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The full set of dynamic parameters and kinetic functions ( TCF, short MF’s, statistical spectra of
non-Markovity parameter and statistical spectra of non-stationarity parameter) presented in previous
paper has made it possible to acquire the in-depth information about discreteness, non-Markov effects,
long-range memory and non-stationarity of the underlying processes. The developed theory is applied
to analyze the long-time (Holter) series of RR intervals of human ECG’s and seismograms of different
states of the Earth crust. In both systems we observed effects of fractality, standard and restricted
self-organized criticality and also a certain specific arrangement of spectral lines. The received results
demonstrate that the power spectra of all orders (n = 1, 2...) MF mn(t) exhibit the neatly expressed
fractal features. We have found out that the full sets of non-Markov, discrete and non-stationary
parameters can serve as reliable and powerful means of diagnostics of the cardio - vascular system
states and can be used to distinct healthy data from pathologic data . Also our research demonstrates
that discrete non-Markov stochastic processes and long- range memory effects play a crucial role in
the behavior of seismic systems. The approaches, permitting to obtain an algorithm of strong EQ’s
forecasting and to differentiate TE’s from weak EQ’s, have been developed.
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1 Introduction

From in-depth analysis of complex systems dy-
namics it becomes apparent, that the fundamen-
tal methods of statistical physics based on Hamil-
ton formalism and exact equations of motion are
inapplicable directly for its quantitative descrip-
tion. On the other hand, a discretization of events
and long-time event-event correlations are very
relevant in similar dynamics. Recently, the non-
Markov theory of discrete stochastic processes
was developed in paper [1]. The approach ad-
vanced in [1] made feasible calculations of wide
set of non-Markov characteristics of an arbitrary

complex system from experimental data.
Used data analysis techniques can be divided

into time and frequency domain ones. In the time
domain we have calculated the following stan-
dard functions: phase portrait in plain projec-
tions of multidimensional space of the dynamic
orthogonal variables, time correlation function on
the whole observed time domain and the set of
three junior memory and non-stationarity func-
tions. Also we have determined the following
power spectra (PS): of initial TCF’s, first, sec-
ond and third short MF, PS of the first, second
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and third points of statistical spectrum of non-
Markovity parameter and PS of the first four non-
stationarity parameter.

2 EEG data analysis

Since the time of [2] - [7] heart rate variability
(HRV) serves as one of the most reliable and au-
thentic methods of testing the state of a human
heart in norm and at pathology [8]. In partic-
ular, the analysis HRV has promoted the estab-
lishment of reliable connections between the func-
tionating of a vegetative nervous system and a
sudden heart death (SHD) [5] - [12]. In present
time there are many diverse approaches by the-
oretical physics to the problems of HRV descrip-
tion. The following things should be mentioned:
the fractal approach based on scaling of a fre-
quency spectrum on power law 1/ωα [13] - [15],
the calculation of correlation dimension [16] , the
simulation by non-linear oscillators [16], [17], the
calculation of the Kolmogorov entropy [16], usual
[18] and dynamic [19] Shannon entropy, the use of
dynamics of lattice spins as a model of arrhyth-
mia [20], Fano-factor and Allan-factor [14], the
wavelet analysis [21] and the detrended fluctua-
tion analysis [6]. The following methods are also
employed here: the multifractal analysis [23], the
multiscaled randomness [24], Markov formaliza-
tion of dynamics [25] and the terminal dynamics
model of heartbeat [26]. In recent paper M.Teich
et al. [27] demonstrated the manner in which var-
ious measures of fluctuations of sequence of inter-
beat intervals could be used to assess the presence
or likelihood of cardiovascular disease.

In this preliminary study, we have included a
sample of patients subdivided into two groups.
The first group consists of 30 healthy persons.
In the second group there are 14 patients after
myocardial infarction (MI) with weak electrical
risk (arrhythmias of low degree).

Dynamic ECG recording has been done on
three channels. The bipolar orthogonal channel
X is channel N1,Y is channel N2 and Z is chan-
nel N3. Our analysis is executed on the chan-
nel N1. The RR recordings were drawn from the
Division of Cardiac Surgery of 6th Kazan city
Hospital (Kazan, Tatarstan) congestive heart-
failure database comprising 30 records from nor-
mal patients (age:18-31 years; mean 22 year)
and 14 records from severe congestive heart dis-
ease patients (age:32-67years, mean 55 years).The
recording, which form a standard database for
evaluating the merits of various measures for
identification of heart disease, were made with
a standard Holter Monitor (Astrocard Holter
system-2F), digitized at a fixed value of 250 Hz.
We use the long time series to 216 = 65536 beats
to eliminate spurious effects due to variations in
data to nonsinus beats associated with artifacts

In Figs. 1 the phase clouds are submitted for
healthy (Kshf., Figs. 1 a-c) and patient after
MI(Sibg., Figs. 1 d- f) in three plane projections
(W0,W1), (W0,W3) and (W1,W2) of four first or-
thogonal dynamic variables Wi, i = 0, 1, 2, 3. In
phase portraits of the healthy (Figs. 1 a-c) in
a plane (Wi,Wj) is some asymmetry of a phase
cloud along a variable W0. But projection of a
phase cloud in planes(Wi,Wj) with i, j = 1, 2, 3
are characterized by symmetrical distribution of
a phase cloud. In the case of (Figs.1 d-f) patients
after MI some features rush sharply in eyes. The
basic feature is a fingerlike scattering of a phase
cloud in planes (W0,W1) and (W0,W3) with num-
bers. This scattering is so specific, that its oc-
currence is exclusively characteristic as indica-
tor of MI. The next feature is octopus-like distri-
bution of phase clouds in three plane (W1,W2)
(see,Fig.1f).

In Figs. 2 a, b the power spectra of TCF
a(t) = m0(t) (Fig. 1a), first (Fig. 1b) MF of
dynamics of RR-intervals of the ECG for healthy
(Kshf., y) are signify. Fractal nature is exhibited
for spectra of all memory function (zero (TCF)
and first, second and third orders). There ap-

Nonlinear Phenomena in Complex Systems Vol. 6, No. 3, 2003



R. Yulmetyev et al.: Non-Stationary Time Correlation in Discrete Complex Systems . . . 793

FIG. 1. Phase portrait of RR-intervals dynamics from human ECG’s in a plain of two various orthogonal variables
(Wi,Wj) for healthy (Kshf), a, b, c and for patient Sibg. on 20th day after MI, d, e, f.

pears a frequency dependence such as µi(ω) ∼
ω−α, i = 0, 2. Fractal behavior exists in the full
frequency range only for initial TCF (see, Fig.
2a). Power spectra of first three junior MF’s
mui(ω), i = 1, 2, 3 depict the non-fractal behav-
ior in frequency domain 10−2 < ω < 0, 5 f.u.,
where set of peaks is coupled with fast alteration
of the three first orthogonal variables W1, W2

and W3, which describe a human cardiovascular
system (CVS) state.

Thus, in contrast to the commonly established
point [8], [17], [21] the surprising occasion of
group of high frequency peaks in a spectrum of
the healthy for a function µ1 can provide evidence
to a latent pathology in human CVS activity.

Let go again to fractal behavior in Fig. 2a
and 2b. Self-similar behavior of spectra µi(ω) for
healthy is accompanied with set of effects. Effects

of a respiratory arrhythmia (RA) are noticeable
in both Figs. 2a and 2b. In the spectrum of initial
TCF (Fig. 2a) the influence of RA can be seen on
frequency 0,11 f.u. in the form of weak spectral
splash. The fractal behavior of all spectra is asso-
ciated also with the phenomenon of self-organized
criticality (SOC) [42]. Nevertheless, the length of
the linear segment in Figs. 2a and 2b is different.
For example, for initial TCF (see, Fig. 2a) it ex-
tends from 0,5 f.u. up to 5× 10−4 f.u., and SOC
is characteristic for all registered frequency area.
Vice-versa, SOC in the short MF’s (see, Figs. 1b)
is watched only in restricted frequency area from
10−2 f.u. up to frequency 5×10−4 f.u. As a result
the restricted self-organized criticality (RSOC) is
significant in the spectra of all short MF’s.

The power spectra for patients after MI visibly
differ a little from a case for healthy. Fractality

Nonlinear Phenomena in Complex Systems Vol. 6, No. 3, 2003



794 R. Yulmetyev et al.: Non-Stationary Time Correlation in Discrete Complex Systems . . .

and SOC are manifested themselves in this case
also, but contain already especially limited char-
acter. SOC is seen lying on the linear region for
initial TCF (see, Fig. 2d) in a frequency inter-
val from 0,4 f.u. up to frequency 0, 9× 10−4 f.u.,
for all short MF’s (Fig. 2e) in frequency interval
from 2 × 10−2 f.u. < ω < 6 × 10−5 f.u. Frac-
tality in behavior of all spectra is characterized
by sharp rupture of a linear region. For short
MF’s the power spectra (Fig. 2e) are accompa-
nied with packets of spectral lines in analogous
high-frequency region: from 2 × 10−2 f.u. up to
0,5 f.u.

FIG. 2. Power spectra µi(ω), i = 0, 1 and of the first
point of non-Markovity parameter ε1(ω) for healthy
(Kshf.,) (a, b, c) and patient (Sibg.,) after MI (d, e, f)
from time dynamics of RR-intervals of human ECG’s.

Behavior of spectra of the first point ε1(ω) of
a statistical spectrum of NMP for the healthy
(Fig. 2c) and patient after MI (Figs. 1f) ap-
pears as more dramatic. Behavior of first non-
Markovity parameter ε1(ω) (see Fig. 1c) for
healthy is representative for quasi-Markov relax-
ation scenario. Behavior of ε1(ω) for patient af-
ter MI in whole frequency region (see, Fig. 1f)
most closely corresponds to non-Markov relax-
ation scenario. Dramatic change of ε1(0) value
from healthy (ε1(0) ∼ 71, 6) to patient after MI
(ε1(0) ∼ 11, 0) (almost 6,5 times!) is valuable
for pathologic data sets based in difference of
these non-Markov properties. Close inspection of

these data shows that dynamics of RR intervals
is non-Markovian specially for second and third
relaxation levels for healthy and patient after MI.
Careful analysis of Figs. 1c and 1f reveals a less
prominent non-Markov behavior for patient after
MI rather than for healthy. CVS of healthy rep-
resents the system that is more chaotic whereas
CVS of patient after MI show evidence of more
ordered system. Therefore, breaking of chaos and
order forming is reliable predictor for myocardial
infarction.

3 Seismology data analysis

Earthquakes (EQ’s) are among the most dramatic
phenomena in nature. We propose here a dis-
crete stochastic model for possible solution of a
problem of strong EQ’s forecasting and differ-
entiation of technogenic explosions (TE’s) from
the weak EQ’s. For the study of basic mech-
anisms underlying its nature modern numerical
and statistical methods are used now in mod-
elling and understanding of the EQ phenomenon.
In papers [28],[29] the modified renormalization
group theory with complex critical exponents has
been studied for implications of EQ’s predictions.
Long-periodic corrections found fit well the ex-
perimental data. Then universal long-periodic
corrections based on the modified renormaliza-
tion group theory have been used successfully
[30] for possible predictions of the failure stress
phenomenon foregoing an EQ. The failure stress
data are in good reliability with acoustic emis-
sion measurements. In paper [31] it has been
shown that the log-periodic corrections are of gen-
eral nature, they are related to the discrete scale
invariance and complex fractal dimension. This
idea has been checked in [32], [33] for diffusion-
limited-aggregate clusters. The paradox of the
expected time until the next EQ with an attempt
of finding of acceptable distribution is discussed
in [34]. New explanation of Guttenberg-Richter
power law related to the roughness of the frac-
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tured solid surfaces has been outlined in [35]. Re-
cent achievements and progress in understanding
of complex EQ phenomena from different points
of view are discussed in recent review [36]. New
numerical methods like wavelets and multi-scale
singular-spectrum analysis in treatment of seis-
mic data are considered in [37].

We will apply the discrete non-Markov proce-
dure for the analysis of real seismic data. The
basic problems, which we are trying to solve in
this analysis, are the following. The first problem
relates to possibility of seismic activity descrip-
tion by statistical parameters and functions of
non-Markov nature. The second problem relates
to distinctive parameters and functions for differ-
entiation of weak EQ’s (with small magnitudes)
from TE’s. The third problem is the most impor-
tant one and relates to strong EQ’s forecasting.
With this aim in mind we analyzed three parts of
real seismogram: before the event (EQ and TE),
during the event and after the event. A typi-
cal seismogram contains 4000 registered points.
The complete analysis includes the following in-
formation: phase portraits of junior dynamical
variables, power spectra of four junior memory
functions and three first points of statistical spec-
trum of non-Markovity parameter. We took into
account also the values of numerical parameters
characterizing seismic activity. To analyze time
functions we used also the power spectra obtained
by the fast Fourier transform. The complete anal-
ysis exhibits great variety of data.

We used 4 types of available experimental data
courteously given by Laboratory of Geophysics
and Seismology (Amman, Jordan) for the follow-
ing seismic phenomena: strong EQ in Turkey (I)
(summer 1999), a weak local EQ in Jordan (II)
(summer 1998). As TE we had the local under-
ground explosion (III). The case (IV) corresponds
to the calm state of the Earth before the explo-
sion. All data correspond to transverse seismic
displacements. The real temporal step of digiti-
zation τ between registered points of seismic ac-
tivity has the following values, viz., τ = 0, 02s for

the case I, and τ = 0, 01s for the cases II-IV.
Figs. 3 demonstrates the power spectra of the

first three points of the statistical spectrum of
non-Markovity parameter for calm state of the
Earth (a, b, c), and the states before (d, e, f)
and during (g, h, i) strong EQ. The frequency
behavior of three points of non-Markov parame-
ters ε1(ω), ε2(ω) and ε3(ω) appeared to be prac-
tically the same. The behavior of functions εi(ω)
exhibits typical non-Markov character with small
oscillations of random nature at LFR. The spec-
tral characteristics of the system IV are very use-
ful in comparison to the results obtained for the
system I (before strong EQ).

One can make the following conclusions from
Figs. 3 d, e, f. On the first level of relaxation pro-
cess (see, Fig. 3d) the strained state of the Earth
crust before EQ can be associated with Markov
and quasi-Markov behavior in ULFR and LFR,
correspondingly. The influence of non-Markov ef-
fects is reinforced in MFR with 5·10−2f.u. < ω <

10−1f.u.,(1f.u. = 2π/τ). Strong non- Markovity
of the processes considered for ε1(ω) takes place
in HFR with 10−1f.u. < ω < 0.5f.u.. Simultane-
ously we have the numerical values ε2(ω), ε3(ω) ∼
1 in the whole frequency region(see, Figs. 3 e, f).
However, this behavior implies that strong non-
Markovity effects are observed in these cases.

The similar picture becomes unrecognizable for
seismic state during the strong EQ (see, Figs. 3
g, h, i). Firstly, it is immediately obvious that
ε1(ω) ∼ 1 on first relaxation level.

Secondly, the second and third relaxation levels
are non-Markovian (see, Figs. 3 h, i). Thus, the
behavior of seismic signals during the strong EQ
is characterized by strong non-Markovity on the
whole frequency region. Our observation shows
that zero point values of non-Markovity param-
eters for calm Earth state are equal εIV

1 (0) :
εIV
2 (0) : εIV

3 (0) ≈ 4.99 : 0.947 : 0.861. These
values are convenient for the comparison with
similar values for the Earth seismic state before
the strong EQ: εI

1(0) : εI
2(0) : εI

3(0) ≈ 214.3 :
0.624 : 0.727. The change of ratio of two first
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FIG. 3. Frequency spectra of the first three points
of non-Markovity ε1, ε2, ε3: (a,b,c)- for calm state
of the Earth before explosion(IV), (d,e,f)- before the
strong EQ, (g,h,i)- during strong EQ. In behavior
of ε2(ω) and ε3(ω) one can see a transition from
quasi-Markovity (at low frequencies) to strong non-
Markovity (at high frequencies).

non-Markovity parameters ε1(0)/ε2(0) is partic-
ularly striking . This ratio is equal to 5.27 for
the calm Earth state, then it comes into partic-
ular prominence for the state before strong EQ:
εI
1(0)/εI

2(0) ≈ 343.4. Thus, this ratio changes ap-
proximately in 60 times! Hence, the behavior of
this numerical parameter is operable as a reliable
diagnostic tool for strong EQ prediction. The
foregoing proves that the indicated value drasti-
cally increases in process of nearing to strong EQ.

Figs. 4 depicts power spectra of MF M0, M1

and of the first two points of non-Markovity pa-
rameter εi(ω), i = 1, 2. for seismic states II and
III. The preliminary results suggest that there
is remarkable difference between weak EQ’s and
TE’s especially in the area of low frequencies.

It is necessary to remark some peculiarities in
power spectra of µi(ω), i = 0, 1 (see, Figs.4 a,b
and e,f) for the cases II and III. All these spectra
have distinctive similarities for memory functions
Mi(t) with i = 0, 1, 2 and 3. The character and
the form of the spectra considered for the cases
II and III are very similar to each other.

The same similarity is observed for the three
non-Markovity parameters εi(ω), i = 1, 2 (see,
Figs. 4 c,d and g,h). Nevertheless the analysis of
the power frequency spectra allows to extract dis-
tinctive specific features between weak EQ’s and
TE’s. Such quantitative criteria can be associ-
ated with frequency spectra of memory functions
µi(ω) characterizing long-range memory effects in
seismic activity. This new criterion allows to dis-
tinguish definitely a weak EQ from a TE, viz., to
differentiate case II from case III.

FIG. 4. The power spectra for two first memory func-
tions µ0, µ1 and first two points in statistical spec-
trum of non-Markovity parameters ε1, ε2, ε3: (a,b,c,d)
-during weak EQ, (e,f,g,h)- during technogenic explo-
sion. A noticeable difference for states II and III ex-
ists in behavior ε1(ω) in point ω = 0. Due to this fact,
one can develop reliable approach to differentiation
between weak EQ’s and underground TE’s.

Close examination of Figs. 4 c,d and g,h shows
that this distinction appears in frequency behav-
ior of the first point of non-Markovity parameter
ε1(ω) close to zero point ω = 0. Specifically, the
ratio of values ε1(0) for weak EQ and TE equals
εII
1 (0)/εIII

1 (0) = 0.92/0.57 = 1.61.
Seismic data are an object of careful analy-

sis and numerous methods of their treatment are
used especially for forecasting of EQ’s with strong
magnitudes. In spite of wide application of ap-
proaches based on nonlinear dynamics methods,
the Fourier and wavelet transformations etc., we
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have essential limitations, which narrows down
the range of applicability of the results obtained.
One of the main difficulty is that the discrete
character of seismic signals registration is not
taken into account. Another factor, which should
be taken into account is related to the influence of
local time effects. Alongside with of discreteness
and local behavior of seismic signals considered
here there exists the third peculiarity, viz., the
influence of long-range memory effects. Theoreti-
cal analysis is performed by use of statistical the-
ory of discrete non-Markov stochastic processes.
The following Earth states have been considered
among them: before (Ib) and during (I) strong
EQ, during weak EQ (II) and during TE (III),
and in a calm state of Earth core (IV). By the
discrete non-Markov stochastic processes and the
local Hurst exponent analysis we have found ex-
plicitly some features of several different states of
the Earth crust: states of the Earth before and
during strong and weak EQ’s, during TE’s. The
used methods allow to present the seismogram
analyzed in the form of set non-Markov variables
and parameters. They contain great amount of
qualitative and quantitative information about
seismic activity.

The dynamic information is contained in time
recordings of new orthogonal dynamic variables,
different plane projections of multidimensional
phase portrait. The information on the kinetic,
spectral and statistical properties of the system is
expressed through time dependence of the initial
TCF, memory functions of junior orders, their
power and frequency spectra of the first three
points of statistical spectrum of non-Markovity
parameter.

The main advantage of our two new methods
is a great amount of supplementary information
about properties of seismic signals. The problem
is its correct application. What kind of possibil-
ities can one expect? It is possible to answer as
follows. Firstly, our preliminary study, convinc-
ingly demonstrates that the relevant and valuable
information on non-Markov and discrete proper-

ties of the system considered is contained in seis-
mic signals. In all the studied systems (I- IV) we
have found out unique manifestations of Markov,
quasi-Markov and non-Markov processes on the
particular behavior of the signals in a broad range
of frequencies.

The similar results cannot be obtained, in prin-
ciple, by other methods used in the analysis of
seismic activity.

4 Conclusion

In non-linear non-Markov characteristics some of
well-known spectral effects are evident. Among
them the following effects are exhibited notice-
ably: fractal spectra with an exponential func-
tion ω−α, which are connected to the phe-
nomenon of usual (SOC) and restricted (RSOC)
self-organized criticality, behavior of some fre-
quency spectra in the form of white and color
noises. Thirdly, the frequency spectra introduced
above are characterized by particular alterna-
tion of Markov (fractal) and non-Markov spec-
tra (such as color or white noises). The similar
alternation resembles in particular the peculiar
alternation of effects of Markov and non-Markov
behavior for hydrodynamic systems in statistical
physics of condensed matter detected in papers
[17], [18] for the first time. The fine specifica-
tion of such alternation appears essentially differ-
ent for studied states I-IV. These features allow
to view optimistically for new HRV investigation
methods development, the solution of the prob-
lem of forecasting of strong EQ’s and differentia-
tion TE’s from weak EQ’s.
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