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Theory of non-Markovian stochastic resonance
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We consider a two-state model of non-Markovian stochastic resonance~SR! within the framework of the
theory of renewal processes. Residence time intervals are assumed to be mutually independent and character-
ized by some arbitrarynonexponentialresidence time distributions which are modulated in time by an exter-
nally applied signal. Making use of a stochastic path integral approach we obtain general integral equations
governing the evolution of conditional probabilities in the presence of an input signal. These equations gen-
eralize earlier integral renewal equations by Cox and others to the case of driving-induced nonstationarity. On
the basis of these equations a response theory of two-state renewal processes is formulated beyond the linear
response approximation. Moreover, a general expression for the linear response function is derived. The
connection of the developed approach with the phenomenological theory of linear response for manifest
non-Markovian SR put forward@I. Goychuk and P. Ha¨nggi, Phys. Rev. Lett.91, 070601~2003!# is clarified and
its range of validity is scrutinized. The theory is then applied to SR in symmetric non-Markovian systems and
to the class of single ion channels possessing a fractal kinetics.
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I. INTRODUCTION

The concept of stochastic resonance~SR! has been origi-
nally put forward in order to explain the periodicity of gla
cial recurrences on the Earth@1#. It has gained, however, a
immense popularity in the context of signal transduction
nonlinear stochastic systems in physics and biology@2–4#.
Paradoxically enough, the detection of beneficial input s
nals in the background stochastic fluctuations of a sign
transmitting physical system can be improved upon corru
ing the information-carrying signal with input noise, or upo
raising the level of intrinsic thermal noise. A first example
SR has been given for a continuous state bistable dyna
agitated by the thermal noise and periodically modulated
an external signal@1#. There exists a huge number of system
in physics, chemistry, and biology which do exhibit S
@2–4#. These range from the classical systems to the syst
with distinct quantum features@5#.

Experimentally, SR has been demonstrated in vari
macroscopic systems, see, e.g., in the reviews@2,4# and the
references therein. For a mesoscopic system containing
nite number of molecules SR has been first demonstr
experimentally in Ref.@6#. The mesoscopic system in Re
@6# consists of dynamically self-assembled alamethicin
channels of variable size that are placed in a lipid membra
Up to this date, however, there remains the challenge to d
onstrate SR on the level ofsinglestable molecules. Ion chan
nels of biological membranes@7,8# present one of the mos
appealing objects for suchsingle-molecularstudies. The in-
vention of patch clamp technique~Ref. @8#! made such in-
vestigations possible. The single-molecular SR experime
which have been performed under the conditions of varia
intrinsic thermal noise intensity@9#, did not arrive at the
convincing conclusions. A recenttheoreticalstudy @10# sug-
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gested a parameter regime where SR effect should ind
occur for a Shaker K1 channel under physiological cond
tions whenexternalnoise is added to the signal. This issu
has further been examined theoretically in Ref.@11#. The
present status calls for both theoretical and experimenta
vestigations. Particularly, the presence of distinct mem
effects in the dynamics of such single molecules as ion ch
nels constitutes a major theoretical challenge@12#. The non-
Markovian features caused by these memory effects ma
crucial for the occurrence of stochastic resonance on
level of single molecules.

The gross features of the observed bistable dynamics
be captured by a two-state stochastic processx(t) that
switches back and forth between two valuesx1 and x2 at
random time points$t i%. Such a two-state random proce
can be directly extracted from filtered experimental data a
then statistically analyzed. Basically, the processx(t) is
characterized as follows: The sojourn in the statex1 alter-
nates randomly att i into the sojourn in the statex2, thenx(t)
switches back tox1 at time t i 11, and so on. If the sojourn
time intervalst i5t i 112t i are independentlydistributed ~a
condition which we shall assume throughout the followin!,
such two-state renewal processes are fully specified by
residence time distributions~RTDs! c1,2(t) @13#. In the sim-
plest case, which corresponds to the dichotomic Markov
process, both RTDs are strictly exponential, i.e.,c1,2(t)
5n1,2exp(2n1,2t), wheren1,2 are the transition rates whic
equal the inverse mean residence times~MRTs!, which are
given by

^t1,2&ªE
0

`

tc1,2~t!dt, ~1!

with n1,25^t1,2&
21. The input signalf (t) causes the transi

tion ratesn1,2 to be time dependent, i.e.,n1,2→n1,2(t). More-
over, the RTDs become functionals of the driving signal

,
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I. GOYCHUK AND P. HÄNGGI PHYSICAL REVIEW E69, 021104 ~2004!
c1,2~ t2t8!→c1,2~ t,t8!5n1,2~ t !expF2E
t8

t

n1,2~t!dtG .
~2!

As a consequence, the time-dependent probabilitiesp1,2(t) of
the statesx1,2 obey the master equations

ṗ1~ t !52n1~ t !p1~ t !1n2~ t !p2~ t !

ṗ2~ t !5n1~ t !p1~ t !2n2~ t !p2~ t ! ~3!

with the signal-dependent rates which under an adiabatic
sumption obey the rate law@14#

n1,2~ t !5n1,2
(0)exp„2@DU1,27Dx f~ t !/2#/kBT…. ~4!

In Eq. ~4!, n1,2
(0) are the frequency prefactors,DU1,2 are the

heights of the activation barriers,Dxªx22x1.0 is the am-
plitude of fluctuations,kB is the Boltzmann constant, andT is
the temperature. For a weak periodic signal

f ~ t !5 f 0cos~Vt !, ~5!

the use of Eqs.~3! and ~4! allows one to calculate within
linear response theory theasymptotic, long-time response o
the mean valuêx(t)&5x1p1(t)1x2p2(t) to f (t),

i.e.,

^dx~ t !&5 f 0ux̃~V!ucos„Vt2w~V!…, ast→`. ~6!

In Eq. ~6!, x̃(V) is the linear response function in the fr
quency domain andw(V) denotes the phase shift. The spe
tral amplification of signal,h5ux̃(V)u2, exhibits the effect
of SR, i.e., a bell-shaped dependence vs increasing intri
thermal noise strength which is measured by the tempera
T @2#.

The above outlined two-state Markovian theory has b
put forward by McNamara and Wiesenfeld@15#; this ap-
proach has proven very useful over the years as a ba
prominent model for SR research@2#. Remarkably enough
this simple model allows one to unify the various kinds
SR such as periodic, aperiodic@16#, and even nonstationar
SR—within a unifying framework of information theor
@10#.

Many observedbistable stochastic processesx(t) are,
however, truly not Markovian, as can be deduced from
experimentally observed RTDs. As a matter of fact, any
viation of RTDs from the strictly exponential form indicate
a deviation from the Markovian behavior@17,18#. The pro-
foundly non-Markovian case emerges when at least on
the RTDs possesses a large~diverging! variance var(t1,2)
5*0

`t2c1,2(t)dt2^t1,2&
2→`. The stochastic dynamics o

single molecules is especially interesting in this respect.
example, the RTDs of the conductance fluctuations in b
logical ion channels are in many cases not exponential@19–
21#. Usually, a sum of many exponentials,c(t)
5( i 51

N cin iexp(2nit), (i51
N ci51 is needed to describe th

experimental data@8#. Moreover, in some casesc(t) can
well be described by a stretched exponential@19#, or by a
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power lawc(t)}1/(b1t)b,b.0 @20,21#. The power law is
especially remarkable. For example, in Ref.@21# such a
power law behavior has been found for the closed time R
of a large conductance~BK! potassium channel with a powe
law exponentb'2.24 yielding formally var(tclosed)5`.
This in turn implies that such conductance fluctuatio
should exhibit a characteristic 1/f a noise power spectrum
S( f ) @22#. Indeed, this is the case of BK ion channel@23#, as
well as of some other ion channels@24#.

What are the non-Markovian features of SR in simi
systems? We address this question below using the just
scribed non-Markovian generalization of McNamar
Wiesenfeld model characterized by some arbitrary nonex
nential RTDs c1,2(t) and the corresponding surviva
probabilitiesF1,2(t)5*t

`c1,2(t8)dt8 @13#. Similar models
with alternating renewal processes have been used p
ously in the SR theory for some particular stochastic dyna
ics contracted to the two-state dynamics@25,26#. Moreover,
the class of colored noise driven stochastic resonance@27# is
also intrinsically non-Markovian. All these prior studies ha
been restricted, however, to situations with finite memo
effects on a finite time scale. A truly non-Markovian situatio
emerges when the memory effects extend practically to
finity, exhibiting a scale free, weak power law decay. A ph
nomenological linear response theory of such genuine n
Markovian SR~which does not presume a knowledge of t
underlying microscopic dynamics! has been put forward re
cently in Ref.@28#. The present work provides further detai
and, additionally, presents a more general framework for
non-Markovian SR theory which extends beyond the lin
response description.

II. GENERAL THEORY

A. Two-state renewal process

To start, let us consider a two-state renewal proc
~TSRP! x(t) which takes initially, at timet0, the valuex1, or
the valuex2 with the probabilityp1(t0), or p2(t0), corre-
spondingly. At a random time pointt1 the process switche
its current state into another state and stays there until
next random time pointt2. Then, the renewal process pro
ceeds further in time in the same manner. The survival pr
ability to remain in the state 1, or the state 2 for the tim
t i5t i 112t i is F1(t i), or F2(t i), correspondingly. These
two survival probabilities completely specify the consider
TSRP@13#. The functionsF1,2(t) must satisfy the following
obvious restrictions:~i! 0<F1,2(t)<1, ~ii ! F1,2(t1Dt)
<F1,2(t), Dt.0 ~nonincreasing function of time! ~iii !
F1,2(0)51, ~iv! lim

t→`
F1,2(t)50, but are otherwise arbi

trary. One example is given by the stretched exponential
or Weibull distribution

F~t!5exp$2@G~111/a!nt#a%, 0,a,1. ~7!

In Eq. ~7!, n51/̂ t& is a rate parameter having the meani
of inverse MRT andG(x) denotes the gamma function
Moreover, the power law dependence

F~t!5
1

@11nt/g#11g
, g.0 ~8!
4-2
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THEORY OF NON-MARKOVIAN STOCHASTIC RESONANCE PHYSICAL REVIEW E69, 021104 ~2004!
corresponds to the Pareto distribution. Both Weibull a
Pareto distributions typify the so-called fractal dependenc
In particular, such distributions have been detected for s
eral different types of ion channels@19,21#. An interesting
feature of the Pareto distribution is that for 0,g,1 it dis-
plays a diverging variance, var(t)5`, whereas the MRT̂t&
is finite. The closed time intervals of a large conductan
potassium ion channel studied in Ref.@21# seems to obey Eq
~8! with g'0.24. Other fractal-like distributions can be co
structed from the expansion over exponentials

F~t!5(
i 51

`

ciexp~2n it!, (
i

ci51, ~9!

assuming some recurrence scaling relations among the
constants$n i%, e.g., n i 115an i , and among the expansio
coefficients$ci%, e.g.,ci 115bci , with some structural con
stants 0,a,1,0,b,1 @29,12,30#. If the hierarchy of rate
constants is obtained from a fundamental rate constann0
applying a recurrence scaling relation similar to one giv
above, the corresponding distribution can be characterize
a fractal in time. If the whole hierarchy is produced by
more complicated scaling law involving two, or more ind
pendent fundamental rate constants, the distribution is m
tifractal. The corresponding stochastic processes can be
ferred to as fractal renewal processes@22#. Such random
processes presently attract renewed attention in physics
in mathematical biology@12#.

The negative time derivative

c1,2~t!52
dF1,2~t!

dt
~10!

yields the corresponding residence time distributions@13#.
Next, let us assume that a number of alternations occu
before the starting time pointt0 and the considered proces
became homogeneous in timebeforethe observation starte
at t0. Then, for such persistent,time-homogeneousprocess
the RTDs of thefirst time intervalt05t12t0 , c1,2

(0)(t) must
differ from c1,2(t) @13,18,30–32#, namely@33#,

c1,2
(0)~t!5

F1,2~t!

^t1,2&
, ~11!

where^t1,2& is given by Eq.~1!. The corresponding surviva
probability of the first residence time interval reads

F1,2
(0)~t!5

E
t

`

F1,2~ t !dt

^t1,2&
. ~12!

Moreover, if to choosep1,2(t0) as the stationary values
p1,2(t0)5p1,2

st , the considered persistent process isstation-
ary. From Eq.~11! it follows that the two-state renewal pro
cess~TSRP! can be stationary only if the two mean residen
times ^t1& and ^t2& are finite. A diverging mean residenc
time leads to anomalously slow diffusion~subdiffusion! in
the multistate case@30,32,34#; such a situation is not consid
ered here.
02110
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When a time-dependent input signal is switched on,
driven TSRP becomes a nonstationary process and the c
sponding survival probabilities depend not only on the len
of time intervals, but also on the initial time instantt8 of any
considered residence time interval, i.e.,F1,2(t2t8)
→F1,2(t,t8). The residence time distributions are then a
cordingly given by

c1,2~ t,t8!52
dF1,2~ t,t8!

dt
. ~13!

The corresponding conditional survival probabilities can
defined asF1,2(tut8)ªF1,2(t81t,t8) ~here the condition is
different from that used in footnote@33#—in the absence of
signal—notwithstanding the use of identical notations!. The
particular choice,F1,2(t,t8)5exp(2*t8

t n1,2(t)dt), leads to
Eq. ~2!—the only choice which is consistent with the Ma
kovian assumption@17#. In the nonstationary driven case, th
distinction betweenF1,2

(0)(t,t8) andF1,2(t,t8), c1,2
(0)(t,t8) and

c1,2(t,t8) is not necessary. Nevertheless, we keep forma
this distinction in the following, because when the driving
being switched off, the processx(t) relaxes to its stationary
state. This distinction becomes very important in order
construct the evolution operator for time-homogeneous
tial preparations.

B. Integral equations of nonstationary renewal theory

Our immediate goal is to obtain the evolution equatio
for the considered stochastic process: we are looking for
forward evolution operatorP(tut0) ~or the matrix of condi-
tional probabilities! connecting the probability vectorpW (t)
5@p1(t),p2(t)#T at two different instants of timet and t0,
i.e.,

pW ~ t !5P~ tut0!pW ~ t0!. ~14!

This evolution operator can be explicitly constructed by co
sidering the contributions of all possible stochastic pa
leading frompW (t0) to pW (t). To start, let us separate thes
contributions as follows

P~ tut0!5 (
n50

`

P(n)~ tut0!, ~15!

where the indexn denotes the number of alternations th
occurred during the stochastic evolution. The contribut
with no alternations obviously reads,

P(0)~ tut0!5FF1
(0)~ t,t0! 0

0 F2
(0)~ t,t0!

G . ~16!

Stochastic paths with a single alternation contribute as

P(1)~ tut0!5E
t0

t

dt1P~ t,t1!F(0)~ t1 ,t0!, ~17!

where
4-3
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P~ t,t0!5FF1~ t,t0! 0

0 F2~ t,t0!
G ~18!

and

F(0)~ t,t0!5F 0 c2
(0)~ t,t0!

c1
(0)~ t,t0! 0 G . ~19!

Next, the paths with two alternations contribute to Eq.~15!
as

P(2)~ tut0!5E
t0

t

dt2E
t0

t2
dt1P~ t,t2!F~ t2 ,t1!F(0)~ t1 ,t0!,

~20!

where

F~ t,t0!5F 0 c2~ t,t0!

c1~ t,t0! 0 G . ~21!

Contributions with highern are constructed along the sam
line of reasoning.

This representation of the evolution operatorP(tut8) in
terms of an infinite sum over the stochastic paths is ex
although not very useful in practice. The structure of t
infinite series in Eqs.~15!–~21! implies, however, the fol-
lowing representation

P~ tut0!5P(0)~ tut0!1E
t0

t

dt1P~ t,t1!G~ t1 ,t0!, ~22!

where the unknown auxiliary matrix functionG(t,t0) satis-
fies the matrix integral equation

G~ t,t0!5F(0)~ t,t0!1E
t0

t

dt1F~ t,t1!G~ t1 ,t0!. ~23!

The equivalence of Eqs.~15!–~21! and Eqs.~22! and ~23!
can be readily checked by solving Eq.~23! with the method
of successive iterations.

In components, Eq.~22! reads

P11~ tut0!5F1
(0)~ t,t0!1E

t0

t

F1~ t,t1!G11~ t1 ,t0!dt1 ,

~24a!

P22~ tut0!5F2
(0)~ t,t0!1E

t0

t

F2~ t,t1!G22~ t1 ,t0!dt1 ,

~24b!

P12~ tut0!5E
t0

t

F1~ t,t1!G12~ t1 ,t0!dt1 , ~24c!

P21~ tut0!5E
t0

t

F2~ t,t1!G21~ t1 ,t0!dt1 . ~24d!

It is worth to note that the set of Eqs.~24a!–~24d! is not
independent. The conservation of probability implies that
02110
t,
e

P11~ tut0!1P21~ tut0!51,

P22~ tut0!1P12~ tut0!51. ~25!

The consistency of Eqs.~24a!–~24d! with the conservation
law, Eq. ~25!, can be checked readily. The matrix integr
equation~23! reads in components

G11~ t,t0!5E
t0

t

c2~ t,t1!G21~ t1 ,t0!dt1 , ~26a!

G22~ t,t0!5E
t0

t

c1~ t,t1!G12~ t1 ,t0!dt1 , ~26b!

G12~ t,t0!5c2
(0)~ t,t0!1E

t0

t

c2~ t,t1!G22~ t1 ,t0!dt1 ,

~26c!

G21~ t,t0!5c1
(0)~ t,t0!1E

t0

t

c1~ t,t1!G11~ t1 ,t0!dt1 .

~26d!

From Eqs.~26a!–~26d! one can deduce independent sca
integral equations for each component of matrix functi
G(t,t0). Indeed, after substitutingG21(t,t0) from Eq. ~26d!
into Eq. ~26a! the closed equation forG11(t,t0) follows as

G11~ t,t0!5j1
(0)~ t,t0!1E

t0

t

j1~ t,t1!G11~ t1 ,t0!dt1 . ~27!

In Eq. ~27!,

j1
(0)~ t,t0!5E

t0

t

c2~ t,t1!c1
(0)~ t1 ,t0!dt1 ~28!

and

j1~ t,t0!5E
t0

t

c2~ t,t1!c1~ t1 ,t0!dt1 ~29!

is a renewal density. Analogously,

G22~ t,t0!5j2
(0)~ t,t0!1E

t0

t

j2~ t,t1!G22~ t1 ,t0!dt1 , ~30!

where

j2
(0)~ t,t0!5E

t0

t

c1~ t,t1!c2
(0)~ t1 ,t0!dt1 ,

j2~ t,t0!5E
t0

t

c1~ t,t1!c2~ t1 ,t0!dt1 . ~31!

Moreover, for the off-diagonal elements ofG(t,t0) we find

G12~ t,t0!5c2
(0)~ t,t0!1E

t0

t

j1~ t,t1!G12~ t1 ,t0!dt1 ,
4-4
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G21~ t,t0!5c1
(0)~ t,t0!1E

t0

t

j2~ t,t1!G21~ t1 ,t0!dt1 . ~32!

Equations~27!–~31! together with Eqs.~24a!–~24d! present
the first main result of this work. This set of equations ge
eralizes the integral equations of renewal theory obtained
Cox @13# and others@18# to the case of nonstationary renew
processes modulated by external signals. The solution o
evolution operatorP(tut0) is thereby reduced to solve the s
of independent scalar integral equations forGi j (t,t0). This
presents an essential simplification as compare to the ca
an evaluation of infinite matrix integral series in Eqs.~15!–
~21!.

C. Time-homogeneous case

In the absence of a signal, all two-time quantities depe
only on the time-differencet5t2t0. In this case, the inte
gral equations of renewal theory can be solved formally
use of the Laplace transform method and the evolution
erator ~i.e., its Laplace transform! can be found explicitly.
Let us denote the Laplace transform of any functionF(t)
below as F̃(s)ª*0

`exp(2st)F(t)dt. Then, upon Laplace
transforming Eqs.~24a!–~32!, using Eqs.~11! and ~12! and
some well-known theorems of Laplace transform, one fin
the explicit expression for the evolution operatorP̃(s). It
coincides with the known result in the literature@13,18,28#,
reading

P̃~s!5
1

sF 12
G̃~s!

s^t1&

G̃~s!

s^t2&

G̃~s!

s^t1&
12

G̃~s!

s^t2&

G , ~33!

where

G̃~s!5
~12c̃1~s!!~12c̃2~s!!

~12c̃1~s!c̃2~s!!
~34!

is an auxiliary function.
The existence of finite mean residence times^t1,2& im-

plies the following useful representation for the Laplac
transformed RTDs:

c̃1,2~s!ª12^t1,2&s@11g1,2~s!#. ~35!

In Eq. ~35!, g1,2(s) are corresponding functions vanishing
s→0, i.e.,g1,2(s)→0. Note that the functionsg1,2(s) are not
necessarily analytical. For example,g(s);sg with some
real-valued exponent, 0,g,1, is allowed, for an example
see below in Eq.~94!. Such nonanalytical feature leads
diverging variance of RTDs. From the formal expressi
~33! a number of important results follows:
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1. Stationary probabilities

The vector of stationary probabilitiespW st5@p1
st,p2

st#T can

be evaluated aspW st5 lim
s→0

@sP̃(s)pW (0)#. With Eqs. ~33!–

~35! one readily obtains the result

p1
st5

^t1&

^t1&1^t2&
, p2

st5
^t2&

^t1&1^t2&
. ~36!

2. Relaxation function

The generally nonexponential relaxation of̂x(t)&
5x1p1(t)1x2p2(t) to the stationary mean valuexst5x1p1

st

1x2p2
st is described by the relaxation functionR(t), i.e.,

p1,2~ t01t!5p1,2
st 1@p1,2~ t0!2p1,2

st #R~t!, ~37!

whereR(t) obeys the Laplace transform

R̃~s!5
1

s
2S 1

^t1&
1

1

^t2&
D 1

s2
G̃~s!, ~38!

andG̃(s) is given by Eq.~34!. The validity of Eqs.~37! and
~38! can be easily checked upon the use of Laplace tra
formed Eq.~14! and the result in Eqs.~33! and ~34! along
with the normalization conditionp1(t0)1p2(t0)51 and Eq.
~36!. It should be emphasized here that the relaxation fu
tion R(t) for the consideredpersistentrenewal process is
unique, i.e., it does not depend onp1,2(t0). This corresponds
to the situation where the random processx(t) has not been
prepared att5t0 in a particular statex1, or x2, but rather has
almost relaxed to its stationary state. In other words, a nu
ber of alternations occurred beforet5t0 and the probability
p1,2(t0) to measure the particular valuex1,2 of x(t) at the
instant of timet0 is close to its stationary valuep1,2

st . This
class of initial preparations, where the relaxation functi
does not depend on the actual initial probabilities, is term
the time-homogeneous preparation class. This prepara
class @35,36# must be distinguished from strongly non
equilibrium initial preparations, where the system is p
pared, for example, in a particular definite state, say in
statex1, with the probability one,p1(t0)51.

3. Stationary autocorrelation function and regression theorem

Let us consider next the normalized autocorrelation fu
tion, i.e.,

k~t!5 lim
t→`

^dx~ t1t!dx~ t !&

^dx2&st

~39!

of the stationary fluctuations,dx(t)5x(t)2xst . In Eq. ~39!,

^dx2&st5~Dx!2 ^t1&^t2&

~^t1&1^t2&!2
~40!

is the mean-squared amplitude of the stationary fluctuati
and Dx5x22x1 is the fluctuation amplitude. Witĥdx(t
1t)dx(t)&5^x(t1t)x(t)&2^x&st

2 , ast→`, and
4-5
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lim
t→`

^x~ t1t!x~ t !&5 (
i 51,2

(
j 51,2

xixjP i j ~t!pj
st , ~41!

we obtain the same result as in Ref.@38#, i.e.,

k̃~s!5
1

s
2S 1

^t1&
1

1

^t2&
D 1

s2
G̃~s!. ~42!

Upon comparison of Eq.~38! with Eq. ~42! we find the fol-
lowing regression theorem for these non-Markovian tw
state processes, namely,

R~t!5k~t!. ~43!

The regression theorem~43!, which relates the decay of th
relaxation function R(t) to the decay ofstationary autocor-
relations k(t), presents a cornerstone result for the deri
tion of phenomenological linear response theory for n
Markovian SR@28#.

Usually, the Laplace transform~42! cannot be inverted
analytically. If k(t)>0 for all times t, one can define the
mean correlation time

tcorr5E
0

`

k~ t !dt5 lim
s→0

k̃~s!. ~44!

Assuming finite second moments of RDTs,̂t1,2
2 &

5*0
`t2c1,2(t)dt we obtain from Eqs.~42! and ~44! the

simple result

tcorr5RNMtM , ~45!

where

tM5
^t1&^t2&

^t1&1^t2&
~46!

is the correlation time of the Markovian process possess
the same MRTŝt1,2& as the considered non-Markovian pr
cess. The coefficient

RNM5 1
2 ~C1

21C2
2! ~47!

presents a numerical quantifier of non-Markovian effects
terms of the coefficients of variation of the correspond
residence time distributions, i.e.,

C1,25
A^t1,2

2 &2^t1,2&
2

^t1,2&
. ~48!

For example, for the stretched exponential~7! the coefficient
of variation emerges as

C5A G~112/a!

G2~111/a!
21. ~49!

For the Pareto law distribution in Eq.~8! it reads
02110
-

-
-

g

n

C5H `,g<1

Ag11

g21
,g.1.

~50!

As a criterion for Markovian vs non-Markovian behavior on
can propose to test the coefficients of variationC1,2 of the
experimentally determined RTDsc1,2(t). In the strict Mar-
kovian case we haveC15C251. Large deviations of any o
the two coefficients of variation,C1,2, from unity indicate
the presence of strong non-Markovian memory effects. T
proposed test-criterion appears experimentally to be m
conveniently applied than the direct test of the Chapm
Kolmogorov-Smoluchowski equation@37#. For example, in
the fractal model of the ion channel gating by Liebovit
et al. the closed residence time distribution is fitted by E
~7! with a'0.2 @19#. This yieldsCclosed'15.84. Thus, as-
suming that the open residence times are exponentially
tributed, i.e., Copen51, one obtainsRNM'126. Further-
more, according to Ref.@21# BK ion channels display a
closed residence time distribution following a Pareto la
with b521g'0.24. In such a case, the memory effec
should depict an infinite range sincetcorr5`. In both cases,
the observed two-state fluctuations do exhibit long-ran
temporal correlations. The gating dynamics is thus clea
non-Markovian within such a two-state description.

4. Power spectrum of fluctuations

For the power spectrum of fluctuations, i.e.,

SN~v!52^dx2&stE
0

`

k~ t !cos~vt !dt52^dx2&stRe@ k̃~ iv!#,

~51!

the use of Eqs. ~40! and ~42! in Eq. ~51! yields
@22,26,28,36,38#

SN~v!5
2~Dx!2

^t1&1^t2&

1

v2
Re@G̃~ iv!#. ~52!

It is evident that asymptotically, in the limitv→`, the
power spectrum~52! is Lorentzian in the case of time
continuous RTDs@22,39#,

SN~v!→ 2~Dx!2

^t1&1^t2&

1

v2
, asv→`. ~53!

This follows from the fact that lim
v→`

c1,2( iv)50 and thus

lim
v→`

G̃( iv)51 @39#. Practically this situation occurs fo

v@^t1,2&
21. On the other hand, one can deduce from E

~51! that in the opposite limit forv→0,

SN~v!→SN~0!52^dx2&sttcorr , ~54!

where ^dx2&st is the mean-squared amplitude of stationa
fluctuations given by Eq.~40! andtcorr is given in Eq.~45!.
A very interesting situation emerges fortcorr→`, implying
SN(0)→`. This occurs when at least one of the residen
4-6
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time distributions possesses a diverging variance, cf. E
~45!–~47!. In such a case, for the low-frequency regionv
,^t1,2&

21 the power spectrum drastically differs from th
Lorentzian form. For example, for a symmetric TSRP w
the survival probabilities given by the Pareto distributio
~8! one can show@22# ~see also below! that for 0,g,1,
SN(v);1/v12g. For g→0 this corresponds to celebrate
1/f noise@22,40#.

III. PHENOMENOLOGICAL THEORY
OF LINEAR RESPONSE

It is possible to predict the linear response of the und
lying stochastic processx(t) to the external drivingf (t) by
referring only to information on its stationary properties, i.
without explicit knowledge of the concrete mechanism
work by which the processx(t) is perturbed by the externa
signal. The phenomenological theory of linear response
general stochastic processes@36,41# and for thermal physica
systems@42# provides a very useful and widely applied to
to answer this question. It is also the only method availabl
no further detailed knowledge of the microscopic dynam
is at hand for theobservedtwo-state dynamics. This is th
common experimental situation. The common linear
sponse approximation

^dx~ t !&ª^x~ t !&2xst5E
2`

t

x~ t2t8! f ~ t8!dt8, ~55!

holds independently of the underlying stochastic dynam
@36#. In Eq.~55!, x(t) denotes the linear response function
the time domain. The universality of the relation~55! allows
one to find the linear response functionx(t) using a properly
designed form of the perturbationf (t). Within the phenom-
enological approach it can be obtained following an est
lished procedure@42#: ~i! First, apply a small static forcef 0,
~ii ! then, let the processx(t) relax to the constrained station
ary state with mean valuexst( f 0), and finally~iii ! suddenly
remove the force att5t0, see Fig. 1.

Then, in accord with Eq.~55! the response function read

x~t!52
1

f 0

d

dt
^dx~ t01t!&, t.0, ~56!

where ^dx(t01t)&5x1p1(t01t)1x2p2(t01t) is deter-
mined by Eq.~37! with the initial p1,2(t0) taken asp1,2(t0)
5^t1,2( f 0)&/@^t1( f 0)&1^t2( f 0)&#. The limit f 0→0 is im-

FIG. 1. Relaxation of a perturbed persistent renewal proc
x(t). A constant forcef 0 is applied long before and is released
t5t0. The mean valuêx(t)& relaxes from the constrained statio
ary valuexst( f 0) to its true stationary valuexst .
02110
s.
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plicitly assumed in Eq.~56!. Expandingp1,2(t0) to first order
in f 0 we find with Dx5x22x1

^dx~ t01t!&5
^dx2&st

Dx
@b22b1#R~t! f 01o~ f 0!, ~57!

where

b1,2ª
dln^t1,2~ f 0!&

d f0
U

f 050

. ~58!

Note that in the derivation of this result it is tacitly assum
that the initial constrained stationary populationsp1,2(t0) at
t5t0 belongs to the class of time-homogeneous initial pre
rations @36# for the processx(t) in the absence of applied
force. This seems a natural and intuitively clear assump
in view of the facts that the limitf 0→0 has to be taken in
Eq. ~56! at the very end of calculation, and the consider
process is persistent. Nevertheless, this commonly acce
assumption is a hidden hypothesis which, strictly speak
cannot be proven within the phenomenological approach

Upon combining Eq.~57! with the regression theorem
~43! we obtain from Eq.~56!, after taking the limitf 0→0,
the fluctuation theorem@28#

x~t!52@b22b1#
u~t!

Dx

d

dt
^dx~ t1t!dx~ t !&st , ~59!

whereinu(t) denotes here the unit step function. The no
Markovian fluctuation theorem~59! presents a prominent re
sult @28#; in particular, it does not assume thermal equili
rium @36#. In the frequency domain it reads

x̃~v!5
~b22b1!^dx2&st

Dx
@11 iv k̃~2 iv!#, ~60!

where x̃(v)5*2`
` x(t)eivtdt denotes the linear respons

function in the frequency domain, andk̃(s) is given by Eq.
~42!. Substitution of Eqs.~42! and ~40! in Eq. ~60! yields

x̃~v!5
~b22b1!Dx

^t1&1^t2&

i

v
G̃~2 iv!, ~61!

where G̃(s) is given in Eq.~34!. The expression~61! to-
gether with Eq.~34! connects the linear response functio
x̃(v) with the Laplace-transformed residence time distrib
tions c̃1,2( iv), i.e., with the characteristic functions of th
RTDs.

If, in addition, the mean residence times obey the therm
detailed balance relation

^t1~ f 0!&

^t2~ f 0!&
5expS 2e~T!2 f 0Dx

kBT D , ~62!

wheree(T) is the free-energy difference between two me
stable states, we recover for the fluctuation theorem in
~59! the form that characterizes classical equilibrium dyna
ics @36,42,43#, i.e.,

ss
4-7



n

in
ns

et
b
te

he
f
gy
-

en
m
n-
m
o-
ik
is
r

Th
lo
i-

ys

e
co
d

th

ce
-

n-
t

ill
ce-

-

pu-

ator

y

l

q.

ed
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x~t!52
u~t!

kBT

d

dt
^dx~t!dx~0!&st . ~63!

Equation~61! then yields

x̃~v!5
~Dx!2

kBT

1

^t1&1^t2&

i

v
G̃~2 iv!. ~64!

For example, this result is valid for an Arrhenius-like depe
dence of̂ t1,2& on temperatureT and forcef 0, i.e.,

^t1,2~ f 0!&5A1,2expS DU1,27Dx1,2f 0

kBT D , ~65!

where DU1,2 are the heights of activation barriers,Dx1
5zDx, Dx25(12z)Dx with Dx5x22x1 , 0,z,1. Equa-
tion ~63! presents a key result because it provides a l
between the phenomenological theory of linear respo
theory and the actual physical processes which are inthermal
equilibrium and do exhibit long-range time correlations. L
us assume, for example, the following situation: The o
served two-state process results from thermally activa
transitions in a complex potential energy landscapeU(xW )
possessing two domains of attraction~i.e., two metastable
states! separated by distanceDx along the direction of the
reaction coordinatex which describes transitions between t
metastable states. Next, let us assume that the coupling o
external forcef (t) to the dynamics has the potential ener
form Uint52x f(t). Then, the classical equilibrium fluctua
tion theorem~63! follows from first principles@42#, or, like-
wise, from a mesoscopic starting point in terms of the g
eralized master equation for the thermal equilibriu
dynamics@43#; in other words, it is exact. The nonexpone
tial features of the RTDs in the described situation ste
from the motions ‘‘perpendicular’’ to the above reaction c
ordinatex. In such a case, the thermodynamic relations l
Eq. ~62! are compatible with non-Markovian kinetics. This
the case where the phenomenological theory of linear
sponse in non-Markovian systems has a firm foundation.
readers should be warned, however, that the phenomeno
cal theory is not universally valid for nonequilibrium phys
cal systems; see, for an example in Ref.@44#. Nevertheless,
below we explicitly define an universality class of such s
tems~which are beyond the thermal equilibrium class! where
its validity can be proven on a more general basis.

IV. ASYMPTOTIC RESPONSE THEORY BASED
ON DRIVEN RENEWAL EQUATIONS

Starting from the driven renewal equations~24a!–~32!
one can develop the theory of the linear and the nonlin
response which possesses a broader range of validity as
pared to the above phenomenological theory. For a perio
signal ~switched on in the infinite past! like in Eq. ~5!, the
conditional survival probabilitiesF1,2(tut)ªF1,2(t1t,t)
acquire~at asymptotic timest@t0) the time periodicity int
of the driving signal and therefore can be expanded into
Fourier series, i.e.,
02110
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F1,2~tut !5 (
n52`

`

F1,2
(n)~t!exp@2 inVt#,

F1,2
(2n)~t!5@F1,2

(n)~t!#* . ~66!

Similar expansions hold also for the conditional residen
time distributionsc1,2(tut) with the corresponding expan
sion coefficients c1,2

(n)(t)52(d/dt)F1,2
(n)(t). Note that

F1,2
(0)(t) andc1,2

(0)(t) in this section denote the Fourier expa
sion coefficients withn50. These quantities are clearly no
related to the survival functions~12! and RTDs~11! of the
first time interval. We hope that such use of notations w
not confuse the readers. The corresponding Lapla
transformed quantities of thet-dependent Fourier coeffi
cientsc̃1,2

(n)(s) andF̃1,2
(n)(s) in Eq. ~66! are related by

c̃1,2
(n)~s!5dn,02sF̃1,2

(n)~s!. ~67!

Our goal is to evaluate the asymptotic behavior of the po
lations p1,2

(as)(t) and of the mean valuêx(as)(t)&. To do so,
one needs to determine the asymptotic evolution oper
P (as)(t)ª lim

t0→2`
P(tut0). Obviously, P11

(as)(t)5P12
(as)(t)

and P22
(as)(t)5P21

(as)(t). Moreover, p1
(as)(t)5P11

(as)(t),
p2

(as)(t)5P22
(as)(t). Next, let us define the auxiliary quantit

G(as)(t) as G(as)(t):5 lim
t0→2`

G(t,t0). Then, Eqs.~24a!

and ~27! in the limit t0→2` yield

p1
(as)~ t !5E

2`

t

F1~ t,t1!G11
(as)~ t1!dt1 , ~68!

whereG11
(as)(t) is solution of the integral equation:

G11
(as)~ t !5E

2`

t

j1~ t,t1!G11
(as)~ t1!dt1 , ~69!

with the renewal densityj1(t,t1) given in Eq. ~29!. The
equation determiningp2

(as)(t) likewise reads

p2
(as)~ t !5E

2`

t

F2~ t,t1!G22
(as)~ t1!dt1 , ~70!

whereG22
(as)(t) is the solution of integral equation

G22
(as)~ t !5E

2`

t

j2~ t,t1!G22
(as)~ t1!dt1 , ~71!

with j2(t,t1) given in Eq. ~31!. Note that the conditiona
renewal densitiesj1,2(tut):5j1,2(t1t,t) also acquire a time
periodicity in t and can be represented in the form like E
~66! with the corresponding expansion coefficientsj1,2

(n)(t).
One can show that the corresponding Laplace-transform
quantitiesj̃1,2

(n)(s) are related with the quantitiesc̃1,2
(n)(s) as

follows:

j̃1
(n)~s!5 (

m52`

`

c̃2
(m)~s!c̃1

(n2m)~s1 imV!,
4-8
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j̃2
(n)~s!5 (

m52`

`

c̃1
(m)~s!c̃2

(n2m)~s1 imV!. ~72!

For periodic drivingf (t), bothp1,2
(as)(t) andG11,22

(as) (t) must be
periodic functions of time@2# and can be expanded into Fo
rier series

p1
(as)~ t !5 (

k52`

`

p1,2
(k)e2 ikVt, p1,2

(2k)5@p1,2
(k)#* ~73!

and

G11,22
(as) ~ t !5 (

k52`

`

g1,2
(k)e2 ikVt, g1,2

(2k)5@g1,2
(k)#* , ~74!

respectively.
Using Eqs.~5! and ~55! and the expansion~73! one can

show that the coefficientp1
(1) in Eq. ~73! determines thelin-

ear response functionx̃(V) in the frequency domain as

x̃~V!52
2Dx

f 0
p1

(1) ~75!

in the limit f 0→0. Moreover, from the normalization cond
tion p1

(as)(t)1p2
(as)(t)51 it follows that

p1
(0)1p2

(0)51, p1
(n)52p2

(n) for nÞ0. ~76!

Upon substituting Eqs.~73! and~74! and the expansions like
Eq. ~66! into Eqs.~68!–~71!, performing the time integration
and comparing the coefficients of the Fourier expansions
the left- and right-hand sides of the corresponding equat
we finally end up with

p1
(k)5 (

n52`

`

F̃1
(n)~2 ikV!g1

(k2n) , ~77!
t o
a

-

e
e
e
h

n
tio

a

02110
n
s

g1
(k)5 (

n52`

`

(
m52`

`

c̃2
(m)~2 ikV!

3c̃1
(n2m)~2 i @k2m#V!g1

(k2n) , ~78!

and

p2
(k)5 (

n52`

`

F̃2
(n)~2 ikV!g2

(k2n) , ~79!

g2
(k)5 (

n52`

`

(
m52`

`

c̃1
(m)~2 ikV!

3c̃2
(n2m)~2 i @k2m#V!g2

(k2n) . ~80!

The relations~77!–~80! also serve as the basis for a respon
theory without restriction on the linear response approxim
tion. In order to apply these equations, one has to specify
expansion coefficients in Eq.~66!, i.e., to specify the way
how the external signalf (t) enters the conditional residenc
time distributionsc1,2(tut), or, equivalently, the conditiona
survival probabilitiesF1,2(tut) to the required order in the
signal amplitudef 0. It is worth noting that the solutions o
Eqs.~78! and~80! are defined up to some arbitrary constan
which can be fixed at the end of calculations by applying
normalization relations in Eq.~76!.

In the linear response approximation,F̃1,2
(0)(s)5F̃1,2(s),

i.e., F̃1,2
(0)(s) coincide with the unperturbed survival prob

abilities F̃1,2(s). Moreover,F̃1,2
(1)(s)} f 0. All the higher or-

der termsF̃1,2
(n>2)(s) can be neglected, being of higher ord

proportional tof 0
n , n>2. The same holds true forc̃1,2

(n)(s).
After some cumbersome algebra, one finds from Eqs.~77!–
~80! an expression forp1

(1) , which then by use of relation
~75! yields
x̃~V!52
2iDx

f 0V

1

^t1&1^t2&

c̃2
(1)~2 iV!@12c̃1~2 iV!#2c̃1

(1)~2 iV!@12c̃2~2 iV!#

12c̃1~2 iV!c̃2~2 iV!
. ~81!
re-
ncy
si-
a

ol-
-

The result in Eq.~81! presents a second cornerstone resul
this work. Note that this general result depends on the qu

tities c̃1,2
(1)(s)} f 0 which do not follow directly from the char

acteristic functions of stationary RTDs, i.e.,c̃1,2(s), but their
knowledge requires one to specify a microscopic mod
Generally, Eq.~81! is not mathematically reducible to th
result~61! of the phenomenological theory. A question aris
whether such a reduction is possible in practice and the p
nomenological theory of linear response can be put o
more firm ground beyond the time-homogeneous prepara
class result in Eq.~61! of which the thermal equilibrium
result in Eq. ~64! is a special case. Below we describe
rather broad class of relevant systems.
f
n-

l.

s
e-
a
n

Models with form-invariant RTDs

Let us assume that the survival probability and the cor
sponding RTD can be parametrized by a single freque
parametern which has the meaning of an inverse mean re
dence time, i.e.,n5^t&21. Furthermore, we assume that
weak signalf (t) causesn to became time dependent, i.e.,

n→n~ t !5n@12b f ~ t !#, ~82!

with b!1/f 0 ~the subscripts 1,2 are suppressed!. Moreover,
the survival probabilities become modified applying the f
lowing rule: nt→* t

t1tn(t8)dt8. More generally, let us con
4-9
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sider arbitrary survival probabilities of the form~9! general-
ized to the time inhomogeneous case in the following wa

F~t!→F~tut !5(
i 51

`

ciexpS 2E
t

t1t

n i~ t8!dt8D , (
i

ci51.

~83!

In Eq. ~83!, we assume that~to leading order! neither the
expansion coefficientsci nor the ratios between any ofn i(t)
andn j (t) are modified by the applied signalf (t), i.e.,

n i~ t !

n j~ t !
5ai j , ~84!

with ai j being some structural constants. This covers fra
~althoughnot multifractal! time distributions. Put differently
the scaling law which produces the whole hierarchy of r
constants out of a single rate constant is invariant of
applied signal. If the mean residence time^t&5( ici /n i ex-
ists, one can always setn5^t&21 as the relevant rate con
stant in the absence of driving. This rate will acquire
explicit time dependence like in Eq.~82! when the signal is
switched on. Given our assumptions, all the time-depend
ratesn i(t) in Eq. ~83! will be proportional to the raten(t) in
Eq. ~82!. Then, in the lowest first order inb f 0, we find

F~tut !5F~t!1bc~t!E
t

t1t

f ~ t8!dt8. ~85!

From Eq.~85! we obtain upon observing Eq.~5!

F1,2
(1)~t!5

1

2
i
b1,2f 0

V
c1,2~t!@exp~2 iVt!21# ~86!

and

F̃1,2
(1)~s!52

1

2
i
b1,2f 0

V
@c̃1,2~s!2c̃1,2~s1 iV!#. ~87!

Observing Eq.~67! by taking into accountc̃1,2(0)51 in Eq.
~87! thus yields

c̃1,2
(1)~2 iV!52 1

2 b1,2f 0@12c̃1,2~2 iV!#. ~88!

Substituting Eq.~88! into Eq. ~81! we recover the result o
the phenomenological theory in Eq.~61!. In conclusion, for
the considered class of models the nonequilibrium fluct
tion theorem~61! is well justified. This model class ca
therefore be reconciled with the assumption of tim
homogeneous initial preparations used in the phenome
logical theory of linear response~see Sec. III!. This assump-
tion is naturally not always justifieda priori. It rather
delimits an important and rather broad class of correspo
ing physical systems. Nevertheless, the equilibrium fluct
tion theorem ~63! presents a fundamental relation whic
must be obeyed for all thermal equilibrium systems. T
imposes a salient restriction on mesoscopic models lea
to the observed equilibrium non-Markovian dynamics.
particular, if one knows that the considered system is in
thermal equilibrium, one must use the rigorous relation~64!,
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rather than Eq.~81! for the calculation of the linear respons
This constitutes the essence of the phenomenological th
of non-Markovian stochastic resonance developed in R
@28#. For other systems, e.g., for those modeling neuro
dynamics~which are far away from thermal equilibrium! the
use of Eq.~81! is preferred. In order to apply Eq.~81!, how-
ever, one must also specify the underlying nonequilibriu
microscopic dynamics in the presence of a time-perio
stimulus. This means that the time-inhomogeneous co
tional RTDsc1,2(tut) must be measured, or modeled~to the
linear order! in the driving signal strength. We next presen
detailed study of non-Markovian stochastic resonance
thermal equilibriumsystems that do exhibit prominent tem
poral long-range time correlations@28#.

V. STOCHASTIC RESONANCE

In the presence of applied periodic signal~5!, the spectral
power amplification~SPA! @2,45#, h(V)5ux̃(V)u2 reads by
use of the fluctuation theorem in Eq.~64! upon combining
~39!,~42!,~40!, ~65! as follows

h~V,T!5
~Dx/2!4

~kBT!2

n2~T!

cosh4@e~T!/~2kBT!#

uG̃~ iV!u2

V2
.

~89!

In Eq. ~89!, n(T)5^t1&
211^t2&

21 denotes the sum of ef
fective rates. The quantitye(T)5DU22DU11TDS denotes
the free-energy difference between the metastable st
which includes the entropy differenceDSªS22S1

5kBln(A2 /A1). In the Markovian case we obtainG̃(s)
5s/(s1n) and Eq. ~89! equals the known result, see i
Refs.@2,45#.

The signal-to-noise ratio~SNR! is given within linear re-
sponse approximation by

RSN~V,T!ª
p f 0

2ux̃~V!u2

SN~V!
, ~90!

whereSN(v), Eq. ~51!, is the spectral power of stationar
fluctuations@2#. By use of Eq.~89!, we obtain

RSN~V,T!5
p f 0

2~Dx/2!2

2~kBT!2

n~T!

cosh2F e~T!

2kBT
G N~V!, ~91!

where the term

N~V!5
uG̃~ iV!u2

Re@G̃~ iV!#
~92!

denotes a frequency- and temperature-dependent
Markovian correction. For arbitrary continuousc1,2(t) the
function N(V) approaches unity for high-frequency signa
V@^t1,2&

21. Thus, Eq. ~91! reduces in this limit to the
known Markovian result@2#, i.e., the Markovian limit of
SNR is assumed asymptotically in the high-frequency
gime. More interesting, however, is the result for small fr
4-10
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quency driving. In the zero-frequency limit we findN(0)
51/RNM with RNM given in Eq.~47!. With RNM5` as it is
the case for the Pareto distribution~8! with 0,g,1, N(0)
50, i.e.,RSN(V50,T)50 as well. Consequently, ultraslow
signals are difficult to detect within the SNR-measure in
strongly non-Markovian situation.

A. Symmetric SR

As a first example, we address non-Markovian SR in
symmetric system with the survival probabilitiesF1,2(t) de-
scribed by the identical power laws~8! with n5^t&21 deter-
mined from Eq. ~4! with f (t)50, n1,2

(0)5n0 and DU1,2

5DU. In this case, the Laplace-transformed RTDs read

c̃~s!512~g^t&s!g11exp~g^t&s!G~2g,g^t&s!, ~93!

whereG(x,y) is the incomplete gamma function@47#. For
0,g,1, the distribution~93! has a diverging variance; it
small-s expansion reads

c̃~s!'12^t&s1ggG~12g!@^t&s#11g. ~94!

Using Eqs.~94! and ~34! in Eq. ~52! we obtain for the
low-frequency part of the power spectrum

SN~v!'
1

2
~Dx!2G~12g!sin~pg/2!

g^t&

@g^t&v#12g
.

~95!

To obtain the spectral amplification~89! and the SNR~91!
numerically one has to use Eq.~93! in Eq. ~34!. For g.1,
the power spectrum of this process mimics a conventio
Lorentzian. Moreover, forg@1, C'1, cf. Eq. ~50!. Thus,
one can expect that for largeg the considered situation doe
not differ much from the Markovian case, at least quali
tively. Indeed, for very largeg;100 the discrepancy with
the Markovian case in the SNR behavior vs noise inten
D5kBT is not detectable. The well-known bell-shaped s
chastic resonance behavior is reproduced with the maxim
at D5DU/2. Nevertheless, in the behavior ofh(V,T) some
discrepancy still remains detectable even for such largg
~not shown!.

Next, the case with 0,g<1 is of major interest as it is
qualitatively very distinct from the Markovian stochast
resonance, see Fig. 2. The reason is that the mean correl
time tcorr in Eq. ~44! becomes formally infinite and th
power spectrum exhibits a typical 1/f a- characteristics, with
a512g, cf. Eq.~95!. Nevertheless, an important time sca
of the stochastic dynamics does still exist: It is defined by
mean time of stochastic turnovers between the metast
states,t0(D)52^t&. Invoking the reasoning of a stochast
synchronization of stochastic resonance@45# one can expec
stochastic resonance to occur when the time scale of stoc
tic turnoverst0(D) matches the period of external drivin
T52p/V, i.e., t0(D);T. Indeed, Fig. 2~a! unambiguously
demonstrates the stochastic resonance phenomenon
non-Markovian system withg50.2. Thus, the interpretation
of SR as the phenomenon caused by stochastic synchro
02110
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tion between the time scales of the random, tempera
driven transitions, and the external periodic modulatio
@2,45# can be extended even onto this extreme n
Markovian case~with diverging mean correlation time
tcorr5`). Note, however, that the maximal value of th
spectral amplification of signal is strongly suppressed in
present case by the factor of about 20 as compared with
corresponding Markovian counterpart possessing the s
^t&, see Fig. 2~b!.

In contrast to the overall simpler behavior of the spect
amplification measure the SNR displays prime features,
Figs. 3~a! and 3~b!. First, the SNR becomes frequency d
pendent. In the limitV→0, we obtain for the form-factor
N(V) in Eq. ~92!,

N~V!'
@^t&V#12g

2sin~pg/2!ggG~12g!
. ~96!

In this limit, the signal-to-noise ratio can be approximated

RSN~V,D !'
p

4
~ f 0Dx/2!2

3
~2n0!g

sin~pg/2!ggG~12g!

3
exp~2gDU/D !

D2
V12g. ~97!

This SNR expression~97! displays several nontrivial fea
tures: ~i! the stochastic resonance peak occurs at sma
noise strengthDNM(V→0)5gDU/2 as compare to the Mar
kovian case, whereDM5DU/2. ~ii ! The SNR displays a
nontrivial, power law dependence on the angular driving f
quencyRSN(V);V12g. Moreover, with the increasing an
gular frequencyV of signal the signal-to-noise ratioRSN(V)
should approach its frequency independent Markovian lim
Thus, the resonance valueDNM(V) becomes frequency de
pendent for an intermediate range of frequencies and
proaches the Markovian valueDM in the limit of high fre-
quencies. This profound frequency dependence of n

FIG. 2. The spectral amplification of the signal~in arbitrary
units! is depicted vs the thermal noise intensityD5kBT at different
driving frequenciesV: ~a! non-Markovian symmetric system an
~b! its Markovian counterpart. In the non-Markovian case, bo
RTDs follow a Pareto law withg50.2. D is scaled in units of the
barrier heightDU; V is scaled in units ofn0.
4-11
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Markovian stochastic resonance is very distinct from its M
kovian counterpart, compare Fig. 3~a! with Fig. 3~b!.

B. SR in ion channels with fractal kinetics

Our second example pertains to the non-Markovian SR
an asymmetric system. An especially interesting c
emerges when one of the RTDs is exponential, while the
presents a power law with a giant~divergent! dispersion.
Interestingly enough, such a case apparently is realize
nature for the gating dynamics of the locust BK channel@21#.
Indeed, this and some other ion channels exhibit a fra
gating kinetics together with the 1/f a noise power spectrum
of fluctuations@21,23,24,46#. In the context of gating dynam
ics, x(t) corresponds to the conductance fluctuations and
forcing f (t) is proportional to the time-varying transmem
brane voltage. For a locust BK channel the measured un
turbed closed time statisticsc1(t) can be approximated by
Pareto law~8! with g'0.24 and^t1&50.84 ms@21#. The
open time RTD assumes an exponential form with^t2&
50.79 ms@21#.

Unfortunately, neither the voltage, nor the temperature
pendence of the mean residence times are experimen
available. For this reason, we employ here the comm
Arrhenius dependence in Eq.~65! with some characteristic
parameters, namely, because the temperature dependen
open-to-closed transitions is typically strong@7#, we assume
a high activation barrier, i.e., DU25100 kJ/mol
(;40 kBTroom). The closed-to-open transitions are assum
to be weakly temperature dependent withDU1510 kJ/mol.
Becausê t1&;^t2& at room temperatureTroom , the differ-
ence betweenDU1 andDU2 is compensated by an entrop
differenceDS;236kB . The physical reasoning is that th
closed time statistics exhibits a power law, i.e., the conf
mations in the closed state form a self-similar hierarchy a
are largely degenerate@46#. This in turn implies a larger en
tropy as compared to the open state.

The normalized autocorrelation functionk(t) and the
power spectrumSN(v) of the current fluctuations are o
prime interest. In the considered case, the auxiliary func
~34! simplifies to

FIG. 3. Signal-to-noise ratio~in arbitrary units! vs thermal noise
intensity D5kBT at different driving frequenciesV: ~a! non-
Markovian symmetric system and~b! its Markovian counterpart. In
the non-Markovian case, both RTDs follow a Pareto law withg
50.2. D is scaled in the units of barrier heightDU, V is measured
in units of n0.
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G̃~s!5
^t2&s@12c̃1~s!#

^t2&s112c̃1~s!
, ~98!

where c̃1(s) is given by Eq. ~93! with ^t&5^t1&. The
Laplace transform ofk(t) can in the limits→0 be approxi-
mated as

k̃~s!→ ggG~12g!^t1&^t2&

^t1&1^t2&
@^t1&s#g21. ~99!

From Eq.~99! the long-time (t→`) behavior of the autocor-
relation function follows immediately by virtue of a Taub
erian theorem@30#, namely,

k~t!→p2
stS t

g^t1&
D 2g

, ~100!

wherep2
st is the channel’s stationary opening probability. T

result in Eq. ~100! describes a power law decay with a
exponentg50.24. In Fig. 4~a!, this analytical result is com-
pared with the numerical inversion ofk̃(s) with G̃(s) in Eq.
~98!, obtained due to the Stehfest algorithm@48#. This figure
shows that the long-time asymptotical behavior ofk(t) in-
deed obeys the power law in~100! for t.10 sec. However,
for smallert,10 sec some kind of transient behavior occu
which cannot be characterized by a simple power law. N
ertheless, the slow decay of correlations is clearly nonex
nential.

For v@^t1,2&
21 the power spectrum of fluctuations is e

pected to approach a Lorentzian tail,S(v);v22. Indeed,
this behavior starts in Fig. 4~b! for v.500 sec21. The non-
trivial frequency dependence emerges for the sufficien
small v!^t1,2&

21. In this case we obtain from Eq.~99!

S~v→0!'2~Dx!2 ^t1&
2^t2&

2

~^t1&1^t2&!3

3G~12g!sin~pg/2!
g

@g^t1&v#12g
. ~101!

FIG. 4. ~a! The normalized autocorrelation function of curre
fluctuations, see Eq.~39!, and ~b! the corresponding power spec
trum for the studied model of locust BK channel. The amplitude
current fluctuations is taken to be 10 pA. The broken line in~a!
corresponds to the long-time asymptotic, Eq.~100!, being in agree-
ment with the numerical result~full line! in long-time limit.
4-12
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Thus, for g50.24 we haveS(v→0)}1/va with a512g
50.76. This typical 1/f a noise behavior is depicted in Fig
4~b!. We should remark, however, that the experiment@23#
gives a slightly different value ofa'1. The reasons of this
discrepancy are presently not clear. One possibility is that
durations of the subsequent open and closed time inter
are yet mutually correlated, contrary to the assumpti
made in the present model. If this is the case indeed,
studied model should be generalized further to account
such correlations.

The spectral power amplification vs the temperature
depicted for various angular driving frequencies in Fig. 5~a!.
The panel in Fig. 5~b! corresponds to an overall Markovia
modeling with an exponentialc1(t) possessing the sam
mean residence timêt1&. We observe a series of strikin
non-Markovian features in Fig. 5:~i! A characteristic SR
maximum occurs in the physiological range of varying te
peratures. This maximum is caused by entropic effects wh
have not been addressed before in the theory of stoch
resonance. Because of the fact that the free-energy biase(T)
is temperature dependent, due to a large entropic asymm
between states, stochastic resonance in the spectral am
cation occurs in a temperature regime where the populat
of both states become approximately equal,e(T)'0. Note
that this effect occurs also in the Markovian case, cf. Fi
5~a! and 5~b!. Therefore, it is not caused by non-Markovia
effects.~ii ! Due to an intrinsic asymmetry the~angular! fre-
quency dependence of the spectral amplificationh(V,T) for
the Markov modeling is rather weak for small frequenc
V!^t1,2&

21 @2#. In contrast, the non-Markovian SR exhibi
a distinct low-frequency dependence, thereby frequency
solving the three overlapping lines in Fig. 5~b!. This feature
constitutes an authentic non-Markovian effect.~iii ! The
evaluation of the SNR yields—in clear contrast to t
frequency-independent Markov modeling—a profound, v
strong non-Markovian SR frequencysuppressionof SNR to-
wards smaller frequencies: The SNR maximum for the
line in Fig. 5~a! is suppressed by two orders of magnitude
compared to the Markov case, cf. Fig. 6. As a conseque
for a strong non-Markovian situation it is preferable to u
low-to-moderate frequency inputs in order to monitor no
Markovian stochastic resonance with SNR.

VI. SUMMARY AND CONCLUSIONS

In the present work we have put forward a general the
of stochastic resonance for two state non-Markovian s

FIG. 5. ~a! The spectral power amplificationh(V), Eq.~89!, ~in
arbitrary units! vs temperature~in °C) for the BK ion channel gat-
ing scenario~see text! and~b! its comparison with a correspondin
Markov modeling.
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tems. The theory is based on time-inhomogeneous inte
renewal equations governing the evolution of condition
probabilities in the presence of driving signal. These eq
tions for driven renewal processes generalize earlier resu
Cox @13# and others@18# for stationary renewal processes
include the signal influence on the residence time distri
tions. Based on these equations we presented a genera
line of the theory of the linear and the asymptotic nonline
response to the sinusoidal signal. In particular, we obtaine
general expression for the linear response functionx̃(v),
Eq. ~81!, which can be used for a variety of applications. T
expression in Eq.~81! presents a major result of this pape
We note, however, that the explicit use of Eq.~81! requires
one to specify explicitly the way in which the periodic sign
modulates the asymptotic, nonequilibrium residence ti
distributions. For a class of nonequilibrium fractal distrib
tions where the signal enters the RDTs through a single
quency parameter having the meaning of the inverse m
residence time, it has been shown that Eq.~81! reduces to the
result~61! of the phenomenological theory of linear respon
developed previously in Ref.@28#. Moreover, if the mean
residence times obey the thermal detailed balance cond
~62!, the expression~61! reduces further to Eq.~64! which
can be obtained independently from the classical fluctuat
dissipation theorem~63! by use of the expression in Eq.~42!
for the autocorrelation function of the considered no
Markovian stochastic process. Even though the microsco
~or mesoscopic! details of the thermal equilibrium dynamic
leading to the observed two-state non-Markovian fluct
tions are generally not known, the linear response functio
determined uniquely by the characteristic functions of
residence time distributionsc̃1,2(s) via Eqs.~64! and ~34!.
For such equilibrium non-Markovian fluctuations, the know
edge of the equilibrium RTDs allows one to determine t
linear response of the considered physical system to w
signals. This is the essence of the phenomenological the
of non-Markovian stochastic resonance put forward in R
@28#. For such equilibrium systems, the general expressi
for the spectral power amplification, Eq.~89!, and for the

FIG. 6. The signal-to-noise ratio (RSN in arbitrary units! vs tem-
perature~in °C) for the studied model of Stochastic Resonance i
locust BK channel. The upper curve depicts the Markovian lim
attained for large angular driving frequencies of the signal.
4-13
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signal-to-noise ratio~SNR!, Eq. ~91!, are available. We ap
plied these general expressions to study the main feature
stochastic resonance in several non-Markovian systems
hibiting long-range temporal correlations along with 1/f a

power spectra of fluctuations.
In particular, for a symmetric non-Markovian system wi

a power law distributed residence time intervals the occ
rence of stochastic resonance has been demonstrated to
ply with a stochastic frequency synchronization similar
the Markovian case@2#. However, both the SPA measure a
the SNR measure become strongly suppressed due to s
non-Markovian effects. The most striking feature of the no
Markovian SR is a distinct frequency dependence of
SNR measure. In particular, the SNR becomes immen
suppressed for low frequency signals. Thus, the use of
nals with an intermediate frequency range matching
mean time of the stochastic escapes between states y
most distinct non-Markovian SR feature.

For asymmetric non-Markovian fluctuations pertinent
fractal gating dynamics of the locust BK ion channel seve
interesting features have been revealed.~i! The expected
diminution of the SPA measure relative to the Markovi
s
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d
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case does not occur. This can be attributed to the fact
one of the RDTs in the considered case is strictly exponen
similar to the Markovian case.~ii ! For asymmetric Markov-
ian systems the SPA measure ceases to be frequency d
dent for small adiabatic frequencies. The non-Markovian
fects, however, introduce at low driving frequencies
distinct dependence, both for the SPA and the SNR. T
latter phenomenon can be used to detect and establi
strong non-Markovian behavior in practice.

Our non-Markovian theory of stochastic resonance p
sesses a whole range of applications and we hope that it
be used by the practitioners in their further research work
stochastic resonance. Especially, we hope that our theory
guide experimentalists to find the proper and more inter
ing parameter regimes and to reveal the stochastic reson
effect on the level of single biomolecules.
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We have slightly modified it here for the readers convenien
Indeed, it is not known for how long the initial statex(t0) was
already occupiedbeforethe observation started att050. With-
out loss of generality, let us assumex(0)5x1 and the unknown
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