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Nonlinear fluctuations: The problem of deterministic limit and reconstruction of stochastic 
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The paper discusses the connection between the deterministic and stochastic description of nonlinear, generally 

nonequilibrium systems. The fluctuations are treated in terms of a Markov process (master equation or Fokker­
Planck equation). For processes obeying the symmetry of generalized detailed balance (GDB), the deterministic flow 
is cast into a form exhibiting the maximum amount of information about the stochastic dynamics. The deterministic 
flow contains information about Kramers-Moyal moments of order n � 2. A semipositive definite, symmetric 
transport matrix is intrOduced which satisfies generalized Onsager relations. In terms of this transport matrix the 
deterministic flow of processes obeying GDB can be cast into the standard form of thermodynamics. Some of the 
results are elucidated using a nonlinear birth and death master equation with nearest-neighbor transitions. Given the 
deterministic flow, the focus is on !he problem of ·reconstruction of the original stochastic dynamics. The 
information rontained in the deterministic flow of processes obeying GDB is not sufficient for a reconstruction of 
the stochastic dynamics. Given only the information of both, the stationary probability and deterministic flow, we 
identify a class of Fokker·Pianck processes for which the stochastic dynamics can be uniquely reconstructed. 

I. INTRODUCTION 

An important problem of statistical mechanics 
is the derivation of the macroscopic evolution of 
a many-body system. From the viewpoint of 
statistical mechanics, the macroscopic evolution 
is governed by a stochastic process rather than 
a deterministic flow. However, in many situations 
the influence of the fluctuations plays a rather 
minor role. The common approach then is to 
study the evolution in terms of deterministic, 
generally nonlinear flow equations. It should be 
understood, however, that these flow equations 
are generally not identical with the mean value 
equations of the stochastic process. As has been 
emphasized for example, by Green1 and Van Kam­
pen, 2 the deterministic flow should emerge from 
the stochastic flow. Throughout this paper it is 
assumed that the macroscopic process can be 
modeled by a Markov process. Starting from a 
general master equation, the question of the cor­
responding deterministic limit has been clarified, 
about twenty years ago, by Van Kampen.2 The 
deterministic limit emerges as a by-product in his 
fundamental work on the expansion of the master 
equation. Near critical points his original ap­
proach needs to .be suitably modified. 

From a physical point of view, there is usually 
good confidence in the form of the deterministic 
equations. A scientist interested in the role of 
fluctuations faces then the following crucial ques­
tion-how does one account for the fluctuations? 
Statistical mechanics offers two basic approaches: 
the microscopic and the phenomenological ap­
proach. For obvious reasons most scientists do 
not choose the first very ambitious path. Making 
no approximations, the first path can clarify only 
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the relevant structures and symmetries, but 
generally does not allow an explicit calculation of 
the stochastic expressions. Being left with a 
phenomenological approach, there are two ex­
treme cases. If the system is subject to "external" 
noise, i.e., noise which can be arbitrarily struc­
tured by the experimentalist, the answer to the 
above question is usually quite transparent. Our 
focus here is more on those systems with "inter­
nal'' noise, i.e., the fluctuations which emerge 
from the huge number of microscopic degrees of 
freedom. Generally the stochastic system will be 
of a mixed type. For the case of internal noise 
there is considerable argument and confusion about 
the relationship between the deterministic flow and 
the phenomenological modeling of the macroscopic 
process.2•4"7 The origin of the confusion is that 
often "reasonable" assumptions are made either 
tacitly or explicitly, but are not always consis­
tent. 

Let us first discuss the situations for which all 
parties agree. For macroscopic linear systems 
describing thermal equilibrium the connection 
between stochastic and deterministic theory has 
been clarified by Onsager. 8•9 The form of the 
deterministic flow completely determines the 
linear stochastic process. General agreement 
also holds for the class of nonlinear Fokker­
Planck equilibrium systems in which the dissipa­
tive part of the dynamics is governed by a linear 
law (linear damping). In the latter case the non­
linear stochastics are modeled by a time-depen­
dent Ginzburg-Landau approach. The initial ele­
ment of the stochastic modeling is the linear flue­
tuation-dissipation theorem {FDT) of the form of 
an Einstein relation. 1° For nonlinear systems 
which do contain a nonlinear irreversible deter-

ll30 © 1982 The American Physical Society 



25 NONLINEAR FLUCTUATION'S: THE PROBLEM OF . • •  1131 

ministic part, -.·••�logical stochastic... ll;, · 

modeling is much lea obvious. In a first a�r.t· , �. 
mation one might describe only the small fluctua­
tions about the time-dependent nonlinear det�"' . 
ministic flow. Sueltu·approach corresponds to' a 
quasi-linearization of the nonlinear stochastic',, . · ·  

equations i n  the . ..- diacussed b y  Van Kampeu,1 
Kubo et al., 11 and GI'Jbert.11 We will not consider 
this case further blat rather will focus on the con­
nection between chltermlltistic flow and a stochas-
tic flow, which a�eOtmtll for the large (may be 
rare ) nonlinear fiuelUations. Such a theory is 
necessary because tMse large fluctuations de-
scribe the deviati�ps from a Gaussian behavio.r 
as it is reflected ill b!gher-order cumulants. ·Be­
cause the determinlfltic flow cannot completely 
determine the stoebaatl.c dynamics, one is forced 
to provide a "prescription" for the modeling of 
the nonlinear maeroacopic process. For non-
linear processes several such prescriptions have 
been proposed. 6•'•13•�, Most recently, a rather 
detailed and lnterestiDg. stochastic modeling pre­
scription for nonlinear thermal Fokker-Planck 
processes has been. pat forward by Grabert et 
az.ts,te 

The outline of thia paper is as follows. In Sec. 
n we give a critical discussion of the commonly 
used prescription4•7•ts•14 that identifies the deter­
miuistic flow with the conditioned stochastic flow. 
� .10t stated explicitly otherwise, the results in 
4)lis paper always reler to the case of a Markov 
process satisfying the master equation (integro­
operator). Section m contains the main results. 
We discuss the deterministic limit of generally 
nonequilibrium pl'bcesses satisfying the sym­
metry of generalized detailed balance.17 We 
extract explicitly the maximum amount of infor­
mation about the stochastic dynamics which is 
contained in the deterministic flow. Without ad­
ditional assumptions on the physical nature of the 
stochastic process, there exists no unique sto­
chastic modeling prescription. This is so, be­
cause the nontrivial information contained in the 
deterministic flow is not sufficient for the recon­
struction of the original stochastic dynamics. In 
Sec. m C we identify a class of Fokker-Planck 
processes for which the information contained in 
the deterministic flow together with the a priori 
known stationary probability is sufficient for the 
reconstruction of the stochastic dynamics. 

D. DETERMINISTIC FLOW-STOCHASTIC 

FLOW MODEUNG 

We consider a system described by a set of 
macrovariables a= (a 1, � • • • •  , aN). The deter­
ministic flow of the nonlinear (dissipative) system 

ls written in the form 

da 
dt 

=f(tl.) . (2.1) 

The macroscopic stochastic process will be de­
noted by x(t) =(s1(t), • • •  , xN(t)). Then the stochas­
tic flow is given in terms of a stochastic differen­
tial equation (SDE) for the Markov process x(t): 

dx 
dt 

=tl(x) +�(t). (2.2) 

�(t) is a vector of stochastic noise sources. These 
random perturbations may generally depend on 
the macroscopic process x(t). A first problem of 
a stochastic modeling is. tlle establishment of a 
relationship between (2.1) and (2.2). A stochastic 
modeling prescription, which is widely used in 
radio engineering1" and physics, '• 13 is given by the 
following requirement: The stochastic flow A(x) 

A(x) ={l(x) +(Ht)lx(t) =x} (2.3) 

given by the conditional averaging of (2.2) with 
x(t) =x, equals the deterministic flow A(x) =f(x). 
In the case that x(t) refers to a Fokker-Planck 
process the modeling prescription is completed 
by providing a prescription for the choice of the 
diffusion matrix D(x). This is usually accom:­
plished by postulating a nonlinear FDT.4-7•13•14 

Here the following comments should be noted. 
If the macroscopic process x(t) is physically de­
fined on a btMnded domain, the resulting struc­
ture of the Fokker-Planck equation does not gener­
ally correspond to natural boundary conditions, 
i.e., additional boundary conditions must generally 
be supplied. A particularly disturbing feature is 
given by the following observation. Using a non­
linear state transformation, x- x 1, the deter­
ministic flow transforms like a vector (a summa­
tion over equal indices is always implied): 

ff(x) = 8 8� f 1(%). x, (2.4) 

On the other hand, for a Fokker-Planck process 
the transformed stochastic flow A'(x) is given by 

'( ) 
ax l ( ) 1 ( ) a"txf A, X =
a
- At X +aD,.,. X a a X1 Xm X11 

(2.5) 

Thus, the postulate in (2.3), valid in one system 
of coordinates, is generally not valid in a dif­
ferent system of coordinates. This disturbing 
effect is not present in the prescription of Grabert 
et az.ts,te 

Although the postulate in (2.3) does not neces­
sarily lead to a "wrong" macroscopic process, it 
does not represent a convincing prescription 
scheme for the treatment of nonlinear fluctuations. 
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In particular, one generally would expect that the 
dissipative, nonlinear stochastic flow A(x) depends 
on a parameter E: measuring the strength of the 
fluctuations. Following Van Kampen, 3 the deter­
ministic flow is then given by 

f(a) =A(a, t:=O) 

III. SYSTEMS OBEYING GENERAUZED 

DETAILED BALANCE 

A. Derivation of the detenninistic flow 

(2.6) 

In this subsection we study the relationship 
between the deterministics and the stochastics of 
nonlinear, generally non�ilibrium macroscopic 
Markov processes satisfying a generalized de­
tailed balance symmetry (GDB); 17•18 i.e., in terms 
of a state transfoqnation. 9 we have for the joint 
probability p<2l the symmetry 

p �"10(x,T ;y, 0) =p (Z>(ey, T; 9x, 0) . (3.1) 

In the following we restrict the discussion to state 
transformations 8 satisfying 

(3.2) 

For the sake of convenience only we also choose 
an adapted coordinate system, i.e., 

The master equation has the form (summation 
convention over equal indices) 

(3.6) 

If Ji(x, t:) is the stationary probability of (3.6) the 
necessary and sufficient condition for GDB reads17 

Ji(x' () =Ji( ex. t:) (3.7a) 

and with the operator r = fl"112 W' 2 

r=o;1r"'011• (3.7b) 

The superscript ("') denotes the transpose and 011 
is the transformation (operator) in probability 
space induced by the state transformation e. In­
serting the Kramers-Moyal expansion into (3.7b) 
we obtain a useful relationship among the mo­
ments (no summation convention over indices of 
{e,}): 

(3.3) 

for all components x1• Let E: denote the parameter 
measuring the strength of the fluctuations. In 
chemical reactions E: is likely to be identified with 
the inverse of a reacting volume, in thermal dif­
fusion problems an obvious choice will be the 
temperature E: =kT (k: Boltzmann constant), 
whereas in open quantum optical systems E"1 is 
proportional to the IUlmber of atoms which can be 
excited. This parameter is generally not identical 
with the parameter describing the limiting ap­
proach of a non-Markov process to a Markov pro­
cess. Our starting point is the master equation 
written in "intensive" variables x. In terms of 
the parameter E: the transition probabilities 
W (Y-X) =W(X; Y) of the "extensive" variables X 
=x/E generally obey a scaling3•11 

W(X, Y) = c(E }[ '{Jo(y;X- Y) 

+E:cp1(y;X- Y) +• • • ]� 0 .  (3.4) 

The form in (3.4) is likely to hold for most sto­
chastic processes. The factor c(E) can always be 
absorbed in a redefinition of the time variable. 
Without loss of generality we set c(E) equal toE"1• 
In terms of the symmetric Kramers-Moyal mo­
ments Kh; .,1,., i6 =1, • . •  , N: 

p(x, t:)K11 ... �,. (ex, t:) 

=[(-e,t .. <-e.,.>J 

(3.5) 

xi:, (-f:)"'(&"'K,, ... ,n"''-(x, t)p(x, E:)) 
(3.8) 

... o m! &x • • • &x 1,..1' • ,_ 

The relation- (3.8) imposes severe conditions on 
the structure of the Kramers-Moyal moments of 
x(t) satisfying GBD. Further we define 

and 

Kj(x, f:) =UK1(x, t:) -e1K1(ex, f:)] 
=-B�i(Bx, E:), 

K;(x, E)=i(K1(x, E) +e�1(ex, E)] 
= e  �;<ex, t), 

s;(x, t:) =K;(x, t:)p(x, t:) 

(3.9) 

-!E:f-[K11(x, t:)p(x, E)]. (3.10) 
XJ 

The first moment K 1 (x, t:) can be rewritten as 
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K1(x, t:) =K;(x, t:) +-3t: p-1(s, t:) � [K11(x, t:)p(x, t:)] XI 
+p-1(s, €)Sj(s, €). (3.11) 

With K11 aK1 we obtain from (3.8) an important re-
lation for K;(x, €): · 

K;<x, t:) = tp-1(x, t:) 

(3.12) 

Obviously, Ic+(x, d and thus s•(x, t:) contain con­
tributions of higher-order Kramers-Moyal mo­
ments. 

For a Fokker-Planck process (K 11 ... 1n=O,n>2), 
the conditions ln. (3. 7) reduce in terms of the quan­
tities (3 .9) and (3.10) to the equivalent relations17 

-88 [Kj(x,t:)p(x,t:)]=O , x, 

s;<x, t:) = o , 

and 

(3.13a) 

(3.13b) 

(3.13c) 

The relation (3.13c) holds on the support of p. For 
the case that 9 denotes the usual time-reversal 
operation, the relations (3.13) reduce to the well­
known potential conditions.19·� Moreover, the 
quantities Kj1 (x, d,K,1,1 (x, E:) and the stationary 
probability P completely determine the dynamics 
of a Fokker-Planck process obeying GDB. 

With the relation (3.12) we are now in a position 
to study the stochastic information contained in the 
deterministic flow of a master equation process 
(3 .6) obeying GDB. In view of the scaling in (3 .6) 
the stationary probability obeys11 

-t:lnfi(s, t:)=¢0(x)H¢1(x)+ • • • • (3.14) 

We assume a noncritical behavior and set 

(3.15) 

Following Van Kampen3 we readily transform the 
master equation to the new stochastic process 
�(t). Collecting the lowest-order terms (singular 
terms proportional C112) we find the deterministic 
now 

da ::::;t =K,(a, E:=0)=f1(a) (3.16a) 

(3.16b) 

with K being a symmetric effective transport ma­
trix 

- � �-1)"'•1 
K 11 (a)=K11 (a, E:=O) + LJ -1 K 11n ... n (a, t:=O) 

and 

-· "' 1 ... 1 

XX: (a)· • • Y0 (a)=K (a) 1 ....... -1 I« 

X�(a) =lim {t: & lnj)(a, E:) ) 
.... o Ba, 

= _ &¢o (a) • 
&a1 

(3.17) 

(3 .18) 

Equation (3.16b) is the macroscopic determin­
istic flow of the process in (3.6) obeying GDB 
with 92 = l· In terms of the· transport matrix k the 
deterministic flow does contain information of 
Kramers-Moyal moments of order n 11> 2. How­
ever, except in an a priori Fokker-Planck case, 
it is generally not possible to disentangle informa­
tion about the higher Kramers-Moyal moments 
from the effective transport matrixK. The deter­
ministic flow contains two contributions; a "re­
versible" part/-, and an "irreversible" part, t•: 

fi(a) =Kj(a, t: = 0) = -6 Ji(9a), (3.19) 

J;(a) = iK11(a) X�( a)= 9 ,! t(9a). (3 .20) 

The quantities/• and/- possess specific trans­
formation properties under 9. As a result, the 
"circulation" r(x)=f(x)-j•(x) can never contain 
"irreversible" components if the system obeys a 
GDB symmetry. In virtue of (3.20) and (3.7a) and 
the symmetry of K, we obtain that K satisfies gen­
eralized Onsager relations: 

Ku(a)=9,81K11 (9a). (3.21) 

Observing t/>0(a) =¢ 0(9a) and the transformation 
property of K-(a, t:= 0) we obtain 

and 

K((a,t:=O)X�(a)=O (3.22a) 

�- .!. .JJI -
dt 

-- 2A.f'a(t))K0(a(t))�{a(t)) 

=- x�a(t))fi(a(t)) �o. ( 3.22b) 

The inequality in ( 3.22b) follows from the result 
that the matrix K is semipositive definite ( see Ap­
pendix A). Because ¢0 is bounded from below, 
(3 .22b) shows that ¢0 is a Liapunoff function for the 
deterministic now in ( 3.16b) of the master equation 
process in (3.6) obeying GDB. The Liapunoff func­
tion is of a type as constructed by Graham21 for 
Fokker-Planck processes [K1)a) =K11(a,E: = 0) ]. 

B. Example 

A birth and death master equation with nearest­
neighbor transitions has useful application in a 
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variety of nonequilibrium problems as, e.g., in 
quantum optics, electronic transport, chemical 
reactions, etc.0 In terms of the transition rates 
W(N -N + 1) = W"(N) and W(N -N -1) = W"(N) the 
master equation reads 

Pt<N> = w•(N-1)p1(N -1) + w-(N + 1)pt(N + 1) 
-[W"(N)+ W"(N))pt(N), N = O, 1, .... (3.23) 

The structure in (3.23) implies that the process 
N(t) satisfies generalized detailed batance with 
6N = N. The stationary probabUity p(N) is well 
known to be given by 

- - N-l W'(i) p(N) = p(N = O) II 
W"(i + 1) t•O 

_ ( W"(O)W'!O) )112 iN (W"(M)) e:p(N = O) W"(N)W"(N) exp .0 dMln W"(M) . 

(3.24) 

We further assume the scaling 

with x denoting the "intensive" variable 

x = EN. 

(3.25) 

(3 .26) 
The Kramers-Moyal moments K"(x, E = 0) (index 
n = 1, . . .  denotes the order), are readily evaluated: 

KJ.x, E = 0) =y•(x) +( -1)"Y'(x) . (3.27) 
From (3.24) and (3.26) we obtain for the potential 
c/Jo(x) the result 

- 1% (rhl) 

<Po(x)
--

o 
ln y(y) dy , 

or in terms of the "force" t>(x) 
t>(x) = lnl"'(x) -lny(x) . 

(3.28a) 

(3.28b) 
For the calculation of k(x), (3.17), we introduce 

a = lnY(x) ,  fj = lny(x) . (3.29) 
Inserting the Kramers-Moyal moments into the 
expression (3.17) we have 

K(x) =e .. +e4- i<e .. - ell)( u- /l) + ;, (e .. +e ")( u -P)2-+ • · • 

= e a (1 + ( u -p) + ( u: -ll)a + ... ) - e .. (-1 + ( u -ll) - ( u: -ll)a 
+ - ... ) 

2 31 . 2 . 31 
a .. 

=-e- (e < .. ·B) -1)-_e_ (e·la-B)- 1) (a-fj) (a.,..ll) 

= 2 e .. -ea = 2  y>(x)-Y(x) <?>0. 
a-ll lnY'(xJ -lnY(x) 

In terms of the nonequilibrium transport coeffi­
cient K(x) the deterministic flow consequently 
reads 

which equals the expected result. 

C. Problem of reconstruction of the stochastic 
dynamics-Fokker·Piandt case 

(3.31) 

The structure of the deterministic flow (3.16b) 
exhibits several interesting facts: Without further 
information about the stochastic functions of the 
process x(t), i.e., information about the macro­
scopic transition probabilities, the information 
contained in (3.16b) is not sufficient for the recon­
struction of the macroscopic process x(t). Any 
reconstruction procedure must involve additional 
information on the physical nature of the process. 
It often happens that the stationary probability 
is known a priori; but that information with the 
information contained in (3.16b) is generally not 
sufficient for a unique reconstruction of the ori-

(3.30) 

ginal stochastic dynamics. 
In the following we restrict the discussion to 

Fokker-Planck: processes obeying GDB. The de­
terministic flow in (3.16b) contains valuable in­
formation about Fokker-Planck drift and diffusion 
coefficients: K"(.x,E =O), Ku(x) =KH(x,E = O). Next 
we introduce the class (H) of Fokker-Planck pro­
cesses x(t) defined by the following constraints: 
(1) x(t) is a Fokker-Planck process obeying a 
scaling (3.4) and satisfying GDB with 61 = !. (2) 
The (scaled) diffusion coefficients KH(x, E) of x(t) 
are E independent. (3) The "reversible" drift 
K"(x, E) is either identically zero with the station­
ary probability being p(x, E) = p( 6x, E ), or ( 4) if 
K"(x, €) ¢0, the reversible drift of x(t) equals the 
deterministic reversible drift, K"(x, E) = r(x) ¢0 
with r(x) being source free, (a/&x,)J;(x> = 0, and 
p(x, E) =(1/Z) exp[-cp0(x)/E ] [ see (3.13a)]. 

The class (H) processes· possess the following 
useful property. Given only knowledge of p(x, E)  
together with the information contained in the de­
terministic flow (3.16b), the stochastic dynamics 
of class (H) processes can be consistently recon­
structed by writing 
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With z denoting an arbitrary vector we have 

zjc,1 (a)z 1 =((z,t-,)11).,0 � 0. (A3) 

APPENDIXB 

The Fokker-Planck process 

• a a 
P, (x, y) = -y axPe (x, y) + (£1%" + bx') ayP, (x, y) 

a + 8y {[y+exp-(y+y2)]ype(x,y)} 

a + E 8y {[1 + 2y] exp- (y +y2)p, (x ,y)} 

a 2  + E  
aya{[y+exp-(y +y1)]p, (x,y)} 

y>O, b>O (B1) 
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