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Theory of non-Markovian stochastic resonance
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We consider a two-state model of non-Markovian stochastic reson&mRewithin the framework of the
theory of renewal processes. Residence time intervals are assumed to be mutually independent and character-
ized by some arbitrarmonexponentiatesidence time distributions which are modulated in time by an exter-
nally applied signal. Making use of a stochastic path integral approach we obtain general integral equations
governing the evolution of conditional probabilities in the presence of an input signal. These equations gen-
eralize earlier integral renewal equations by Cox and others to the case of driving-induced nonstationarity. On
the basis of these equations a response theory of two-state renewal processes is formulated beyond the linear
response approximation. Moreover, a general expression for the linear response function is derived. The
connection of the developed approach with the phenomenological theory of linear response for manifest
non-Markovian SR put forward. Goychuk and P. Haggi, Phys. Rev. Let®1, 070601(2003] is clarified and
its range of validity is scrutinized. The theory is then applied to SR in symmetric non-Markovian systems and
to the class of single ion channels possessing a fractal kinetics.
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[. INTRODUCTION gested a parameter regime where SR effect should indeed
occur for a Shaker K channel under physiological condi-
The concept of stochastic resonari&®) has been origi- tions whenexternalnoise is added to the signal. This issue
nally put forward in order to explain the periodicity of gla- has further been examined theoretically in Rfl]. The
cial recurrences on the Earfh]. It has gained, however, an Present status calls for both theoretical and experimental in-
immense popularity in the context of signal transduction investigations. Particularly, the presence of distinct memory
nonlinear stochastic systems in physics and bioliyy4]. effects in the dynamics of such single molecules as ion chan-
Paradoxically enough, the detection of beneficial input sighels constitutes a major theoretical challefgg]. The non-
nals in the background stochastic fluctuations of a signalMarkovian features caused by these memory effects may be
transmitting physical system can be improved upon corruptcrucial for the occurrence of stochastic resonance on the
ing the information-carrying signal with input noise, or upon level of single molecules.
raising the level of intrinsic thermal noise. A first example of ~ The gross features of the observed bistable dynamics can
SR has been given for a continuous state bistable dynamid¥ captured by a two-state stochastic proceéy that
agitated by the thermal noise and periodically modulated bywitches back and forth between two valugsand x, at
an external signdlL]. There exists a huge number of systemsrandom time point{t;}. Such a two-state random process
in physics, chemistry, and biology which do exhibit SR can be directly extracted from filtered experimental data and
[2—4]. These range from the classical systems to the systenigen statistically analyzed. Basically, the procegs) is
with distinct quantum featurd$]. characterized as follows: The sojourn in the statealter-
Experimentally, SR has been demonstrated in variougates randomly &f into the sojourn in the state, thenx(t)
macroscopic systems, see, e.g., in the revig2y4] and the  switches back tx; at timet;,;, and so on. If the sojourn
references therein. For a mesoscopic system containing a fime intervalsr;=t; . ;—t; are independentlydistributed (a
nite number of molecules SR has been first demonstratecondition which we shall assume throughout the following
experimentally in Ref[6]. The mesoscopic system in Ref. such two-state renewal processes are fully specified by two
[6] consists of dynamically self-assembled alamethicin iorresidence time distribution®TDS) ¢ A7) [13]. In the sim-
channels of variable size that are placed in a lipid membrangalest case, which corresponds to the dichotomic Markovian
Up to this date, however, there remains the challenge to denprocess, both RTDs are strictly exponential, i.¢,(7)
onstrate SR on the level sfnglestable molecules. lon chan- = v, £xp(—vy ,7), Wherev, , are the transition rates which
nels of biological membrandd,8] present one of the most equal the inverse mean residence tiniekRTs), which are
appealing objects for sucsingle-molecularstudies. The in- given by
vention of patch clamp techniqu&ef. [8]) made such in-
vestigations possible. The single-molecular SR experiments
which have been performed under the conditions of variable (r 2>.:J'°°T¢/ () dr )
intrinsic thermal noise intensity9], did not arrive at the LA )y L ’
convincing conclusions. A recettieoreticalstudy[10] sug-

with v, ;= (715~ . The input signaff(t) causes the transi-
*On leave from Bogolyubov Institute for Theoretical Physics, tion ratesy, , to be time dependent, i.e:; ,— v, t). More-
Kiev, Ukraine. Email address: goychuk@physik.uni-augsburg.de over, the RTDs become functionals of the driving signal
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power lawy(7)=1/(b+ 7)#, >0 [20,21]. The power law is
especially remarkable. For example, in RE21] such a
@) power law behavior has been found for the closed time RTD
of a large conductand®K) potassium channel with a power
As a consequence, the time-dependent probabifitieét) of 2w exponent~2.24 yielding formally varfciosed ==
the statest, , obey the master equations This in turn. implies that _sgch conductance fluctuations
: should exhibit a characteristic fI/ noise power spectrum
S(f) [22]. Indeed, this is the case of BK ion chanh28], as
well as of some other ion channg24].
. What are the non-Markovian features of SR in similar
P2(t) =v1()p2(t) — wa(t) pa(1) (3)  systems? We address this question below using the just de-
scribed non-Markovian generalization of McNamara-
fViesenfeld model characterized by some arbitrary nonexpo-
nential RTDs ¢, (7) and the corresponding survival
probabilities ®; A7) = [ 1 7')d7r" [13]. Similar models
with alternating renewal processes have been used previ-
ously in the SR theory for some particular stochastic dynam-
ics contracted to the two-state dynamjé$,26. Moreover,
the class of colored noise driven stochastic resongides
also intrinsically non-Markovian. All these prior studies have
been restricted, however, to situations with finite memory
effects on a finite time scale. A truly non-Markovian situation
emerges when the memory effects extend practically to in-
finity, exhibiting a scale free, weak power law decay. A phe-
nomenological linear response theory of such genuine non-
Markovian SR(which does not presume a knowledge of the
underlying microscopic dynamicfias been put forward re-
cently in Ref.[28]. The present work provides further details
T _ and, additionally, presents a more general framework for the
(x(1)=folx(€)[cod2t=¢(€)), ast—e=. (6 non-Markovian SR theory which extends beyond the linear
response description.

t
YrAt—t") =y At,t")= Vl’z(t)exr{ — Jt/ vy 7)d7|.

P1(t)=— w1 () pa(t) + va(t) pa(t)

with the signal-dependent rates which under an adiabatic a
sumption obey the rate lajid4]

vy A1) = v 0exp(—[AU, 7 AxF()/2]/kgT).  (4)

In Eq. (4), »{°} are the frequency prefactoraU, , are the
heights of the activation barrierd x:=x,—x,>0 is the am-
plitude of fluctuationskg is the Boltzmann constant, afids
the temperature. For a weak periodic signal

f(t)=focoq Qt), (5)

the use of Egs(3) and (4) allows one to calculate within
linear response theory ttasymptoti¢ long-time response of
the mean valuéx(t) )= x,p1(t) +xop,(t) to f(t),

ie.,

In Eq. (6), x(Q) is the linear response function in the fre-
guency domain ang(()) denotes the phase shift. The spec- Il. GENERAL THEORY

tral amplification of signaly=|x(Q)|?, exhibits the effect
of SR, i.e., a bell-shaped dependence vs increasing intrinsic
thermal noise strength which is measured by the temperature To start, let us consider a two-state renewal process
T[2]. (TSRB x(t) which takes initially, at time, the valuex,, or

The above outlined two-state Markovian theory has beenhe valuex, with the probabilityp;(ty), or p,(ty), corre-
put forward by McNamara and Wiesenfeld5]; this ap-  spondingly. At a random time poirt the process switches
proach has proven very useful over the years as a basiits current state into another state and stays there until the
prominent model for SR resear¢B]. Remarkably enough, next random time point,. Then, the renewal process pro-
this simple model allows one to unify the various kinds of ceeds further in time in the same manner. The survival prob-
SR such as periodic, aperiodit6], and even nonstationary ability to remain in the state 1, or the state 2 for the time
SR—uwithin a unifying framework of information theory r=t, ,—t; is ®,(7), or ®,(7), correspondingly. These
[10]. two survival probabilities completely specify the considered

Many observedbistable stochastic processaét) are, TSRP[13]. The functionsb, ,(7) must satisfy the following
however, truly not Markovian, as can be deduced from theybvious restrictions:(i) 0<®, A7)<1, (i) ®;7+A7)

experimentally observed RTDs. As a matter of fact, any de<q>12(T) A7>0 (nonincreasing function of time(iii)
viation of RTDs from the strictly exponential form indicates @, (0)=1, (iv) lim___®, (7)=0, but are otherwise arbi-
a deviation from the Markovian behavipt7,18. The pro-
foundly non-Markovian case emerges when at least one
the RTDs possesses a lar¢diverging variance varg; »)
= o1 Ar)d7— (71 5)*—. The stochastic dynamics of d(r)=exp{—[[(1+1/a)rr]?}, 0<a<l.  (7)
single molecules is especially interesting in this respect. For
example, the RTDs of the conductance fluctuations in bioln Eq. (7), v=1K7) is a rate parameter having the meaning
logical ion channels are in many cases not exponefitg-  of inverse MRT andI'(x) denotes the gamma function.
21]. Usually, a sum of many exponentialsy(r)  Moreover, the power law dependence

E _1Civiexp(—y), E —1G;=1 is needed to describe the
expenmental dat48]. Moreover in some caseg(r) can O(7)= ,
well be described by a stretched exponenfid], or by a [1+vrly]rHY

A. Two-state renewal process

0tfary One example is glven by the stretched exponential law
or Weibull distribution

y>0 (8
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corresponds to the Pareto distribution. Both Weibull and When a time-dependent input signal is switched on, the
Pareto distributions typify the so-called fractal dependenciesddriven TSRP becomes a nonstationary process and the corre-
In particular, such distributions have been detected for sevsponding survival probabilities depend not only on the length
eral different types of ion channe[49,21]. An interesting of time intervals, but also on the initial time instantof any
feature of the Pareto distribution is that fo@<1 it dis- considered residence time interval, i.e®q(t—t’)
plays a diverging variance, var(=, whereas the MRT7) —® 4 (t,t"). The residence time distributions are then ac-
is finite. The closed time intervals of a large conductancecordingly given by
potassium ion channel studied in Rgf1] seems to obey Eq.
(8) with y~0.24. Other fractal-like distributions can be con- dd, At,t)
structed from the expansion over exponentials Prdtt)=- dt (13
The corresponding conditional survival probabilities can be
®(n)=2 cexp—n7), 2 6=1, 9 defined asb, {7|t') =@ At’ + 7,t') (here the condition is
different from that used in footnof&3]—in the absence of
assuming some recurrence scaling relations among the raséggnal—notwithstanding the use of identical notatjorishe
constants{»}, e.g., vj.;=av;, and among the expansion particular ChOice,(Dl’Z(t,t')=eXp(—f:,V1'2(T)dT), leads to
coefficients{c;}, e.g.,c;+1=bc;, with some structural con- Eq. (2)—the only choice which is consistent with the Mar-
stants B<a<1,0<b<1 [29,12,3Q. If the hierarchy of rate  kovian assumptiofil7]. In the nonstationary driven case, the
constants is obtained from a fundamental rate constant distinction betweerdO)(t,t') and®, At,t'), ¥{O(t,t") and
applying a recurrence scaling relation similar to one given,, .t t') is not necessary. Nevertheless, we keep formally
above, the corresponding distribution can be characterized s distinction in the following, because when the driving is
a fractal in time. If the whole hierarchy is produced by apeing switched off, the procesgt) relaxes to its stationary

more complicated scaling law involving two, or more inde- state. This distinction becomes very important in order to
pendent fundamental rate constants, the distribution is mukonstruct the evolution operator for time-homogeneous ini-
tifractal. The corresponding stochastic processes can be rgy preparations.

ferred to as fractal renewal procesd@2]. Such random
processes presently attract renewed attention in physics and
in mathematical biology12].
The negative time derivative Our immediate goal is to obtain the evolution equations
for the considered stochastic process: we are looking for the
oA = — ddyo(7) (10 forward evolution operatoFI(t|to) (or the matrix of condi-
b dr tional probabilitie} connecting the probability vectqrﬁ(t)
=[p.(t),px(t)]" at two different instants of timé and t,,

B. Integral equations of nonstationary renewal theory

yields the corresponding residence time distributipb3].
Next, let us assume that a number of alternations occurred
before the starting time poirtty and the considered process ﬁ(t)zH(t|to)5(t0). (14)
became homogeneous in tirbeforethe observation started
atto. Then, for such persistentime-homogeneougrocess  This evolution operator can be explicitly constructed by con-
the RTDs of thfirst time interval 7o=t; —to, #$°(7) must  sidering the contributions of all possible stochastic paths
differ from ¢, »(7) [13,18,30-3% namely[33], leading fromp(to) to p(t). To start, let us separate these
contributions as follows
q’l,z( 7)

0 y= 227
wl,Z T)_ <7_1’2> ' (11)

M(t]tg)= > T (t|to), (15
where(; ,) is given by Eq.(1). The corresponding survival n=0

probability of the first residence time interval reads . )
where the indexn denotes the number of alternations that

0 occurred during the stochastic evolution. The contribution
L D, At)dt with no alternations obviously reads,
O)(r)=———. (12
L2 (11,0 d{O(t,t0) 0
. . H(O)(t|to) = (0) : (16)
Moreover, if to choosep; At;) as the stationary values, 0 ®57(t,tp)

pllz(to)zpitz, the considered persistent processstiation- _ _ _ _ _

ary. From Eq.(ll) it follows that the two-state renewal pro- Stochastic paths with a single alternation contribute as
cess(TSRB can be stationary only if the two mean residence .

times(7;) and(r,) are finite. A diverging mean residence (1) :f (0)

time leads to anomalously slow diffusigsubdiffusion in It to) todtlp(t'tl)F (tr.to), (7
the multistate casg80,32,34; such a situation is not consid-

ered here. where
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D (t,to) 0
P(t,tg)= 0 <I>2(t,to)} (18
and
0 w1, to)
FO(t,tg) = 19
(t,to) { (O)(t,t,) N (19

Next, the paths with two alternations contribute to Ep)
as

t
ety - |
t

0

t
dtzf zdtlp(tutZ)F(tZytl)F(O)(tlytO),
to
(20
where

0 ¢2(t1t0)

htty 0 @)

F(t,to) :|:

Contributions with highen are constructed along the same

line of reasoning.
This representation of the evolution operald(t|t’) in

terms of an infinite sum over the stochastic paths is exac
although not very useful in practice. The structure of the

infinite series in Eqs(15)—(21) implies, however, the fol-
lowing representation

T(t]tg) = I1O(tto) + ft ALP(L Gt ), (22)
0

where the unknown auxiliary matrix functicB(t,ty) satis-
fies the matrix integral equation

G(t,tg)=FO(t,ty)+ ftdtlF(t,tl)G(tl,to). (23
to

The equivalence of Eq415—(21) and Egs.(22) and (23)
can be readily checked by solving E&3) with the method
of successive iterations.
In components, Eq.22) reads
t
Hll(t|t0):q)(10)(tat0)+£ D4(t,t1)Gqa(ty,tg)dty,

0

(249
0 t
Moa(tlt) =0t to) + f B (t,11) God b to)dty,
’ (24b)
t
1_[12(t|'[o):fI Do(t,t1)Gya(ty,to)dty, (249
0

t
Ioy(ttg)= Jt D,(1,1) Gty ,to)dty . (249

0

It is worth to note that the set of Eq&249—(24d) is not
independent. The conservation of probability implies that

PHYSICAL REVIEW E69, 021104 (2004
I44(tto) + ITpy(t]te) =1,
IToo(t[tg) + I 5(t[tg) =1. (25)

The consistency of Eq$248—(240d with the conservation
law, Eq. (25), can be checked readily. The matrix integral
equation(23) reads in components

t
Gll(t:to):ft Pa(t,11)Goy(ty,to)dty, (263
0
t
Gzz(tato):ft 1 (t,11) Gty ,to)dty, (26b)
0
. t
Gialt,te) = Y21, to) + ft Pa(t,t) Gty to)dty
’ (260

t
Gar(tto) = O L.to) + ﬁ P11t Gl o)ty
i (260

rom EQs.(268—(260d) one can deduce independent scalar
htegral equations for each component of matrix function
G(t,tp). Indeed, after substitutinG,4(t,ty) from Eq. (260
into Eq. (269 the closed equation fdB4(t,ty) follows as

Gll(t,to)zg(lo)(t,to)+f;gl(t,tl)Gll(tl,to)dtl. (27)
In Eq. (27),
= [ il @
and
§1(t,to)=f;wz(t,tl)dfl(tl,to)dtl (29
is a renewal density. Analogously,
Gzz(t,to):ggo)(t,to)Jrf;gz(t,tl)ezz(tl,to)dtl, (30)
where

t
E(t,t0) = ft P (t,t) Y8ty to)dty,
0

t
E(ttg) = ft (L) o(ty,to)dty . (31
0

Moreover, for the off-diagonal elements @ft,t;) we find

t
Gast,t) = (L, te) + ﬁ £1(4,11) Gty ,tp)dty,
0
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1. Stationary probabilities

t
Goy(t,tg) = 0t t +J t,t1)Goy(ty,to)dty. (32) .
21(tto) =917 (L ko) t0§2( DGzt to)dty The vector of stationary probabilitigs'=[p3',p5']" can

be evaluated ap*'=lim__ [sfi(s)p(0)]. With Egs.(33)—
Equations(27)—(31) together with Eqs(248—(24d) present  (35) one readily obtains the result

the first main result of this work. This set of equations gen-
eralizes the integral equations of renewal theory obtained by st (1) ot (12)

Cox[13] and other$18] to the case of nonstationary renewal P1 :<7-1>+<7-2> » P2 :<7'1> +(7)" (36)
processes modulated by external signals. The solution of the
evolution operatoFI(t|t,) is thereby reduced to solve the set 2. Relaxation function

of independent scalar integral equations @j(t,t;). This . .
presents an essential simplification as compare to the case of 1€ generally nonexponential relaxation —d(t))
an evaluation of infinite matrix integral series in E¢&5)— =x1p1t(t.)+x2p2_(t) to the stationary mean value;=X;p;
(22). +Xx,p3' is described by the relaxation functi®(7), i.e.,

P1.Ato+ 7) =Pt P1aAto) — PILIR(T), (37)

dvhere R(7) obeys the Laplace transform

C. Time-homogeneous case

In the absence of a signal, all two-time quantities depen
only on the time-difference=t—t,. In this case, the inte-
gral equations of renewal theory can be solved formally by R(s)= E_ i+_
use of the Laplace transform method and the evolution op- s (1) (72)
erator (i.e., its Laplace transforincan be found explicitly.

Let us denote the Laplace transform of any functfr)  andG(s) is given by Eq(34). The validity of Eqs(37) and
below as F(s):=f5exp(—s?)F(7)dr. Then, upon Laplace (38) can be easily checked upon the use of Laplace trans-
transforming Eqs(248—(32), using Eqs(11) and(12) and  formed Eq.(14) and the result in Eq:33) and (34) along
some well-known theorems of Laplace transform, one findsvith the normalization conditiop,(to) + p2(to) =1 and Eq.

the explicit expression for the evolution operafd(s). It ~ (36). It should be emphasized here that the relaxation func-
coincides with the known result in the literatre3,18,28,  tion R(t) for the consideregersistentrenewal process is

1.
?G(S) , (39

reading unique, i.e., it does not depend pp(ty). This corresponds
to the situation where the random procegs) has not been
G(s) G(s) prepared at=t; in a particular stat&,, orx,, but rather has
1|+ m W almost relaxeql to its stationary state. In other words, a num-
Ms)==| _ 5 , (33  ber of alternations occurred befare t, and the probability
S G(s) G(s) p1Atg) to measure the particular valug , of x(t) at the
s(71) s(75) instant of timet, is close to its stationary valupj‘z. This

class of initial preparations, where the relaxation function
does not depend on the actual initial probabilities, is termed
where the time-homogeneous preparation class. This preparation
class [35,36 must be distinguished from strongly non-
equilibrium initial preparations, where the system is pre-
— — (34) pared, for example, in a particular definite state, say in the
(1= a(S)¢pa(s)) statex;, with the probability onep,(to)=1.

&(s)= (1—44(8)(1—¢2(9))

. - . 3. Stationary autocorrelation function and regression theorem
is an auxiliary function.

The existence of finite mean residence tinfeg,) im- Let us consider next the normalized autocorrelation func-
plies the following useful representation for the Laplace-tion, 1.e.,

transformed RTDs:
. {Ox(t+ 1) ox(1))
k(T)Z |ImT (39)
UnAs)=1—(11)s[1+g;A3)]. (35 o st
of the stationary fluctuationgx(t) = x(t) — Xs;. In Eq. (39),

In Eq. (35), g1 «S) are corresponding functions vanishing at

s—0, i.e.,g1AS)—0. Note that the functiong, (s) are not (6X2) = (AX)? (11)(72) (40)
necessarily analytical. For examplg(s)~s” with some ((71)+(7))?

real-valued exponent,<0y<1, is allowed, for an example,

see below in Eq(94). Such nonanalytical feature leads to is the mean-squared amplitude of the stationary fluctuations
diverging variance of RTDs. From the formal expressionand Ax=x,—X; is the fluctuation amplitude. Withox(t

(33) a number of important results follows: +7) 8x(t)) = (x(t+ 7)x(1)) — (x)Z,, ast—o=, and
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lim(x(t+7)x())= > > xxI;(np, (41 w,y<1

- iS12i52 ! C={ [y+1 - (50
=17

we obtain the same result as in RE3§], i.e.,

As a criterion for Markovian vs non-Markovian behavior one
~ 1 can propose to test the coefficients of variation, of the
k(s)=35 s <7-1> <7-2> G(S) (42) experimentally determined RTDg, (t). In the strict Mar-

kovian case we havg,=C,=1. Large deviations of any of

Upon comparison of Eq38) with Eq. (42) we find the fol-  the two coefficients of variationC, , from unity indicate
lowing regression theorem for these non-Markovian two-the presence of strong non- -Markovian memory effects. The

state processes, namely, proposed test-criterion appears experimentally to be more
conveniently applied than the direct test of the Chapman-
R(7)=k(7). (43  Kolmogorov-Smoluchowski equatiof87]. For example, in

the fractal model of the ion channel gating by Liebovitch
The regression theore3), which relates the decay of the et al. the closed residence time distribution is fitted by Eq.
relaxation function R7) to the decay oftationary autocor-  (7) with a~0.2 [19]. This yieldsCgoseq~15.84. Thus, as-
relations K 7), presents a cornerstone result for the deriva-suming that the open residence times are exponentially dis-
tion of phenomenological linear response theory for nontributed, i.e.,Cy,e=1, One obtainsRyy~126. Further-
Markovian SR[28]. more, according to Refl21] BK ion channels display a
Usually, the Laplace transforrt42) cannot be inverted closed residence time distribution following a Pareto law
analytically. If k(t)=0 for all timest, one can define the with B=2+vy~0.24. In such a case, the memory effects
mean correlation time should depict an infinite range sineg,,,=. In both cases,
the observed two-state fluctuations do exhibit long-range
temporal correlations. The gating dynamics is thus clearly

Teorr = k(t)dt_ limk(s). (44 non-Markovian within such a two-state description.

s—0

. - 4. Power spectrum of fluctuations
Assuming finite second moments of RDTS77,) P

=[5 A7)dr we obtain from Eqs(42) and (44) the For the power spectrum of fluctuations, i.e.,

simple result "

Nuw=2QW%MJ'kamoswnm=2«w%deRawﬂ,
0

Teorr=RNMTM » (45)
(51)
where . .
the use of Egs.(40) and (42) in Eqg. (51) yields
(71)(75) [22,26,28,36,3B
RCARIEY o
c Sv)= 20 L e Biin] (52
W)= 57—V v = lw)|.
is the correlation time of the Markovian process possessing N (1) +(72) w?
the same MRTg 7, ,) as the considered non-Markovian pro- .
cess. The coefficient It is evident that asymptotically, in the limib—c, the
power spectrum(52) is Lorentzian in the case of time-
Rym= 2(CZ+C ) 47) continuous RTD$22,39,
presents a numerical quantifier of non-Markovian effects in Sy( 2(Ax)? 1 . 53
terms of the coefficients of variation of the corresponding Ty (1) o2 asw=e. (53)

residence time distributions, i.e.,
This follows from the fact that Iir{gﬂwz/;lyz(i w)=0 and thus

Cio=————. (49 Iimw_m(NB(iw):l [39]. Practically this situation occurs for

w>(112 . On the other hand, one can deduce from Eq.

For example, for the stretched exponentiglthe coefficient  (51) that in the opposite limit forw—0,
of variation emerges as

Sn(w)—Sy(0)= 2< 5X2>st7'corr ) (54)
—+/ I'(1+2/) 1 (49) where (8x?); is the mean-squared amplitude of stationary
I'?(1+1/a) fluctuations given by Eq40) and 7.,,, is given in Eq.(45).
A very interesting situation emerges fog,,,—, implying
For the Pareto law distribution in E¢B) it reads Sy(0)—oe. This occurs when at least one of the residence
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Xy plicitly assumed in Eq(56). Expandingp; 5(to) to first order
X;tzf(')) in fo we find with Ax=X,—X;
(st

(X(tot+7))= Ax [B2—B1IR(7)fo+0(fg), (57)

X1
where
FIG. 1. Relaxation of a perturbed persistent renewal process

X(t). A constant forcef is applied long before and is released at dln(71,2(f0)>
t=to. The mean valuéx(t)) relaxes from the constrained station- 1,2==d—f0 (58)

ary valuexg(fy) to its true stationary valug,. fo=0

time distributions possesses a diverging variance, cf. qu\_lote thaF i.n. the derivgtion of this result it is tgcitly assumed
(45)—(47). In such a case, for the low-frequency regien that the initial constrained stationary populathmz(_t_o) at
<(r1,) ! the power spectrum drastically differs from the t=to belongs to the class of tlmg-homogeneous initial prepa-
Lorentzian form. For example, for a symmetric TSRP with'ations[36] for the procesx(t) in the absence of applied
the survival probabilities given by the Pareto distributionsforce. This seems a natural and intuitively clear assumption

(8) one can show22] (see also belothat for 0< y<1 in view of the facts that the limif,— 0 has to be taken in
Sy(w)~1lw!™". For y—0 this corresponds to celebrated EG- (56) at the very end of calculation, and the considered
1/f noise[22,40. process is persistent. Nevertheless, this commonly accepted

assumption is a hidden hypothesis which, strictly speaking,
cannot be proven within the phenomenological approach.

Upon combining Eq.(57) with the regression theorem
(43) we obtain from Eq(56), after taking the limitf;—0,

It is possible to predict the linear response of the underthe fluctuation theorenj28]
lying stochastic process(t) to the external driving (t) by 6(7) d
referring only to information on its stationary properties, i.e., - A _p1=
without explicit knowledge of the concrete mechanism at X(7)= =182 Bul dT<5X(t+T) X(U)st: (59
work by which the process(t) is perturbed by the external ] ] )
signal. The phenomenological theory of linear response fowherein 6(t) denotes here the unit step function. The non-
general stochastic proces$es,41 and for thermal physical Markovian fluctuation theorer(69) presents a prominent re-
systemg42] provides a very useful and widely applied tool sult [28]; in particular, it does not assume thermal equilib-
to answer this question. It is also the only method available ifium [36]. In the frequency domain it reads
no further detailed knowledge of the microscopic dynamics 2
is at hand for theobservedtwo-state dynamics. This is the Y ()= W[l+ia{k(_iw)] (60)
common experimental situation. The common linear re- Ax ’
sponse approximation

Ill. PHENOMENOLOGICAL THEORY
OF LINEAR RESPONSE

where y(w)=J"_x(t)e'*'dt denotes the linear response

= I o N g function in the frequency domain, akgs) is given by Eq.
(0x(1))s=(x(1)) —X51= I,OCX(t t)t)dr’, (59 (42). Substitution of Egs(42) and (40) in Eq. (60) yields

holds independently of the underlying stochastic dynamics Y w)= (B2~ B1)AX I—é(—iw) (61)
[36]. In Eq.(55), x(t) denotes the linear response function in (1) (1) w ’
the time domain. The universality of the relati(Bb) allows _
one to find the linear response functigft) using a properly where G(s) is given in Eq.(34). The expression(61) to-
designed form of the perturbatidift). Within the phenom- gether with Eq.(34) connects the linear response function
enological approach it can be obtained following an estaby(w) with the Laplace-transformed residence time distribu-
lished procedurg42]: (i) First, apply a small static forck,  {jons %, (iw), i.e., with the characteristic functions of the
(i) then, let the process(t) relax to the constrained station- prpg
ary state with mean valuey(fo), and finally(iii) suddenly If, in addition, the mean residence times obey the thermal
remove the force at=t,, see Fig. 1. detailed balance relation

Then, in accord with Eq(55) the response function reads

(m1(fo)) —ex;{ —e(T)— foAX)

e = 62
X(T)=—fiod%<5x(to+ 7)), >0, (56) (12(fo)) KgT 62

wheree(T) is the free-energy difference between two meta-
where (8x(to+ 7))=X1p1(to+ 7) +X,pa(to+7) is deter- stable states, we recover for the fluctuation theorem in Eq.
mined by Eq.(37) with the initial p; o(to) taken asp; to) (59) the form that characterizes classical equilibrium dynam-
=(11ATo))[{71(f0)) +(72(fp))]. The limit f,—0 is im-  ics[36,42,43, i.e.,
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6(7) d -
x(1)=— KT dr ——(OX(7) 6X(0))st. (63) Dy o 7t)= Z "(r)exd —inQt],
Equation(61) then yields ( n)(T) [<I>( )(7)]%. (66)
(Ax)? 1 . Similar expansions hold also for the conditional residence

X(@)= kgT (7-1)+(7-2) ~iw). 64 time distributionsys; 2(7-|t) with the corresponding expan-
sion coefficients y{)(7)=—(d/d7)®{)(7). Note that

For example, this result is valid for an Arrhenius-like depen-®{°)(7) and¢{%(r) in th|s section denote the Fourier expan-

dence of(r; ;) on temperaturd and forcefy, i.e., sion coefficients witth=0. These quantities are clearly not
related to the survival functiond2) and RTDs(11) of the
AU 5+ AXy of first time interval. We hope that such use of notations will
<Tlv2(f0)>:A1,ZeXF{ kB—T) (65 not confuse the readers. The corresponding Laplace-

transformed quantities of the-dependent Fourier coeffi-

where AU, , are the heights of activation barrierdx,  cientsy{"(s) and®{")(s) in Eq. (66) are related by

=7zAX, AX,=(1—2z)Ax with Ax=x,—x;, 0<z<1. Equa-

tion (63) presents a key result because it provides a link P(s)=8,0—sPU(s). (67)
between the phenomenological theory of linear response

theory and the actual physical processes which atleeérmal ~ Our goal is to evaluate the asymptotic behavior of the popu-
equilibrium and do exhibit long-range time correlations. Let lations p(as)(t) and of the mean valug@9(t)). To do so,

us assume, for example, the following situation: The ob-one needs to determine the asymptotic evolution operator
served two-state process results from thermally actlvatedl(as)(t) =lim, _II(t[to). Obviously, @9(t) =1139(t)

transitions in a complex potential energy landscap) and H(as)(t) H(is)(t). Moreover, p{@9(t)=1139(1),
possessing two domglns of attractigire., tvyo metastable p(2as)(t):1—[(2%s)(t). Next, let us define the auxiliary quantity
state$ separated by distanckx along the direction of the G@I(t) as G@I(t):=lim G(t,ty). Then, Egs.(243
reaction coordinate which describes transitions between the ' to—— o » S
metastable states. Next, let us assume that the coupling of t#@d (27) in the limit to— — o yield
external forcef(t) to the dynamics has the potential energy .
f_orm Uin= —xf(t). Then, the (_:Iassu_:al _equmbnum fI_uctua- p(las)(t):j <D1(t,t1)G(as)(t1)dt1, (68)
tion theorem(63) follows from first principleg42], or, like- —
wise, from a mesoscopic starting point in terms of the gen-
eralized master equation for the thermal equilibriumwhereG{(t) is solution of the integral equation:
dynamics[43]; in other words, it is exact. The nonexponen- t
tial features of the RTDs in the described situation stems (@s) /4y — (as)
from the motions “perpendicular” to the above reaction co- Gii (t)—j x§1(t,t1)G (tpdty, (69
ordinatex. In such a case, the thermodynamic relations like
Eq. (62 are compatible with non-Markovian kinetics. This is with the renewal density,(t,t;) given in Eg.(29). The
the case where the phenomenological theory of linear reequation determlnm@(as)(t) likewise reads
sponse in hon-Markovian systems has a firm foundation. The
readers should be warned, however, that the phenomenologi- (as) 4\ _ (as)
cal theory is not universally valid for nonequilibrium physi- pa() = ,OfDZ(t’tl)G (t)dty, (70
cal systems; see, for an example in Ré#]. Nevertheless,
below we explicitly define an universality class of such syswheree(as)(t) is the solution of integral equation
tems(which are beyond the thermal equilibrium clpagere
its validity can be proven on a more general basis. (@9 t @s)
G (t):j x§2(t’tl)G (tydty, (71)
IV. ASYMPTOTIC RESPONSE THEORY BASED
ON DRIVEN RENEWAL EQUATIONS with &,(t,t;) given in Eq.(31). Note that the conditional

renewal densitieg; ( 7t): = &, ,(t+ 7,t) also acquire a time
periodicity int and can be represented in the form like Eq.
66) with the corresponding expansion coeﬁicieﬁﬁ%}(r).

ne can show that the corresponding Laplace-transformed
quantities&{")(s) are related with the quantitieg("}(s) as
follows:

Starting from the driven renewal equatiof24g—(32)
one can develop the theory of the linear and the nonline
response which possesses a broader range of validity as co
pared to the above phenomenological theory. For a periodic
signal (switched on in the infinite pastike in Eqg. (5), the
conditional survival probabilities® i 7|t) =P (t+ 7,t)
acquire(at asymptotic time$>t,) the time periodicity int
of the driving signal and therefore can be expanded into the g(n)(s E l’[/(m)(s);[/(lnfm)(er imQ),
Fourier series, i.e.,
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o= 2 PO N(stimQ). (72 o= 2 2 YV(-iko)
For periodic drivingf (t), bothp{®)(t) andG{%4t) must be XYM (—i[k—m]Q)glk ™, (78)
periodic functions of tim¢2] and can be expanded into Fou-
rier series and
p{I(H= 2 plle ™ pl0=[pid" (73 pP= X DP(—ik)g¥ ", (79
=—0 n=—«
and ® m
. of’= 2 2 YM(-ike)
ciln= 3 ol ofF=[afr, (79 _
) XYL (—ik—m]Q)g¥ ™. (80)
respectively.

Using Egs.(5) and (55) and the expansiofiv3) one can ' he relationg77)—(80) also serve as the basis for a response

show that the Coefﬁciem(ll) in Eq. (73) determines thdin- theory without restriction on the Ii!’\ear response appro>_<ima—
tion. In order to apply these equations, one has to specify the

expansion coefficients in Eq66), i.e., to specify the way
3 2AX how the external signdl(t) enters the conditional residence
X(Q)=— f—p(ll) (75 time distributionss 7]t), or, equivalently, the conditional
0 survival probabilities®; (7]t) to the required order in the
in the limit f,—0. Moreover, from the normalization condi- Signal amplitudef,. It is worth noting that the solutions of
ton () 0 1 oo th =478 and(eD are defied p 0 some arivary constats
pD+p®=1, pM=-p for n+0. (769 normalization relations in Eq76).
In the linear response approximatioh{’)(s)=®; As),
i.e., ®°)(s) coincide with the unperturbed survival prob-

ear response functiog(Q) in the frequency domain as

Upon substituting Eqg73) and(74) and the expansions like
Eq. (66) into Eqs.(68)—(71), performing the time integration U ~ (1) )
and comparing the coefficients of the Fourier expansions ofPilities @1 Xs). Moreover, @7 5(s)=fo. All the higher or-

the left- and right-hand sides of the corresponding equationger terms?f)(l'ff ?)(s) can be neglected, being of higher order
we finally end up with proportional tof§, n=2. The same holds true fak{")(s).
o After some cumbersome algebra, one finds from EG#—
~ . _ i (1) i i
p(lk): E q)(ln)(_le)g(lk n 77) (80) an expression fopj™’, which then by use of relation

== (75) yields

SPGOSRNG0} St G 1)
T ) 1= (1) (- 19) |

(81)

The result in Eq(81) presents a second cornerstone result of Models with form-invariant RTDs
this work. Note that this general result depends on the quan- | ot ;s assume that the survival probability and the corre-

tities 1{*)(s) = f , which do not follow directly from the char- sponding RTD can be parametrized by a single frequency
acteristic functions of stationary RTDs, i.a/.l’Z(S), but their ~ parametew which has the meaning of an inverse mean resi-
knowledge requires one to specify a microscopic modeldence time, i.e.p=(7)" . Furthermore, we assume that a
Generally, Eq.(81) is not mathematically reducible to the weak signalf(t) causes to became time dependent, i.e.,
result(61) of the phenomenological theory. A question arises

whether such a reduction is possible in practice and the phe- v—v(t)=v[1-pBf(1)], (82
nomenological theory of linear response can be put on a

more firm ground beyond the time-homogeneous preparation

class result in Eq(61) of which the thermal equilibrium with B<<1/f, (the subscripts 1,2 are suppresseédoreover,
result in Eq.(64) is a special case. Below we describe athe survival probabilities become modified applying the fol-
rather broad class of relevant systems. lowing rule: v7— [{""»(t")dt’. More generally, let us con-
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rather than Eq(81) for the calculation of the linear response.

ized to the time inhomogeneous case in the following way This constitutes the essence of the phenomenological theory

* t+7
D(1)—D(7t)=D, ciexp(—f vi(t’)dt’), > ci=1.

=1 t i

(83
In Eqg. (83), we assume thafto leading order neither the
expansion coefficients; nor the ratios between any of(t)
and;(t) are modified by the applied signg(t), i.e.,
vi(t)

m:aij ) (84)

with a;; being some structural constants. This covers fractal
(althoughnot multifracta) time distributions. Put differently,

of non-Markovian stochastic resonance developed in Ref.
[28]. For other systems, e.g., for those modeling neuronal
dynamics(which are far away from thermal equilibriyrthe

use of Eq.(81) is preferred. In order to apply E€B1), how-
ever, one must also specify the underlying nonequilibrium
microscopic dynamics in the presence of a time-periodic
stimulus. This means that the time-inhomogeneous condi-
tional RTDs ¢y ( 7|t) must be measured, or modeléd the
linear ordey in the driving signal strength. We next present a
detailed study of non-Markovian stochastic resonance in
thermal equilibriumsystems that do exhibit prominent tem-
Poral long-range time correlation28].

V. STOCHASTIC RESONANCE

the scaling law which produces the whole hierarchy of rate

constants out of a single rate constant is invariant of the

applied signal. If the mean residence tifwe ==;c; /v; ex-

In the presence of applied periodic sigi(@l, the spectral
power amplification(SPA) [2,45], 7(Q2)=|x(Q)|? reads by

ists, one can always set=(7) "' as the relevant rate con- use of the fluctuation theorem in E¢54) upon combining
stant in the absence of driving. This rate will acquire an(39),(42),(40), (65) as follows

explicit time dependence like in E¢82) when the signal is
switched on. Given our assumptions, all the time-dependent

ratesvy,;(t) in Eq. (83) will be proportional to the rate(t) in
Eqg. (82). Then, in the lowest first order iBf,, we find

q>(7|t)=q>(7)+ﬁ¢(7)ftmf(t')dt’. (85)
From Eq.(85) we obtain upon observing E¢5)
on= 51280y lexa-inn-11 (80
and
Di(s)=~ %i ﬁlﬁ—zf()[%,xs>—7ﬂ1,2<s+im]. (87)

Observing Eq(67) by taking into accounf//lyz(O)zl in Eq.
(87) thus yields

P—i1Q)==3B1fo[1- Y1 —i1Q)]. (88

Substituting Eq(88) into Eq. (81) we recover the result of
the phenomenological theory in E(1). In conclusion, for
the considered class of models the nonequilibrium fluctua-
tion theorem(61) is well justified. This model class can

_ (Ax/2)* v2(T) 1G(i)|?
" (kgT)? cosH[e(T)/(2kgT)] Q2

7n(Q,T)
(89

In Eq. (89), »(T)={(r) *+(7,) ! denotes the sum of ef-
fective rates. The quantig(T)=AU,— AU+ TASdenotes

the free-energy difference between the metastable states
which includes the entropy differenceAS:=S,—S;

=kgIn(A,/A)). In the Markovian case we obtai(s)
=s/(s+v) and Eq.(89 equals the known result, see in
Refs.[2,45].

The signal-to-noise rati6SNR) is given within linear re-
sponse approximation by

w3 x(Q)[2
S\(Q)

where Sy(w), Eq. (51), is the spectral power of stationary
fluctuations[2]. By use of Eq.(89), we obtain

Rsn(2,T):= (90)

therefore be reconciled with the assumption of time-where the term

homogeneous initial preparations used in the phenomeno-
logical theory of linear respongsee Sec. Il This assump-

tion is naturally not always justifiech priori. It rather

mf3(AXI2)2  u(T)
Ren(Q,T) = N(Q), (91
s\, T) 2T’ «) (Q), (91
N(Q)——|é(iﬂ)|2 (92
 ReG(i0)]

delimits an important and rather broad class of correspond-

ing physical systems. Nevertheless, the equilibrium fluctuadenotes a frequency- and temperature-dependent non-
tion theorem(63) presents a fundamental relation which Markovian correction. For arbitrary continuoys (7) the
must be obeyed for all thermal equilibrium systems. Thisfunction N({2) approaches unity for high-frequency signals,
imposes a salient restriction on mesoscopic models leadin@>(7; ) ~*. Thus, Eq.(91) reduces in this limit to the

to the observed equilibrium non-Markovian dynamics. Inknown Markovian resulf2], i.e., the Markovian limit of
particular, if one knows that the considered system is in the&SNR is assumed asymptotically in the high-frequency re-

thermal equilibrium, one must use the rigorous relatie4),

gime. More interesting, however, is the result for small fre-
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quency driving. In the zero-frequency limit we fifd(0) 15F ol ® A~ ' %fOJSS%I ]
=1/Rym With Ryy given in Eq.(47). With Ryy== as it is Q=000
the case for the Pareto distributio8) with 0<y<<1, N(0)

=0, i.e.,Rs\(Q2=0,T)=0 as well. Consequently, ultraslow 0|

signals are difficult to detect within the SNR-measure in a
strongly non-Markovian situation. 05,

A. Symmetric SR X — 03 04 R R 03 04 05

As a first example, we address non-Markovian SR in a Noise strength, D Noise strength, D
Symbmﬁt[)lc fﬁ/ St%m \;\.”thl the Sur\lnval pr(.)t?]abl_“tléﬁ;zl(g ?e_ FIG. 2. The spectral amplification of the sign@h arbitrary
scribed by the identical power lav®) with v=(r) eter- units) is depicted vs the thermal noise intendliy= kg T at different

i ; — (0)_
mined from Eq.(4) with f(t)=0, viz=wo and AUi,  griving frequencies): (a) non-Markovian symmetric system and
=AU. In this case, the Laplace-transformed RTDs read  (p) its Markovian counterpart. In the non-Markovian case, both

~ i RTDs follow a Pareto law withy=0.2. D is scaled in units of the
P(8)=1—(y(1)s)” "exp( Y1) (=, %(7)s), (93  parrier heightaU; Q is scaled in units of,.

whereI'(x,y) is the incomplete gamma functidd7]. Fgr_ tion between the time scales of the random, temperature
0<y<1, the distribution(93) has a diverging variance; its griven transitions, and the external periodic modulations

smalls expansion reads [2,45] can be extended even onto this extreme non-
- " Markovian case(with diverging mean correlation time,
P(s)=1—(m)s+y"T(1-y)[(n)s] . (94  7.,,,=»). Note, however, that the maximal value of the

) ) _ spectral amplification of signal is strongly suppressed in the
Using Eqs.(94) and (34) in Eq. (52) we obtain for the  resent case by the factor of about 20 as compared with the

low-frequency part of the power spectrum corresponding Markovian counterpart possessing the same
L () (7), see Fig. Bb).
= 211 e N7 In contrast to the overall simpler behavior of the spectral
Su(@) Z(AX) ra y)5|n(77y/2)[y<7>w]lfy. amplification measure the SNR displays prime features, cf.

(95) Figs. 3a) and 3b). First, the SNR becomes frequency de-
pendent. In the limit)—0, we obtain for the form-factor

To obtain the spectral amplificatiai®9) and the SNR(91) N(Q) in Eq. (92),
numerically one has to use E(3) in Eq. (34). For y>1,
the power spectrum of this process mimics a conventional (THQ] Y
Lorentzian. Moreover, fory>1, C’~v1,.cf. Eq.(.50).-Thus, N(Q)~ 2sin 7 y/2) ,y‘yl"(l_,y)'
one can expect that for largethe considered situation does
not differ much from the Markovian case, at least qualita-|, thjs jimit, the signal-to-noise ratio can be approximated as
tively. Indeed, for very largey~100 the discrepancy with
the Markovian case in the SNR behavior vs noise intensity -
D=kgT is not detectable. The well-known bell-shaped sto-Rg\({2,D)~ Z(fOAXIZ)2
chastic resonance behavior is reproduced with the maximum

(96)

atD=AU/2. Nevertheless, in the behavior g{Q,T) some (2v)”
discrepancy still remains detectable even for such large X —
(not shown. sin(my/2)y"T(1-7)

Next, the case with & y<1 is of major interest as it is exp( — yAU/D)
qualitatively very distinct from the Markovian stochastic XF(Y—Ql*V_
resonance, see Fig. 2. The reason is that the mean correlation D?
time 7¢o, in EqQ. (44) becomes formally infinite and the
power spectrum exhibits a typicalff/ characteristics, with This SNR expressiori97) displays several nontrivial fea-
a=1-—1, cf. Eq.(95). Nevertheless, an important time scale tures: (i) the stochastic resonance peak occurs at smaller
of the stochastic dynamics does still exist: It is defined by thenoise strengtid (2 —0)= yAU/2 as compare to the Mar-
mean time of stochastic turnovers between the metastabl@vian case, wher®y,=AU/2. (ii) The SNR displays a
states,7o(D)=2( 7). Invoking the reasoning of a stochastic nontrivial, power law dependence on the angular driving fre-
synchronization of stochastic resonariéé] one can expect quencyRsy(Q)~ Q1. Moreover, with the increasing an-
stochastic resonance to occur when the time scale of stochagular frequencyf) of signal the signal-to-noise ratiRg\(2)
tic turnoversto(D) matches the period of external driving should approach its frequency independent Markovian limit.
T7=27/Q, i.e., 7o(D)~7. Indeed, Fig. 2a) unambiguously  Thus, the resonance vallyy({2) becomes frequency de-
demonstrates the stochastic resonance phenomenon forpandent for an intermediate range of frequencies and ap-
non-Markovian system withy=0.2. Thus, the interpretation proaches the Markovian valug,, in the limit of high fre-
of SR as the phenomenon caused by stochastic synchronizguencies. This profound frequency dependence of non-

97
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.
. Q=000 (b) 10° T
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008 =
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FIG. 3. Signal-to-noise rati@in arbitrary unit$ vs thermal noise
intensity D=kgT at different driving frequencie€): (a) non-
Markovian symmetric system ar{t) its Markovian counterpart. In
the non-Markovian case, both RTDs follow a Pareto law wjth
=0.2. D is scaled in the units of barrier heightJ, () is measured
in units of .

FIG. 4. (a) The normalized autocorrelation function of current
fluctuations, see Eq39), and (b) the corresponding power spec-
trum for the studied model of locust BK channel. The amplitude of
current fluctuations is taken to be 10 pA. The broken lingan
corresponds to the long-time asymptotic, EtD0), being in agree-
ment with the numerical resufull line) in long-time limit.

Markovian stochastic resonance is very distinct from its Mar- (7)S[ 1 Tn(5)]
kovian counterpart, compare Fig(a with Fig. 3(b). C(g)= 2>~ 71>

= , (98)
(12)8+ 1= (9)

B. SR in ion channels with fractal kinetics where 7(s) is given by Eq.(93) with (7)=(7;). The

Our second example pertains to the non-Markovian SR if-@place transform ok(t) can in the limits—0 be approxi-
an asymmetric system. An especially interesting cas&hated as
emerges when one of the RTDs is exponential, while the one (1
presents a power law with a giafdivergen} dispersion. K(s)— YT 7)<Tl><7'2>[<7_1>s]y*1_ (99)
Interestingly enough, such a case apparently is realized in (t1)+(72)
nature for the gating dynamics of the locust BK charj2&l. . )
Indeed, this and some other ion channels exhibit a fractdr’om Ed.(99) the long-time {— ) behavior of the autocor-
gating kinetics together with the f/ noise power spectrum re!atlon function follows immediately by virtue of a Taub-
of fluctuationg 21,23,24,48 In the context of gating dynam- ©fian theoreni30], namely,
ics, x(t) corresponds to the conductance fluctuations and the
forcing f(t) is proportional to the time-varying transmem- k( T)Hpgt
brane voltage. For a locust BK channel the measured unper-
turbed closed time statisties, (7) can be approximated by a
Pareto law(8) with y~0.24 and(r,)=0.84 ms[21]. The  wherep3'is the channel’s stationary opening probability. The
open time RTD assumes an exponential form w{t3) result in Eq.(100 describes a power law decay with an
=0.79 ms[21]. exponenty=0.24. In Fig. 4a), this analytical result is com-

Unfortunately, neither the voltage, nor the temperature depared with the numerical inversion &fs) with G(s) in Eq.
pendence of the mean residence times are experimentalfgg), obtained due to the Stehfest algorith48]. This figure
available. For this reason, we employ here the commoRrhows that the long-time asymptotical behaviork¢f) in-
Arrhenius dependence in E@5) with some characteristic deed obeys the power law {00) for 7>10 sec. However,
parameters, namely, because the temperature dependence@fsmallerr< 10 sec some kind of transient behavior occurs
open-to-closed transitions is typically strofif, we assume  which cannot be characterized by a simple power law. Nev-
a high activation barrier, i.e., AU,=100 kJ/mol  ertheless, the slow decay of correlations is clearly nonexpo-
(~40KkgT,0om)- The closed-to-open transitions are assumeential.
to be weakly temperature dependent witb/; =10 k/mol. For w>( 7,5 ~* the power spectrum of fluctuations is ex-
Becausg(7y)~(7,) at room temperatur& oo, the differ-  pected to approach a Lorentzian te(w)~w 2. Indeed,
ence betweeU; and AU, is compensated by an entropy this behavior starts in Fig.(8) for »>500 sec®. The non-

differenceAS~ —36kg . The physical reasoning is that the trivial frequency dependence emerges for the sufficiently
closed time statistics exhibits a power law, i.e., the confor-sma||w<<7-12>—l_ In this case we obtain from E¢99)

mations in the closed state form a self-similar hierarchy and

T -
” n>) ’ (100

are largely degenerafd6]. This in turn implies a larger en- (11)¥(1,)?
tropy as compared to the open state. S(w—0)~2(Ax)? 3
The normalized autocorrelation functiok(t) and the () +(72))
power spectrumSy(w) of the current fluctuations are of
prime interest. In the considered case, the auxiliary function XT(1— y)sin('n')//Z);. (101
(34) simplifies to [WT)w]t”
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FIG. 5. (a) The spectral power amplification(2), Eq.(89), (in
arbitrary unit$ vs temperaturéin °C) for the BK ion channel gat-
ing scenarig'see text and(b) its comparison with a corresponding
Markov modeling.

Thus, for y=0.24 we haveS(w—0)x1/w® with a=1—1y ) ) _ ) _ )

—0.76. This typical 1/ noise behavior is depicted in Fig. FIG. 6. The signal-to-noise ratidigy in arbitrary unitg vs tem-
4(b). We should remark, however, that the experimig@] peraturg(in °C) for the studied model of Stochastic Resonance in a
give's a slightly different’value Otfl;].. The reasons of this Iocu_st BK channel. The upper curve depi_cts the Ma_rkovian limit
discrepancy are presently not clear. One possibility is that th@ttained for large angular driving frequencies of the signal.

durations of the subsequent open and closed time intervals . o .
are yet mutually correlated, contrary to the assumptiond€ms. The theory is based on time-inhomogeneous integral

made in the present model. If this is the case indeed, thEEneéwal equations governing the evolution of conditional
studied model should be generalized further to account foprobabilities in the presence of driving signal. These equa-
such correlations. tions for driven renewal processes generalize earlier result by
The spectral power amplification vs the temperature iSCOx[13] and otherd 18] for stationary renewal processes to
depicted for various angular driving frequencies in Fig)5 include the signal influence on the residence time distribu-
The panel in Fig. &) corresponds to an overall Markovian tions. Based on these equations we presented a general out-
modeling with an exponentiaf;(7) possessing the same line of the theory of the linear and the asymptotic nonlinear
mean residence timér;). We observe a series of striking response to the sinusoidal signal. In particular, we obtained a
non-Markovian features in Fig. 5i) A characteristic SR general expression for the linear response funchgm),
maximum occurs in the physiological range of varying tem-gq_(81), which can be used for a variety of applications. The
peratures. This maximum is caused by entropic effects Wh'C@xpression in Eq(81) presents a major result of this paper.
have not been addressed before in the theory of stochastig, note, however, that the explicit use of E§1) requires
resonance. Because of the fact that the free-energyebls 0 g specify explicitly the way in which the periodic signal

IS temperature dependen;, due to a Iarge entropic asymmetpy, jates the asymptotic, nonequilibrium residence time
between states, stochastic resonance in the spectral ampli .

. . . -+ distributions. For a class of nonequilibrium fractal distribu-
cation occurs in a temperature regime where the populat|orﬁ;

of both states become approximately equ4lT)~0. Note ons where the signal enters the RDTs through a single fre-

that this effect occurs also in the Markovian case, cf. Figs_quency parameter having the meaning of the inverse mean

5(a) and Jb). Therefore, it is not caused by non-Markovian fesidence time, it has been shown that &q) reduces to the
effects. (i) Due to an intrinsic asymmetry thiengulay fre- result(61) of the phenomenological theory of linear response

quency dependence of the spectral amplificai¢f,T) for ~ developed previously in Ref28]. Moreover, if the mean
the Markov modeling is rather weak for small frequenciesresidence times obey the thermal detailed balance condition

Q<(7, "1 [2]. In contrast, the non-Markovian SR exhibits (62), the expressiori61) reduces further to Eq64) which

a distinct low-frequency dependence, thereby frequency recan be obtained independently from the classical fluctuation-
solving the three overlapping lines in Fig®. This feature dissipation theoren63) by use of the expression in EG2)
constitutes an authentic non-Markovian effe¢ii) The  for the autocorrelation function of the considered non-
evaluation of the SNR yields—in clear contrast to theMarkovian stochastic process. Even though the microscopic
frequency-independent Markov modeling—a profound, very(or mesoscopicdetails of the thermal equilibrium dynamics
strong non-Markovian SR frequeneyppressiorof SNR to-  leading to the observed two-state non-Markovian fluctua-
wards smaller frequencies: The SNR maximum for the togtions are generally not known, the linear response function is
line in Fig. §a) is suppressed by two orders of magnitude asdetermined uniquely by the characteristic functions of the

compared to the Markov case, cf. Fig. 6. As a consequenCgagigence time distributiong; As) via Egs.(64) and (34).
for a strong non-Markovian situation it is preferable to US€or such equilibrium non-Markovian fluctuations, the knowl-
low-to-moderate frequency inputs in order to monitor NON"eqge of the equilibrium RTDs allows one to détermine the
Markovian stochastic resonance with SNR. linear response of the considered physical system to weak
signals. This is the essence of the phenomenological theory
of non-Markovian stochastic resonance put forward in Ref.
In the present work we have put forward a general theory28]. For such equilibrium systems, the general expressions
of stochastic resonance for two state non-Markovian sysfor the spectral power amplification, E¢B9), and for the

Temperature, [°C]

VI. SUMMARY AND CONCLUSIONS
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signal-to-noise ratidSNR), Eq. (91), are available. We ap- case does not occur. This can be attributed to the fact that
plied these general expressions to study the main features ohe of the RDTs in the considered case is strictly exponential
stochastic resonance in several non-Markovian systems esimilar to the Markovian caséii) For asymmetric Markov-
hibiting long-range temporal correlations along withf“l/ ian systems the SPA measure ceases to be frequency depen-
power spectra of fluctuations. dent for small adiabatic frequencies. The non-Markovian ef-

In particular, for a symmetric non-Markovian system with fects, however, introduce at low driving frequencies a
a power law distributed residence time intervals the occurdistinct dependence, both for the SPA and the SNR. This
rence of stochastic resonance has been demonstrated to coliaiter phenomenon can be used to detect and establish a
ply with a stochastic frequency synchronization similar tostrong non-Markovian behavior in practice.
the Markovian casg2]. However, both the SPA measure and  Our non-Markovian theory of stochastic resonance pos-
the SNR measure become strongly suppressed due to stroagsses a whole range of applications and we hope that it will
non-Markovian effects. The most striking feature of the non-be used by the practitioners in their further research work on
Markovian SR is a distinct frequency dependence of thestochastic resonance. Especially, we hope that our theory will
SNR measure. In particular, the SNR becomes immenselguide experimentalists to find the proper and more interest-
suppressed for low frequency signals. Thus, the use of signg parameter regimes and to reveal the stochastic resonance
nals with an intermediate frequency range matching theeffect on the level of single biomolecules.
mean time of the stochastic escapes between states yields
most distinct non-Markovian SR feature.

For asymmetric non-Markovian fluctuations pertinent to
fractal gating dynamics of the locust BK ion channel several This work has been supported by the Deutsche Fors-
interesting features have been reveal@dl. The expected chungsgemeinschaft within SFB 486 “Manipulation of mat-
diminution of the SPA measure relative to the Markovianter on the nanoscale,” Project No. A10.
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