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Subthreshold stochastic resonance: Rectangular signals can cause anomalous large gains
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The main objective of this work is to explore aspects of stochastic resonance~SR! in noisy bistable,
symmetric systems driven by subthreshold periodic rectangular external signals possessing alarge duty cycle
of unity. Using a precise numerical solution of the Langevin equation, we carry out a detailed analysis of the
behavior of the first two cumulant averages, the correlation function, and its coherent and incoherent parts. We
also depict the nonmonotonic behavior versus the noise strength of several SR quantifiers such as the average
output amplitude, i.e., the spectral amplification, the signal-to-noise ratio, and the SR gain. In particular, we
find that withsubthresholdamplitudes and for an appropriate duration of the pulses of the driving force, the
phenomenon of stochastic resonance is accompanied by SR gains exceeding unity. This analysis thus sheds
light on the interplay between nonlinearity and the nonlinear response, which in turn yields nontrivial unex-
pected SR gains above unity.
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I. INTRODUCTION

Most studies on the phenomenon of stochastic resona
~SR! in dynamical systems have been devoted to syst
driven by sinusoidal terms~see@1–5# for reviews!. Several
analytical approximations have been put forward to expl
SR. In the approach of McNamara and Wiesenfeld@6#, the
Langevin dynamics is replaced by a reduced two-state m
that neglects the intrawell dynamics. The general ideas
linear response theory~LRT! have been applied to situation
where the input amplitude is small@2,7–13#. In @11,13# the
Floquet theory has been applied to the correspond
Fokker-Planck description. For very low input frequenci
an adiabatic ansatz has been invoked@13#. Even though these
alternative analytical approaches provide an explanation
SR for different regions of parameter values, their prec
limits of validity remain to be determined. In recent wo
@14,15#, we explored the validity of LRT for sinusoidal an
multifrequency input signals with low frequency. Our resu
indicate a breakdown of the LRT description of the avera
behavior for low frequency, subthreshold amplitude input

Several quantifiers have been used to characterize S
noisy, continuous systems. The average output amplitude
the spectral amplification~SPA!, has been studied in Refs
@11,13# and the phase of the output average in Refs.@16–18#,
respectively. Those parameters as well as the signal-to-n
ratio ~SNR! @6#, exhibit a nonmonotonic behavior with th
noise strength which is representative of SR. An import
quantity is the SR gain, defined as the ratio of the SNR of
output over the input SNR. It has been repeatedly pointed
that the SR gain cannot exceed unity as long as the sys
operates in a regime described by LRT@19,20#. Beyond LRT
there exists no physical reason that prevents the SR ga
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be larger than 1, as has been demonstrated in@21# for super-
threshold sinusoidal input signals, and in analog experime
in @22,23# for subthreshold input signals with many Fouri
components and a small duty cycle@20#.

In this work, we will make use of numerical solutions o
the Langevin equation following the methodology in@20# to
analyze SR in noisy bistable systems, driven by a perio
piecewise constant signal with two amplitude values of o
posite signs~rectangular signal! ~see Fig. 1!. There are sev-
eral relevant time scales in the dynamics of these systems~i!
tasym, the time interval within each half period of the drivin
force, during which the diffusing particle sees an asymme
constant two-well potential;~ii ! t inter , the time scale associ
ated with the interwell transitions in both directions; and~iii !
t intra , the time scale associated with intrawell dynamics. T
interwell and intrawell time scales depend basically on
noise strengthD and the amplitude of the driving term. Th
dependence of these two time scales on those paramete
certainly very different, being more pronounced fort inter .
Typically, for the range of parameter values associated w
SR, the intrawell time scale is shorter than the interwell o
For small values ofD, Kramers’ formula provides an esti

FIG. 1. Sketch of a rectangular periodic signal with duty cyc
1, amplitudeA, and periodT.
©2003 The American Physical Society04-1
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mate for t inter
21 @24#, while t intra

21 is basically of the order of
the curvatures at the bottom of the wells.

We will evaluate the long-time average behavior of t
output and the second cumulant. These two quantities w
studied some time ago by two of us@25# for periodic rectan-
gular driving signals. Here, we will further extend our wo
to the analysis of the correlation function and its coher
and incoherent parts. The knowledge of all these quant
provides very useful information for the explanation of S
as indicated by the nonmonotonic behavior with the no
strength of the output amplitude and the SNR. In particu
the knowledge of the incoherent part of the correlation fu
tion is of outmost importance for a correct determination
the SNR. Furthermore, for a given subthreshold amplitu
we will demonstrate that, if there exists a range of no
values such thatt inter is shorter thantasym, then it is possible
to observe stochastic amplification and, simultaneously,
gains larger than unity. This is strictly forbidden by line
response theory, as we have recently shown@20#. Thus, the
simultaneous appearance of stochastic amplification and
gains above 1 implies a strong violation of linear respo
theory.

II. MODEL SYSTEM AND SR QUANTIFIERS

Let us consider a system characterized by a single de
of freedomx subject to the action of a zero average Gauss
white noise with^j(t)j(s)&52Dd(t2s) and driven by an
external periodic signalF(t) with periodT. In the Langevin
description, its dynamics is generated by the equation

ẋ~ t !52U8@x~ t !#1F~ t !1j~ t !. ~1!

The corresponding linear Fokker-Planck equation~FPE! for
the probability densityP(x,t) reads

]

]t
P~x,t !5L̂~ t !P~x,t !, ~2!

where

L̂~ t !5
]

]x FU8~x!2F~ t !1D
]

]xG . ~3!

In the expressions above,U8(x) represents the derivative o
the potentialU(x). In this work, we will consider a bistable
potentialU(x)52x2/21x4/4. The periodicity of the exter-
nal driving F(t) allows its Fourier series expansion in th
harmonics of the fundamental frequencyV52p/T, i.e.,

F~ t !5 (
n51

`

@ f n cos~nVt !1gn sin~nVt !#, ~4!

with the Fourier coefficientsf n andgn given by
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f n5
2

T E
0

T

dtF~ t ! cos~nVt !,

gn5
2

T E
0

T

dtF~ t ! sin~nVt !. ~5!

Here, we are assuming that the cycle average of the exte
driving over its period equals zero. In this work, we w
focus our attention on multifrequency input forces wi
‘‘rectangular’’ shape given by

F~ t !5H A, 0<t,T/2

2A, T/2<t,T,
~6!

as sketched in Fig. 1. The external force remains constan
a valueA during each half period and changes sign for t
second half of the period. The duty cycle of a signal can
defined in a variety of ways. In this work, we will follow th
definition used by Ginglet al. @22,23#. Thus, by ‘‘duty cycle’’
we mean the ratio of the time span during which the signa
nonzero to the total period of the signal. Consequently,
rectangular signal in Eq.~6! possesses a duty cycle of unit
Notice that the duty cycle does not uniquely characteriz
periodic signal.

The two-time correlation function̂x(t1t)x(t)&` in the
limit t→` is given by

^x~ t1t!x~ t !&`

5 E
2`

`

dx8x8P`~x8,t ! E
2`

`

dxxP1u1~x,t1tux8,t !,

~7!

whereP`(x,t) is the time-periodic, asymptotic long-time so
lution of the FPE and the quantityP1u1(x,t1tux8,t) denotes
the two-time conditional probability density that the stocha
tic variable will have a value nearx at time t1t if its value
at timet was exactlyx8. It can been shown@2,13# that, in the
limit t→`, the two-time correlation function ^x(t
1t)x(t)&` becomes a periodic function oft with the period
of the external driving. Then, we define the one-time cor
lation functionC(t) as the average of the two-time correl
tion function over a period of the external driving, i.e.,

C~t!5
1

T E
0

T

dt ^x~ t1t!x~ t !&` . ~8!

The correlation functionC(t) can be written exactly as th
sum of two contributions: a coherent partCcoh(t), which is
periodic in t with period T, and an incoherent part whic
decays to 0 for large values oft. The coherent partCcoh(t)
is given by@2,13#

Ccoh~t!5
1

T E
0

T

dt ^x~ t1t!&`^x~ t !&` , ~9!

where ^x(t)&` is the average value evaluated with th
asymptotic form of the probability densityP`(x,t).

According to McNamara and Wiesenfeld@6#, the output
SNR is defined in terms of the Fourier transform of the c
herent and incoherent parts ofC(t). As the correlation func-
4-2
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tion is even in time and we evaluate its time dependence
t>0, it is convenient to use its Fourier cosine transfor
defined as

C̃~v!5
2

p E
0

`

dt C~t! cos~vt!,

C~t!5 E
0

`

dv C̃~v! cos~vt!. ~10!

The value of the output SNR is then obtained from

Rout5

lim
e→01

E
V2e

V1e

dv C̃~v!

C̃incoh~V!
. ~11!

Note that this definition of the SNR differs by a factor of 2
stemming from the same contribution atv52V, from the
definitions used in earlier works@2,13#. The periodicity of
the coherent part gives rise tod function peaks in the spec
trum. Thus, the only contribution to the numerator in E
~11! stems from the coherent part of the correlation functi
The evaluation of the SNR requires the knowledge of
Fourier components ofCcoh(t) andCincoh(t) at the funda-
mental frequency of the driving force. Thus, rather th
knowledge of the entire Fourier spectrum, only two well d
fined numerical quadratures are needed. These are

Rout5
Qu

Ql
, ~12!

where

Qu5
2

T E
0

T

dt Ccoh~t! cos~Vt!, ~13!

and

Ql5
2

p E
0

`

dt Cincoh~t! cos~Vt!. ~14!

The SNR for an input signalF(t)1j(t) is given by

Rinp5
p~ f 1

21g1
2!

4D
. ~15!

The SR gainG is consequently defined as the ratio of t
SNR of the output to the SNR of the input, namely,

G5
Rout

Rinp
. ~16!

III. NUMERICAL SOLUTION

Stochastic trajectoriesx( j )(t) are generated by numer
cally integrating the Langevin equation@Eq. ~1!# for every
realization j of the white noisej(t), starting from a given
initial condition x0. The numerical solution is based on th
06110
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algorithm developed by Greenside and Helfand@26,27# ~con-
sult also the Appendix in Ref.@20#!. After allowing for a
relaxation transient stage, we start recording the time ev
tion of each random trajectory for many different traject
ries. Then we construct the long-time average value,

^x~ t !&`5
1

N (
j 51

N

x( j )~ t ! ~17!

and the second cumulant

^x2~ t !&`2^x~ t !&`
2 5

1

N (
j 51

N

@x( j )~ t !#22F 1

N (
j 51

N

x( j )~ t !G2

,

~18!

whereN is the number of stochastic trajectories consider
We also evaluate the two-time (t andt) correlation function,
i.e.,

^x~ t1t!x~ t !&`5
1

N (
j 51

N

x( j )~ t1t!x( j )~ t !, ~19!

as well as the product of the averages

^x~ t1t!&`^x~ t !&`5F 1

N (
j 51

N

x( j )~ t1t!GF 1

N (
j 51

N

x( j )~ t !G .

~20!

The correlation functionC(t) and its coherent partCcoh(t)
are then obtained using their definitions in Eqs.~8! and ~9!,
performing the cycle average over one period oft. The dif-
ference between the values ofC(t) andCcoh(t) allows us to
obtain the values forCincoh(t). It is then straightforward to
evaluate the Fourier component ofCcoh(t) and the Fourier
transform ofCincoh(t) at the driving frequency by numerica
quadrature. With that information, the numerator and the
nominator for the output SNR@cf. Eqs.~12!, ~13!, and~14!#,
as well as the SR gain@cf. Eq. ~16!#, are obtained.

IV. RESULTS

A. Response to a rectangular driving force with fundamental
frequency VÄ0.01

Consider an external driving of the type sketched in Fig
with parameter valuesV50.01, A50.25. This amplitude is
well below its threshold value defined, for each driving fr
quency, as the minimum amplitude that can induce repea
transitions between the minima ofU(x) in the absence of
noise. For the input considered here, the threshold amplit
is AT'0.37. Note that this threshold value for the amplitu
increases with increasing driving frequency.

In Fig. 2 we depict with several panels the behavior of t
first two cumulantŝ x(t)&` and ^x2(t)&`2^x(t)&`

2 for sev-
eral representative values ofD @from top to bottom D
50.02 ~a!, D50.04 ~b!, D50.06 ~c!, D50.1 ~d!, and D
50.2 ~e!#. Notice that, due to the transients, the time
which we start recording data,t50 in the graphs, does no
necessarily coincide with the start of an external cycle. T
average is periodic with the period of the driving force, wh
4-3



th
d

n
th
a

ie
al
e
ag

io
fa
ha

e
tri
n
d

ll
a

o

re
te
ce
du
n
s

r-
dic
(
s

c-
e
m-
ss-
d at
n

the
or-
le.
the
for

-
ig.
l to

lly
t

o-

ith
t
ably
he

just
rd
es

hat
the

ill
e.
be-

f

e.

,
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the second cumulant, due to the reflection symmetry of
potential@14#, is periodic with a period one-half of the perio
of the forcing term.

Next we consider the case of small noise intensityD @say,
D50.02 as in Fig. 2~a!#. The noise induces jumps betwee
the wells. In each random trajectory, a jump between
wells has a very short duration, but the instants of time
which they take place for the different stochastic trajector
are randomly distributed during a half cycle. At this sm
noise strength, the jumps are basically toward the low
minimum. Thus, because of this statistical effect, the aver
behavior depicts the smooth evolution depicted in Fig. 2~a!,
without sudden transitions between the wells. The evolut
of the second cumulant adds relevant information. The
that it is rather large during most of a period indicates t
the probability densityP`(x,t) is basically bimodal during
most of the external cycle. It is only during very short tim
intervals around each half period that the probability dis
bution becomes monomodal around one of the minima, a
consequently, the second cumulant is small. The bimo
character arises from the fact that the noise is so sma
comparison with the barrier heights that jumps over the b
rier are rather infrequent during each half period.

As the noise strength increases, the time evolution
^x(t)&` follows closely the shape of the external force@see
Figs. 2~b!–2~d!# for 0.04<D<0.1]. This behavior indicates
that, for these parameter values, the jumps in the diffe
random trajectories are concentrated within short time in
vals around the instants of time at which the driving for
switches sign. The second cumulant remains very small
ing most of a period, except for short time intervals arou
the switching times of the external driver. Thus, for the
intermediate values ofD, the probability distribution,
P`(x,t) is basically monomodal, except for small time inte
vals around the switching instants of time of the perio
driver. Finally, as the noise strength is further increasedD
.0.1), the probability distribution remains very broad mo

FIG. 2. Time behavior of the average^x(t)&` ~solid lines! and
the second cumulant^x2(t)&`2^x(t)&`

2 ~dashed lines! for a rectan-
gular driving force with duty cycle 1, fundamental frequencyV
50.01, and subthreshold amplitudeA50.25 for several values o
the noise strength:D50.02 ~a!, D50.04 ~b!, D50.06 ~c!, D50.1
~d!, D50.2 ~e!. Notice that, due to the transients,t50 in the graphs
does not necessarily coincide with the start of an external cycl
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of the time. Even though a large majority of random traje
tories will still jump over the barrier in synchrony with th
switching times of the driver, the noise is so large in co
parison with the barrier heights that the probability of cro
ings over the barrier in both directions cannot be neglecte
any time during each half cycle. The probability distributio
remains bimodal during a whole period, but asymmetric:
larger fraction of the probability accumulates around the c
responding lower minima of the potential during each cyc
Therefore, the average output amplitude decreases, while
second cumulant depicts plateaus at higher values than
smaller noise strengths@compare in Figs. 2~c! and 2~e!#.

In Fig. 3, we plot the coherent~left panels! Ccoh(t) and
incoherent~right panels! Cincoh(t) components of the corre
lation functionC(t) for the same parameter values as in F
2. The coherent part shows oscillations with a period equa
that of the driving force. Its shape changes withD. The am-
plitude of the coherent part does not grow monotonica
with D. Rather, it maximizes atD'0.06, which is consisten
with the observed behavior of^x(t)&` in Fig. 2. This is ex-
pected as the evaluation ofCcoh(t) involves only the time
behavior of^x(t)&` at two different instants of time.

Two features of the behavior ofCincoh(t) are relevant: its
initial value and its decay time. The initial value of the inc
herent contribution,Cincoh(0), is given by the cycle average
of the second cumulant. It has a nonmonotonic behavior w
D. For D50.02, Cincoh(0) is large, consistent with the fac
that the second cumulant at this noise strength is appreci
different from 0 during a substantial part of a period. As t
value of D increases (D<0.1), the value ofCincoh(0) de-
creases. This is expected as the second cumulant is large
during those small time intervals where most of the forwa
transitions take place every half period. For still larger valu
of D there are frequent forward and backward jumps t
keep the stationary probability bimodal, and therefore
initial value Cincoh(0) increases. ForD50.02, the decay of
Cincoh(t) is very slow, although the decay time is st
shorter than the duration of half a period of the driving forc
As D increases, the decay time of the incoherent part

FIG. 3. Time behavior ofCcoh(t) ~left panels! and Cincoh(t)
~right panels! for a rectangular driving force with duty cycle 1
fundamental frequencyV50.01, and subthreshold amplitudeA
50.25 for several values of the noise strength:D50.02 ~a!, D
50.04 ~b!, D50.06 ~c!, D50.1 ~d!, D50.2 ~e!.
4-4
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comes shorter. It is worth pointing out that the intraw
noisy dynamics manifests itself in the behavior ofCincoh(t).
This is most clearly confirmed by noticing the fast initi
decay observed in Fig. 3~d!. For smaller values ofD, this
feature is masked by the long total relaxation time sca
while for D50.2, the noise strength is so large that there
not a clear-cut separation between inter- and intrawell t
scales.

The above considerations allow us to rationalize the
havior of the several quantifiers used to characterize
Their behaviors withD for A50.25,V50.01 are depicted in
Fig. 4. It should be noted that the lowest value of the no
strength used in the numerical solution of the Langevin eq
tion is D50.01. For this noise strength, the values ofQu and
Rout are very small, although not zero. For even lower no
strengths the task becomes computationally very deman
and expensive, due to the extremely slow decay of the
relations. ForD sufficiently small, however, one does expe
Qu to be larger thanQl , and, consequently, an increase
the numericalRout asD is lowered.

The quantityQu defined in Eq.~13! depicts a nonmono
tonic dependence onD typical of the SR phenomenon. It
behavior is expected from the dependence of the amplit
of Ccoh(t) with D in Fig. 3.

A nonmonotonic behavior withD for the numerically
evaluatedQl is also observed. The initial valueCincoh(0)
and the decay time ofCincoh(t) are important in the evalu
ation of Ql @see Eq.~14!#. For D50.01, the decay time o
the incoherent part of the correlation function is longer th
half a period of the driving force, while forD50.02, it is
somewhat shorter thanT/2. Consistently with Eq.~14!, the
value of the integral forD50.01 is smaller than forD
50.02. AsD is further increased, the influence of the cosi
factor in Eq.~14! becomes less important as the decay ti
is much shorter thanT/2. The drastic fall in theQl values
observed for 0.02,D,0.1 is due to the decrease o
Cincoh(0) with D @see Fig. 3~a!– 3~c!# and the shortening o
the decay time. AsD is increased further,Cincoh(0) in-
creases and, consequently,Ql also increases slightly.

FIG. 4. Dependence onD of several SR quantifiers: the numer
tor of the SNR (Qu), its denominator (Ql), the output SNR (Rout),
and the SR gain (G) for a rectangular driving force with duty cycl
1, fundamental frequencyV50.01, and subthreshold amplitudeA
50.25.
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Taking into account the definition of the SNR@cf. Eq.
~12!#, its behavior withD is not surprising. The numerically
obtained SNR peaks atD50.08, a slightly different value of
D from the one at whichQu peaks.

B. Anomalous SR gain behavior for subthreshold driving

The SR gain is defined in Eq.~16!. The numerically de-
termined SR gain shows a most interesting feature: we
serve a nonmonotonic behavior versusD, with values for the
gain exceeding unity for a whole range of noise strengt
This is strictly forbidden within LRT@20#; therefore, the fact
that the SR gain can assume values larger than unity refl
a manifestation of the inadequacy of LRT to describe
system dynamics for the parameter values considered.

To rationalize this anomalous SR gain behavior, we not
that the role of the noise in the dynamics is twofold. On t
one hand, it controls the decay time ofCincoh(t). On the
other hand, the noise value is relevant to elucidate whe
the one-time probability distribution is basically monomod
or bimodal during most of the cycle and, consequently
controls the initial valueCincoh(0). Asdiscussed above, ifD
is small, the decay time is very large compared totasym, and
the one-time probability distribution is essentially bimod
For large values ofD, the decay ofCincoh(t) is fast enough,
and the distribution is also bimodal. The large SR gain o
tained here requires the existence of a range of intermed
noise values such that~i! Cincoh(t) decays on a much shorte
time scale thantasym and~ii ! the one-time probability distri-
bution remains monomodal during most of the exter
cycle. For example, forD50.1 where the maximum of the
SR gain is obtained~see Fig. 4!, the decay time ofCincoh(t)
estimated from an exponential fitting to the behavior d
picted in Fig. 3~d! yields a value of approximately 8, while
tasym5T/2'314.

C. Response to a rectangular input driver with fundamental
frequency VÄ0.1

As mentioned before, there are several time scales tha
important for the phenomenon of stochastic amplificat
and gain. In the previous subsection we considered an in
frequency small enough so that the inequalitytasym.t inter

FIG. 5. Same as Fig. 2 but forV50.1.
4-5
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CASADO-PASCUALet al. PHYSICAL REVIEW E 68, 061104 ~2003!
holds for a range of noise values. Next, we shall analyze
system response to a driving force with fundamental f
quencyV50.1, ten times larger than in the previous ca
We will take the same input amplitude as in the previo
case,A50.25, which is still subthreshold. For this input fre
quency, the threshold value for the amplitude strength is
termined by numerically solving the deterministic equati
to yield AT'0.39.

The behavior of the first two cumulants for several valu
of the noise strength is depicted in Fig. 5@from top to bottom
D50.02 ~a!, D50.04 ~b!, D50.06 ~c!, D50.1 ~d! and D
50.2 ~e!#. For all values ofD, the second cumulant remain
large for most of each half period. By contrast with the low
frequency case, we detect no values ofD for which the prob-
ability distribution is monomodal for a significant fraction o
each half period.

In Fig. 6 the behavior of the coherent~left panels! and
incoherent~right panels! parts of the correlation function i
presented for~from top to bottom! D50.02~a!, D50.04~b!,
D50.06 ~c!, D50.1 ~d!, andD50.2 ~e!. The amplitude of
the coherent oscillations shows a nonmonotonic beha
with D. The incoherent part has initial values that rema
very large in comparison with the corresponding ones
V50.01 ~compare with Fig. 3!, consistently with the large
value of the second cumulant. The decay times are roug
the same for both frequencies.

In Fig. 7 we show the behavior of the several SR qua
fiers as functions ofD. A comparison of Figs. 4 and 7 indi
cates thatQu , Ql , and Rout have the same qualitative be
havior for both frequencies. The nonmonotonic depende
on D of Qu andRout is indicative of the existence of SR~for
both frequencies! for the subthreshold input amplitude and
the ranges ofD values considered. The most relevant qua
titative difference is that forV50.1 the SR gain remains les
than unity.

V. CONCLUSIONS

With this work, we have analyzed the phenomenon of
within the context of a noisy, bistable symmetric syste

FIG. 6. Same as Fig. 3 but forV50.1.
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driven by time-periodic, rectangular forcing possessing
duty cycle of unity. The numerical solution of the Langev
equation allows us to analyze the long-time behavior of
average, the second cumulant, and the coherent and inco
ent parts of the correlation function. For subthreshold in
signals we determined the SNR, together with its numera
and denominator evaluated separately, for a wide rang
noise strengthsD.

As a main result we find the simultaneous existence o
typical nonmonotonic behavior versus the noise strengthD
of several quantifiers associated with SR; in particular,
gains larger than unity are possible for a subthreshold r
angular forcing possessing a duty cycle of unity. This findi
complements the recent results reported in Refs.@23,28#,
where pulselike signals with duty cycles smaller than
equal to 0.3~see Fig. 7 in Ref.@23# and Fig. 8 in Ref.@28#!
are studied and SR gains larger than unity are observed.
tice that in those references SR gains larger than unity
obtained only with input amplitudes larger than 0.8AT . By
contrast, in this work, we used a smaller input amplitu
(A'0.68AT).

The simultaneous occurrence of SR and SR gains la
than unity is associated with the fact that, for some range
noise values, the decay time of the incoherent part of
correlation function is much shorter thantasym and also the
probability distribution is basically monomodal during mo
of the cycle of the driving force.
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