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Subthreshold stochastic resonance: Rectangular signals can cause anomalous large gains
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The main objective of this work is to explore aspects of stochastic resorn@&®Rein noisy bistable,
symmetric systems driven by subthreshold periodic rectangular external signals possésgjegiaty cycle
of unity. Using a precise numerical solution of the Langevin equation, we carry out a detailed analysis of the
behavior of the first two cumulant averages, the correlation function, and its coherent and incoherent parts. We
also depict the nonmonotonic behavior versus the noise strength of several SR quantifiers such as the average
output amplitude, i.e., the spectral amplification, the signal-to-noise ratio, and the SR gain. In particular, we
find that with subthresholdamplitudes and for an appropriate duration of the pulses of the driving force, the
phenomenon of stochastic resonance is accompanied by SR gains exceeding unity. This analysis thus sheds
light on the interplay between nonlinearity and the nonlinear response, which in turn yields nontrivial unex-
pected SR gains above unity.
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I. INTRODUCTION be larger than 1, as has been demonstrat¢@ihfor super-
threshold sinusoidal input signals, and in analog experiments
Most studies on the phenomenon of stochastic resonanée [22,23 for subthreshold input signals with many Fourier
(SR in dynamical systems have been devoted to systemsomponents and a small duty cy¢R0].
driven by sinusoidal terméee[1-5] for reviews. Several In this work, we will make use of numerical solutions of
analytical approximations have been put forward to explairthe Langevin equation following the methodology[20] to
SR. In the approach of McNamara and Wiesenf&{l the  analyze SR in noisy bistable systems, driven by a periodic
Langevin dynamics is replaced by a reduced two-state modgliecewise constant signal with two amplitude values of op-
that neglects the intrawell dynamics. The general ideas ofosite signgrectangular signal(see Fig. L There are sev-
linear response theory.RT) have been applied to situations era| relevant time scales in the dynamics of these systéms:
where the input amplitude is smd@,7-13. In [11,13 the ¢, the time interval within each half period of the driving
Floquet theory has been applied to the correspondingprce, during which the diffusing particle sees an asymmetric
Fokker-Planck description. For very low input frequencies,constant two-well potentialji) tie,, the time scale associ-
an adiabatic ansatz has been invokkgl. Even though these  ated with the interwell transitions in both directions; fid
alternative analytical approaches provide an explanation of = the time scale associated with intrawell dynamics. The
SR for different regions of parameter values, their precisgnterwell and intrawell time scales depend basically on the
limits of validity remain to be determined. In recent work pgise strengttD and the amplitude of the driving term. The
[14,15, we explored the validity of LRT for sinusoidal and gependence of these two time scales on those parameters is
multifrequency input signals with low frequency. Our reSU“Scertainly very different, being more pronounced fgye, .
indicate a breakdown of the LRT description of the averagerypically, for the range of parameter values associated with
behavior for low frequency, subthreshold amplitude inputs. SR the intrawell time scale is shorter than the interwell one.

Several quantifiers have been used to characterize SR iy small values oD, Kramers’ formula provides an esti-
noisy, continuous systems. The average output amplitude, or

the spectral amplificatioSPA), has been studied in Refs.

[11,13 and the phase of the output average in Rgf§—18§, Ft)

respectively. Those parameters as well as the signal-to-noise

ratio (SNR) [6], exhibit a nonmonotonic behavior with the AL

noise strength which is representative of SR. An important T2 T

guantity is the SR gain, defined as the ratio of the SNR of the T

output over the input SNR. It has been repeatedly pointed out
that the SR gain cannot exceed unity as long as the system
operates in a regime described by LRB,20. Beyond LRT

there exists no physical reason that prevents the SR gain to

-A

FIG. 1. Sketch of a rectangular periodic signal with duty cycle
*Electronic address: jcasado@us.es; http://numerix.us.es 1, amplitudeA, and periodT.
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mate fort;.-. [24], while t; .. is basically of the order of 2 (T

the curvatures at the bottom of the wells. fo=1 fo dtF(t) cos(nQt),
We will evaluate the long-time average behavior of the

output and the second cumulant. These two quantities were 2 (T

studied some time ago by two of [25] for periodic rectan- gnsz dtF(t) sin(nQt). (5)

gular driving signals. Here, we will further extend our work 0

to the analySiS of the correlation function and its COherenHere, we are assuming that the Cyc|e average of the external

and incoherent parts. The knowledge of all these quantitiegriving over its period equals zero. In this work, we will

provides very useful information for the explanation of SR,focus our attention on multifrequency input forces with

as indicated by the nonmonotonic behavior with the noiserectangular” shape given by

strength of the output amplitude and the SNR. In particular,

the knowledge of the incoherent part of the correlation func- F(t)= { A, O<t<T/2

tion is of outmost importance for a correct determination of —A, T2<t<T,

the SNR. Furthermore, for a given subthreshold amplitude, - ,
we will demonstrate that, if there exists a range of noise®S sketched in Fig. 1. The external force remains constant at

values such thatfe, is shorter tha g, ., then it is possible a valueA during each half period and changes sign for the

to observe stochastic amplification and, simultaneously, S%econd half of the period. The duty cycle of a signal can be

gains larger than unity. This is strictly forbidden by linear dg;:ﬂﬁ%r‘]nuasgg%e%?;;? le[lzr;tg:lﬂs \_/rvr?lrjlé vl;/e ‘\‘/éllljltfoélo‘\:/}/et,he
response theory, as we have recently sh¢28j. Thus, the y  ema » BY y ey

ol f hast lificati 4s e mean the ratio of the time span during which the signal is
simultaneous appearance of stochastic amplification an nzero to the total period of the signal. Consequently, the

gains above 1 implies a strong violation of linear responsgectangular signal in Eq6) possesses a duty cycle of unity.
theory. Notice that the duty cycle does not uniquely characterize a
periodic signal.

The two-time correlation functiofx(t+ 7)x(t))., in the
limit t—oo is given by

Let us consider a system characterized by a single degree (X(t+ X))
of freedomx subject to the action of a zero average Gaussian *

white noise with{ &(t) é(s))=2D &(t—s) and driven by an o ®
(Emtsh (=) y f dx’x’Pm(x’,t)f dxx Py (x,t+ 7(x,1),

(6)

Il. MODEL SYSTEM AND SR QUANTIFIERS

external periodic signdF(t) with periodT. In the Langevin =
description, its dynamics is generated by the equation

(7)

X(t)=—U'[x(t)]+F(t)+ &t). (1) whereP.,(x,t) is the time-periodic, asymptotic long-time so-
lution of the FPE and the quantifyy;(x,t+ 7|x’,t) denotes
the two-time conditional probability density that the stochas-
tic variable will have a value nearat timet + 7 if its value

at timet was exactlyx’. It can been show[2,13] that, in the
limit t—o, the two-time correlation function(x(t

The corresponding linear Fokker-Planck equatiBRE) for
the probability densityP(x,t) reads

d R + 7)x(t)).. becomes a periodic function ofwith the period
EP(x,t)=£(t)P(x,t), 2 of the external driving. Then, we define the one-time corre-
lation functionC( ) as the average of the two-time correla-
tion function over a period of the external driving, i.e.,
where
1 (T
C(T):—f dt (X(t+7)X(t))- . (8)
R al J TJo
L(t)= = U (x)—F(t)+D& . (3)

The correlation functiorC(7) can be written exactly as the
sum of two contributions: a coherent p&t,,(7), which is
In the expressions above,’ (x) represents the derivative of periodic in 7 with period T, and an incoherent part which
the potentiall (x). In this work, we will consider a bistable decays to 0 for large values of The coherent pa€ ,(7)
potential U(x) = — x2/2+x*/4. The periodicity of the exter- is given by[2,13]

nal driving F(t) allows its Fourier series expansion in the 1 (T

harmonics of the fundamental frequenQy=2=/T, i.e., Ceon(7)= T fo dt (X(t+ 7))e(X(1))er 9)

” where (x(t)).. is the average value evaluated with the
F(t)= 2 [fncos(nQt)+g,sin(nQt)], (4)  asymptotic form of the probability densif..(x,t).
=t According to McNamara and Wiesenfeld], the output
SNR is defined in terms of the Fourier transform of the co-
with the Fourier coefficient$, andg, given by herent and incoherent parts ©{ 7). As the correlation func-
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tion is even in time and we evaluate its time dependence foalgorithm developed by Greenside and Helfa26,27 (con-

=0, it is convenient to use its Fourier cosine transform,sult also the Appendix in Ref.20]). After allowing for a

defined as relaxation transient stage, we start recording the time evolu-
tion of each random trajectory for many different trajecto-

~ 2 (= ; e
Clw)= ;J' dr C(7) cos(wT), ries. Then we construct the long-time average value,
0

N

1 .
- (x()=g 2, XD(t) (17)
C(r)= f do C(w) cos(w7). (10) =
° and the second cumulant
The value of the output SNR is then obtained from N 2
2 2_1 i | X M

are )~ (x(O)Z= 2, DOV 52 xOm]

m Jo . g0 Tl (19
out™ Cincon(Q) (1D whereN is the number of stochastic trajectories considered.

We also evaluate the two-timé énd ) correlation function,
Note that this definition of the SNR differs by a factor of 2, i.e.,
stemming from the same contribution at=—(, from the LN
definitions used in earlier worki2,13]. The periodicity of _ i i
the coherent part gives rise tfunction peaks in the spec- {x(t+ T)X(t)>m_Nj2]_ xO(t+nx0(), (19
trum. Thus, the only contribution to the numerator in Eqg.
(11) stems from the coherent part of the correlation functionas well as the product of the averages
The evaluation of the SNR requires the knowledge of the LN LN
Fourier components o€.,(7) and Cincon(7) at the funda- _ i i
mental frequency of the driving force. Thus, rather than {X(t+ 7))ol X(1))oo= szl xXD(t+7) N]Z‘l X(])(t)]
knowledge of the entire Fourier spectrum, only two well de- (20)
fined numerical quadratures are needed. These are

The correlation functiorC(7) and its coherent pa@;qn(7)

Qu are then obtained using their definitions in EG®. and (9),

6" (12 performing the cycle average over one period.ofhe dif-
ference between the values@©fr) andC.,(7) allows us to
where obtain the values fo€;,.on(7). It is then straightforward to
evaluate the Fourier component ©f,,(7) and the Fourier

Rout=

2 (T transform ofC;,.on(7) at the driving frequency by numerical
Q“_T J; d7 Ceon(7) cOS(27), (13 guadrature. With that information, the numerator and the de-
nominator for the output SNRef. Egs.(12), (13), and(14)],
and as well as the SR gairtf. Eqg. (16)], are obtained.
Q|=% fo d7 Cincor(7) COS(27). (14) V- RESULTS
A. Response to a rectangular driving force with fundamental
The SNR for an input signdf(t) + £(t) is given by frequency £=0.01
Consider an external driving of the type sketched in Fig. 1
B ( f§+ gi) with parameter value® =0.01, A=0.25. This amplitude is
P~ 4D : (15) well below its threshold value defined, for each driving fre-

quency, as the minimum amplitude that can induce repeated
The SR gainG is consequently defined as the ratio of thetransitions between the minima &f(x) in the absence of

SNR of the output to the SNR of the input, namely, noise. For the input considered here, the threshold amplitude
is A1~0.37. Note that this threshold value for the amplitude
G— Rout (16) increases with increasing driving frequency.
Rinp’ In Fig. 2 we depict with several panels the behavior of the

first two cumulantgx(t)).. and (x3(t))..—(x(t))2 for sev-
Il NUMERICAL SOLUTION eral representative values @ [from top to bottomD
_ =0.02 (a), D=0.04 (b), D=0.06 (c), D=0.1 (d), and D
Stochastic trajectories!)(t) are generated by numeri- =0.2 (e)]. Notice that, due to the transients, the time at
cally integrating the Langevin equatidiq. (1)] for every  which we start recording daté=0 in the graphs, does not
realizationj of the white noise$(t), starting from a given necessarily coincide with the start of an external cycle. The
initial condition xo. The numerical solution is based on the average is periodic with the period of the driving force, while
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FIG. 3. Time behavior ofC.,(7) (left panel$ and C;ncon(7)
(right panel$ for a rectangular driving force with duty cycle 1,
fundamental frequency)2=0.01, and subthreshold amplituce
=0.25 for several values of the noise strendi=0.02 (a), D
=0.04(b), D=0.06(c), D=0.1(d), D=0.2 (e).

FIG. 2. Time behavior of the averag(t)).. (solid lineg and
the second cumularx?(t))..— (x(t))2 (dashed linesfor a rectan-
gular driving force with duty cycle 1, fundamental frequen@y
=0.01, and subthreshold amplitude=0.25 for several values of
the noise strengtiD =0.02 (a), D=0.04(b), D=0.06(c), D=0.1
(d), D=0.2(e). Notice that, due to the transients; 0 in the graphs
does not necessarily coincide with the start of an external cycle. Of the time. Even though a large majority of random trajec-

tories will still jump over the barrier in synchrony with the
the second cumulant, due to the reflection symmetry of théwitching times of the driver, the noise is so large in com-
potential[ 14], is periodic with a period one-half of the period parison with the barrier heights that the probability of cross-
of the forcing term. ings over the barrier in both directions cannot be neglected at

Next we consider the case of small noise intenBitysay,  any time during each half cycle. The probability distribution
D=0.02 as in Fig. &)]. The noise induces jumps between remains bimodal during a whole period, but asymmetric: the
the wells. In each random trajectory, a jump between théarger fraction of the probability accumulates around the cor-
wells has a very short duration, but the instants of time atesponding lower minima of the potential during each cycle.
which they take place for the different stochastic trajectoriest herefore, the average output amplitude decreases, while the
are randomly distributed during a half cycle. At this small second cumulant depicts plateaus at higher values than for
noise strength, the jumps are basically toward the lowessmaller noise strengttigompare in Figs. @) and Ze)].
minimum. Thus, because of this statistical effect, the average In Fig. 3, we plot the cohereriteft panel$ C.,n(7) and
behavior depicts the smooth evolution depicted in Fig),2 incoherentright panel$ Ci,.,n(7) components of the corre-
without sudden transitions between the wells. The evolutiondation functionC(7) for the same parameter values as in Fig.
of the second cumulant adds relevant information. The fac2. The coherent part shows oscillations with a period equal to
that it is rather large during most of a period indicates thathat of the driving force. Its shape changes withThe am-
the probability densityP..(x,t) is basically bimodal during plitude of the coherent part does not grow monotonically
most of the external cycle. It is only during very short time with D. Rather, it maximizes d~0.06, which is consistent
intervals around each half period that the probability distri-with the observed behavior ¢k(t)).. in Fig. 2. This is ex-
bution becomes monomodal around one of the minima, andyected as the evaluation &f.,1(7) involves only the time
consequently, the second cumulant is small. The bimodabehavior of(x(t)).. at two different instants of time.
character arises from the fact that the noise is so small in Two features of the behavior &;,.,n(7) are relevant: its
comparison with the barrier heights that jumps over the barinitial value and its decay time. The initial value of the inco-
rier are rather infrequent during each half period. herent contributionC;,.,n(0), isgiven by the cycle average

As the noise strength increases, the time evolution obfthe second cumulant. It has a nonmonotonic behavior with
(x(t))., follows closely the shape of the external fofe@e D. For D=0.02, Ci,.o1(0) is large, consistent with the fact
Figs. 2b)—2(d)] for 0.04<D<=0.1]. This behavior indicates that the second cumulant at this noise strength is appreciably
that, for these parameter values, the jumps in the differendifferent from O during a substantial part of a period. As the
random trajectories are concentrated within short time intervalue of D increases P=<0.1), the value ofC;,con(0) de-
vals around the instants of time at which the driving forcecreases. This is expected as the second cumulant is large just
switches sign. The second cumulant remains very small duduring those small time intervals where most of the forward
ing most of a period, except for short time intervals aroundtransitions take place every half period. For still larger values
the switching times of the external driver. Thus, for theseof D there are frequent forward and backward jumps that
intermediate values ofD, the probability distribution, keep the stationary probability bimodal, and therefore the
P..(x,t) is basically monomodal, except for small time inter- initial value C;,.,1(0) increases. Fdb =0.02, the decay of
vals around the switching instants of time of the periodicC;,..,(7) is very slow, although the decay time is still
driver. Finally, as the noise strength is further increaded ( shorter than the duration of half a period of the driving force.
>0.1), the probability distribution remains very broad mostAs D increases, the decay time of the incoherent part be-
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FIG. 4. Dependence db of several SR quantifiers: the numera- )
tor of the SNR Q,), its denominator@,), the output SNRR,,,), FIG. 5. Same as Fig. 2 but f@=0.1.
and the SR gain@) for a rectangular driving force with duty cycle

. Taking into account the definition of the SNRf. Eq.
1, fi | fi =0.01 hreshol I . . . . . .
=,Of12n5cfamenta requencit =0.01, and subthreshold amplitude (12)], its behavior withD is not surprising. The numerically

obtained SNR peaks &=0.08, a slightly different value of
comes shorter. It is worth pointing out that the intrawell D from the one at whiclQ), peaks.
noisy dynamics manifests itself in the behavioiGf.on( 7).
This is most Clee'lrly ponfirmed by noticing the fast ihitia| B. Anomalous SR gain behavior for subthreshold driving
decay observed in Fig.(8). For smaller values oD, this The SR gain is defined in Eq16). The numerically de-

feature is masked by the long total relaxation time Scaletermined SR gain shows a most interesting feature: we ob-
while for D=0.2, the noise strength is so large that there is 9 9 :

: . : . _“serve a nonmonotonic behavior ver&swith values for the
not a clear-cut separation between inter- and intrawell time® X . o .
scales gain exceeding unity for a whole range of noise strengths.

The above considerations allow us to rationalize the be:rhIS is strictly forbidden within LRT20]; therefore, the fact

havior of the several quantifiers used to characterize SI-“\I.hat the SR gain can assume values larger than unity reflects

Their behaviors wittD for A=0.25, = 0.01 are depicted in & Manifestation of the inadequacy of LRT to describe the
system dynamics for the parameter values considered.

Fig. 4. It should be noted that the lowest value of the noise To rationalize this anomalous SR gain behavior, we notice

strength used in the numerical solution of the Langevin €AU%hat the role of the noise in the dynamics is twofold. On the
tion isD=0.01. For this noise strength, the valuesxfand one hand, it controls the decay time Gf qon(7). On‘ the

R, ¢ are very small, although not zero. For even lower noise X . ;
out y g other hand, the noise value is relevant to elucidate whether

strengths th_e task becomes computationally very demandn‘i%e one-time probability distribution is basically monomodal
and expensive, due to the extremely slow decay of the cor-

relations. FoiD sufficiently small, however, one does expectOr bimodal (_1u_r!ng most of the cycle_ and, consequently, it
Q, to be larger tharQ,, and, consequently, an increase of controls the initial valueC;,;,1(0). Asdiscussed above,
u arg I ' q Y is small, the decay time is very large compared,tg, and
the numericaR,,, asD is lowered. the one-time probability distribution is essentially bimodal
The quantityQ,, defined in Eq.(13) depicts a nhonmono- '

tonic dependence ob typical of the SR phenomenon. Its For large values oD, the decay 0Cincor(7) is fast enough,

behavior is expected from the dependence of the am Iitudand the distribution is also bimodal. The large SR gain ob-
>Xpected | P PO ined here requires the existence of a range of intermediate
of C¢on(7) with D in Fig. 3.

A onmarctni behavio witD for the numericaly 12 2% S0 T 7 Secavs on S ueh o
evaluatedQ, is also observed. The initial valu€,.,n(0) asym P Y

and the decay time oF;, .,1(7) are important in the evalu- bution remains monomodal during most of the external

ation of Q [see Eq.(14)]. For D=0.01, the decay time of cycle. For example, fob =0.1 where the maximum of the

the incoherent part of the correlation function is longer thanSR gain is obtainedsee Fig. 4, the decay time 0Cincon(7)

half a period of the driving force, while fob=0.02, it is eft;mdatiﬁdﬁ"og d)a”i ?é‘pon\f”l“a' fiting rtoxi:]‘et t:e%a"\',‘;;"de'
somewhat shorter thaf/2. Consistently with Eq(14), the t)c e: T/2~gé14 yields a value ot approximately o, €
value of the integral forD=0.01 is smaller than foD asym '

=0.02. AsD is further increased, the influence of the cosine
factor in Eq.(14) becomes less important as the decay time
is much shorter thaif/2. The drastic fall in theQ, values
observed for 0.02D<0.1 is due to the decrease of As mentioned before, there are several time scales that are
Cincon(0) with D [see Fig. 8)— 3(c)] and the shortening of important for the phenomenon of stochastic amplification
the decay time. AsD is increased furtherC;,.on(0) in-  and gain. In the previous subsection we considered an input
creases and, consequently, also increases slightly. frequency small enough so that the inequatityy > tinter

C. Response to a rectangular input driver with fundamental
frequency 2=0.1
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FIG. 6. Same as Fig. 3 but f&2=0.1. )
FIG. 7. Same as Fig. 4 but f&2=0.1.

holds for a range of noise values. Next, we shall analyze the

system response to a driving force with fundamental fre'driven by time-periodic, rectangular forcing possessing a

quenqu=O.1, ten times larger thgn n the'prewous Cf"‘se'duty cycle of unity. The numerical solution of the Langevin
We will take the same input amplitude as in the PrEVIOUS, quation allows us to analyze the long-time behavior of the
case A=0.25, which is still subthreshold. For this input fre- d y 9

quency, the threshold value for the amplitude strength is de2 < 29, the second cumulant, and the coherent and incoher-

termined by numerically solving the deterministic equationem parts of the correlation function. For subthreshold input
to yield A;~0.39 signals we determined the SNR, together with its numerator

The behavior of the first two cumulants for several values2nd denominator evaluated separately, for a wide range of
of the noise strength is depicted in Figiffom top to bottom ~ N0ise strength®. _ _ .

D=0.02 (a), D=0.04 (b), D=0.06 (c), D=0.1 (d) and D As a main result we find the simultaneous existence of a
=0.2(e)]. For all values oD, the second cumulant remains typical nonmonotonic behavior versus the noise strefiijth
large for most of each half period. By contrast with the lowerof several quantifiers associated with SR; in particular, SR
frequency case, we detect no valuedbr which the prob-  gains larger than unity are possible for a subthreshold rect-
ability distribution is monomodal for a significant fraction of angular forcing possessing a duty cycle of unity. This finding
each half period. complements the recent results reported in RE?S,28,

In Fig. 6 the behavior of the coherefieft panels and  where pulselike signals with duty cycles smaller than or
incoherent(right panel$ parts of the correlation function is equal to 0.3(see Fig. 7 in Ref[23] and Fig. 8 in Ref[28])
presented foffrom top to bottom D =0.02(a), D=0.04(b), are studied and SR gains larger than unity are observed. No-
D=0.06(c), D=0.1(d), andD=0.2 (e). The amplitude of tice that in those references SR gains larger than unity are
the coherent oscillations shows a nonmonotonic behaviogbtained only with input amplitudes larger than ;8 By
with D. The incoherent part has initial values that remaincontrast, in this work, we used a smaller input amp”tude
very large in comparison with the corresponding ones fofa~0.68A).

(1=0.01 (compare with Fig. B consistently with the large ~ The simultaneous occurrence of SR and SR gains larger
value of the second cumulant. The decay times are roughliyan unity is associated with the fact that, for some range of
the same for both frequencies. _noise values, the decay time of the incoherent part of the

In Fig. 7 we show the behavior of the several SR quanti-qrelation function is much shorter thay,, , and also the

f|e[s afhfunctlons oD.dARcomhparlsct)r:] of Figs. 4 allthj 'ng" probability distribution is basically monomodal during most
cates thakQ, Q. andRo, have the same qualitative be- 8f the cycle of the driving force.

havior for both frequencies. The nhonmonotonic dependenc
onD of Q, andR,; is indicative of the existence of Sffor
both frequencigsfor the subthreshold input amplitude and in
the ranges oD values considered. The most relevant quan-
titative difference is that fof) = 0.1 the SR gain remains less
than unity.
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