PG, t — 1) (5)
0 0

of the retarded Green function. Since the coefficients of the equation of ma@jon (
are 7 -periodic, a complete solution can be constructed with the help of the Floquet
ansatz |y, (1)) = exp(—ieq/h — yo)t]| P, (t)). The Floquet states @,(t)) =

>k 1 Pak) exp(—ik2t) obey the time periodicity of the differential equations and fulfil,

in a Hilbert space that is extended by a peridihe coodinate, the eigenvalue equation

d .
[H(t) — 1Y —ih— } | o (1)) = (€x — 1hYe)| D (1)). (6)

Since he eigenvalue equatiofi)(isnon-Hermitian, its eigenvalues —i iy, are generally
complex valued and the (right) eigenvectors are not mutually orthogonal. Therefore, we
need to solve also the adjoint Floquet equation yielding again the same eigenvalues but
providing the adjoint eigenvectoi®; (t)). Thus, we find the retarded Green function

Gtt-1 =~ Y WOt - DO =6+ T t+T-1) (1)

and, consequently,

(N @ 4k (D IN)

M (o) = : . 8
' (€) ge—(ea—i—k’hﬂ—ihya) ®)

The current noise is given by the auto-correlation funcsp(t, t) = (1/2){[AlL(t), AlL
(t+1)]4+) of the current fluctuation operatarl | (t) = I (t) —(I_(t)). It can be shown that
S (t,7) = S (t+7, t) shares the time periodicity of theidng. Therefore, it is possible
to characterize the noise level by the timesiaged noise strength at zero frequency,
S =/dt fOT dtS (t, r)/7. Sincethe total charge is conserved, we fisd = Sg = S,
where [L9]

- €IIRr
S= - Z/de I I'r

Yy e e[ef @] —ieh @
k/

+ same terms with the replacemexit, 1) <> (R, N),

2
fL(e) L (ex)

ZG“‘ M [eli©]

2

fL(e) frlek) } 9)

with f_L/R = 1- f_,r andex = € + kh{2. Expressions4) and @) contain as special
cases prior findings: in the absence of any driving, the Floguet eigenvalueshy, re-
duce to the complex-valuedganenergieghis |mpI|esG(n, = O for allk # 0, yielding

the transmission probability for an electron with enekyypf T(E) = FLFR|Gf\?i(E)|2.
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Fig. 2. Time-averaged curreiit(a) as a function of the driving amplitudg for a wire with N = 3 stes with
on-site energie€, = 0 and clemical potentialjtr = —u = 25A. Theother parameters al® = 5A/h
and " = 0.5A. The tiangles mark the results obtained within the master equation approa2i]oPanel (b)
displays the Fand& factor for these parameters (full curve) and for a smaller wire—lead coupling (dash—dotted

curve).

Thus, the quantitie$ and S agree with the well-known expressions obtained within the
time-independent, non-driven scattering appro&fj. [For a sytem for wheh the ac
potential is spatially uniform in the driven region, the average current and the noise strength
follow in the weak tunnelling limit alreagdfrom the static conduction propertiel].

Especially for long wires, the master equation approach present@@,igJj] allows a
more efficient numerical computation. The central idea behind this approach is to solve
the aoherent dynamics by means of a transformation into the basis given by the coherent
Floquet states, i.e. the solution of the eigenvalue prob@nfof ~' = 0. In this basis,
a master equation for the occupation of the Floquet states can be derived. Its solution
describes the state of the wire at asymptotic times and thus, in particular, the corresponding
current. In the situation considered below (Efg. 2a)), the two results are in perfect

agreement.
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4. Laser-controlled current
4.1. Current and noise suppression in two-terminal devices

As a dmple, yet nontrivial application, we consider a wire composedNof= 3
sites. Each orbital is coupled to its nearest neighbours by a hopping matrix elethent
The on-site energies are modulated by the influence of the ac dipole figidt) =
En — Acog2t)(2 — n), n = 1,2, 3. The energyA equals the electric field strength
multiplied by the electron chargee and the distance between two neighbouring sites.
The wire is assumed to couple equally to the two ledds,= I'r = I', and tle lagr
frequency is far off resonanc&, = 5A/h. For a nolecular wire, a typical value for the
hopping matrix elementt and the coupling strength is 0.1 eV, leadig to a currat unit
el'/h >~ 25 uA, while the laser frequency lies in thaptical regime. For a distance of
2 A between two neighbouring sites, a driving amplitusle- A corresponds to an electric
field strength of roughly 5¢< 10° V /cm. For the evaluation of the curreinind the nois&,
we restrict ourselves to zero temperature. i ke Fermi functions turn into step functions
and the energy integrations in equations E4y.and @) can be carried out analytically.
This limit is physically well justified for molecular wires at room temperature and for
guantum dots at helium temperature since, in both cases, thermal electron excitations do
not play a significant role.

Fig. 2(a) depicts the dc current and the zero-frequency noise for a wire with equal on-
site erergiesE, = 0 and a radtively large applied voltage. As a remarkable feature, we
find that for certain values of the field amplitude the curent drops to a value of some
percent of the current in the absence of the fi@l.[A perturbation theory for the Floquet
equation 6) for A, I' « h{? yields that the driving results in a renormalized hopping
matrix elementA — A = Jo(A/RS2)A, where Jo denotes the zeroth-order Bessel
function. ThenGin andGp vanish if the conditiondp(A/RS2) = 0 is fulfilled [25, 26].
Consequently, the dc currer)(and the zero-frequency nois8)(@lso \anish.

Therelative noise strength can be characred by the so-called Fano facter= S/e|l |
depicted inFig. 2(b). Interestingly enough, we find that the Fano factor exhibits, as a
function of the driving amplituded, both a sharp maximum at current suppression and
two pronounced minima nearby. For a sufficiently large voltage, the Fano factor assumes
at the maximum the valuB ~ 1/2. Once the driving amplitude is of the order of the
applied voltage, however, the Fano factor becomes much larger. The relative noise minima
are distinct and provide a typical Fano factorfof~ 0.15. Reducing the coupling to the
leads renders these phenomena even more pronounced, since then the suppressions occur
in a smaller interval of the driving amplitude; éfig. 2(b). The overall behaviour is robust
in the sense that approximately the same values for the minima and the maximum are
also found for larger wires, different driving frequencies, different coupling strengths and
slightly modifiedon-site energies, provided that, I", E, « h{2 and that the applied
voltage is sufficiently large. The qualitative behaviour can again be understood within a
perturbative approach. With increasing driving amplitude, a crossover ftggm> I
to Aer <« I at the current suppression occurs. Both limits correspond to the transport
through a symmetric double barrier and, therefore, are characterizéd 4y1/2 [20].
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Fig. 3. Average currents through contactg (8did) and G (broken) as a function of the polarization angle
for the threeterminal device depicted in the inset. The chemical potentialgigre= —puc, = —uc, = 504;
the on-site energieEn = 0. The driving field is specified by the strength= 25A and the angular frequency
2 = 10A/h; the effective coupling isl” = 0.1A and the temperatudes T = 0.25A.

At the crassoverAgs ~ I the effective barriers vanish anchnsequently, the Fano factor
assumes its minimum.

4.2. Current router

An experimentally more ambitious configuration consists in a planar three-terminal con-
figuration withN = 4 dtes. We borrowfrom electrical engineering the designations k, C
and G. Here, an external voltage is always applied such thaa@ G have equal electro-
chemical potential, i.q.c, = uc, # ue. In a perfetly symmetric molecule, where all on-
site energies are equal to each other, reflectionmaetry at the horizontal axis ensures that
any current which enters at E is equally distributed among; @huslc, = Ic, = —1g/2.

The fact that this structure is essentially two-dimensional brings about a new degree of
freedom, the polarization of the laser fielWe assume it to be linear with a polarization
angle?y as sketched in the inset Bfg. 3. The efective driving amplitudes of the orbitals
that are attached to the leads acquire now @nggric factor which is only the same for
the two orbitals @ and G when# = 0. For any other polarization angle, the above
mentioned symmetry is broken and the outgpiurrents may be different from each other.
The difference may be huge, as depicte#ig. 3. Their raio variesfrom unity for¢ = 0°
up to the order of 100 fo## = 60°. Thus, adapting the polarization angle enables one to
route the current towards one or the other drain.

For a quditative explanation of the mechanism behind this effect, it is instructive to
look at the time aveges of the overlapgn| &, (t))|2 of the Floquet states and the terminal
sitesn = E, Cy, Cy. Fig. 4 shows these overlaps for threéferent polarization angles
¢. Let usconsider, for instance, the current across contactlids plausite that only
Floquet modes which have substantial overlap with both the sitard also the site E
contribute to the current through these terminals. For a polarization angle-60°, we
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Fig. 4. The time averagg @, (t)|n)(n| P, (1)) of the overlaps|(n| &y (t))|2 of the sitesn = E, C1,Coand T
(central site) with a Floquet staté, (1)) for three diferent polarization angles. All parameters are as iRig. 3.

can infer fromFig. 4that the Floquet states with indices= 1, 3 and 4 fulfil this condition
and, consequently, a current flows from lead E into leadBy contrast, for9 = 0° and
¥ = 60° such current carrying states do not existidhe respective current vanishes.

5. Conclusions

The transport properties of molecular wires and coherently coupled quantum dots can
be influenced significantly by ac fields. In particular, such an external driving can be used
to sdectively suppress both the current and its noise. Investigatingelhtive noise level
characterized by the Fano factor has reveéhad the current suppression is accompanied
by a noise maximum and two remarkably low minima. The underlying physics is domi-
nated bycoherent destruction of tunnelling for the electrons on the molecule. These pheno-
mena can be used to devise novel current sources with controllable noise levels. In a three-
terminal device, the polarization of the lagield can be adjusted such that single exits can
be selectively closed. Then, the current is routed through the respective other terminals.
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