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Phase-space signatures of the Anderson transition
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We use the inverse participation ratio based on the Husimi function to perform a phase-space analysis of the
Anderson model in one, two, and three dimensions. Important features of the quantum states remain observable
in phase space in the large system size limit, while they would be lost in a real- or momentum-space descrip-
tion. From perturbative approaches in the limits of weak and strong disorder, we find that the appearance of a
delocalization-localization transition is connected to the coupling, by a weak potential, of momentum eigen-
states which are far apart in momentum space. While this is fully consistent with the known dependence of the
existence of the Anderson transition on dimensionality, the resulting criterion can be applied to other models as
well. The phase-space approach thus sheds new light on the metal-insulator transition.
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[. INTRODUCTION In view of the wealth of known resulfsthe Anderson
model is particularly well suited for this kind of study. First

Phase-space concepts are widely used in various areas stfidies of the one- and two-dimensional Anderson model
physics like quantum opti¢sand quantum chads® while  based on the Wehrl entropYhad already demonstrated that
they are rarely employed in condensed matter physics. In thithe diffusive regime present in two dimensions becomes ap-
work, we use a phase-space analysis to address the Andersparent in phase spa¢®.An extension to the three-
metal-insulator transition, and demonstrate that such a dalimensional Anderson model has become possible by calcu-
scription is very useful and represents a powerful tool tolating inverse participation ratios in phase space instead of
describe and to elucidate how, as a function of a parametegntropies:* Using the phase-space analysis, we recover that
the nature of the eigenstates changes from delocalized io the thermodynamic limit all states are localized in one
localized. dimension, while two dimensions represent the marginal

While delocalized states call for a description in terms ofcase. In three and higher dimensions, the phase-space behav-
momentum eigenstates, in particular in the ballistic regimejor provides clear signatures of the Anderson transition
real-space methods are expected to be appropriate in the lehere states become localized only above a critical disorder
calized regime. Even though the real-space wave function istrength*? This allows one to gain a detailed understanding
itself contains already the full information about a quantumof the phase-space concepts and opens the road towards their
state, a phase-space representation may be much better suigggplication to more complicated systems.
to display the relevant information, e.g., in the vicinity of a  In Sec. Il we start by introducing the characterization of
delocalization-localization transition, where both real-spacejuantum states by their inverse participation rgtPR) in
and momentum-space features are expected to play an imphase space as well as the corresponding quantities in real
portant role. and momentum space. The Anderson model is introduced in

The relevance of a phase-space description has recent8ec. lll, and numerical results for its phase-space behavior in
been illustrated by comparing the one-dimensional Andersothe whole range from the ballistic to the localized regime are
model and the Aubry-Andrenodel. In the first case, already presented in Sec. IV. The observed features are discussed in
the presence of very weak disorder leads to localized statdhe light of known properties of the eigenstates. Since the
in the thermodynamic limit.In the quasiperiodic potential of behavior in the limiting cases of weak and strong disorder
the Aubry-Andremodel, however, a localization transition turns out to depend on the dimensionality and to be indica-
occurs at a critical potential strengttirom a phase-space tive of the existence of a metal-insulator transition, we de-
analysis, it was concluded that this qualitative difference bevote the main part of this paper to a detailed investigation of
tween the two one-dimensional models is due to the veryhese limits. Perturbative expansions for the inverse partici-
different couplings of the momentum eigenstates, induced bpation ratios in the different spaces are presented for strong
the disorder and the quasiperiodic potential, respectfvely. disorder in Sec. V A and for the limit of weak disorder in

In this work, we study the phase-space behavior of thesec. V B. Here, a crucial dependence of the inverse partici-
Anderson model in one, two and three dimensions and shopwation ratio on dimension is identified, and related to the
that the above considerations are not restricted to onestructure of the coupling of momentum eigenstates by weak
dimensional models. Conversely, it turns out that the prodisorder. This important property is only apparent in phase
posed relation between the coupling of momentum eigenspace while such signatures cannot be extracted from the
states due to a weak potential and the occurrence of a metahverse participation ratios neither in real nor momentum
insulator transition allows to explain why the Andersonspace. Our interpretation and the relation to the known prop-
transition cannot occur in one dimension. erties of the Anderson model, in particular in the marginal
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case of two dimensions, is confirmed by an analysis of the 1
dependence of the inverse participation ratio on system size P= 2 —d[p(X,k)]z, 3
in Sec. VI. Finally, we present our conclusions in Sec. VII. xk L

where the sum runs over all phase-space pdixts). The
Il. CHARACTERIZATION OF STATES normalization in Eq.(3) is chosen in such a way th&

Among the infinite variety of possible phase-space repre= 1/2 corresponds to an optimal localization around one lat-

sentations of a quantum stafethe Husimi* or Q functiort® tice point. In phase space, this is achieved by a mini-

is best suited for our purpose because it guarantees a positif@?! uncertainty state. A distribution of the Husimi density
definite density. This property will allow us to define an in- OVer @ larger volume in phase space corresponds to lower

i P i lues ofP.
verse participation ratio in Eq3) below. The positivity is a va . . . .
direct consequence of the definition of the Husimi function __Although the IPR in phase spac® is defined in terms of
the Husimi functionp(x,k), it may be calculated directly

p(Xo.Ko) = (X0 Kol )2, (1)  from the wave functiod>***"by means of a straightforward
. . - ) generalization of the one-dimensional expression given in
where the statéy) is projected onto a minimal uncertainty Refs 11 and 16. Such an approach provides significant nu-

state|xo,ko) centered around positio, and momentunk,  merical advantages and is crucial for the treatment of higher-
in phase space. The minimal uncertainty state assumes fimensional systems.

Gaussian form both in position and momentum representa- The PR in phase spade should be compared with the

tion. Its real-space wave function reads IPR in real space which has frequently been employed to
d/a ( 2 describe quantum states in disordered systénfsHere, the
X~ Xo : state|y) is projected onto a Wannier state localized on a
X|[Xg, Koy = exp| ————+iky-x]. (2 ; . . . . .
{10 k) (zmr?) p( 402 0 ) @ single site of the lattice. This allows one to define the IPR in

N - . i real space as
In the definition (1) of the Husimi function, the widthor

appearing in Eq(2) determines the relative importance of .
structures in real and momentum space. We adopt this defi- Py= ; g%, 4
nition for lattice models with periodic boundary conditions
provided thatr<L. Here,L is the number of lattice sites in which corresponds to the limi—0 of the IPR in phase
one spatial direction and the lattice constant sets the ungpace. It is also convenient to introduce the IPR in momen-
length. Throughout this paper, we choase \L/47 which ~ tum space as
yields an equal width of the Gaussian relative to the
siystem sizel and the momentum interval running frokn Pe= > [(ylk)|4, (5)
=—qa to m. K

Since we are ultimately interested in the thermodynamic
limit, L—<, let us first discuss the dependence on syste
size of the phase-space resolution provided by the Husimi
function. Since thal spatial components are independent of

each other, it is sufficient to consider the one—d|menS|onaE0 the information provided by the IPR in phase space. How-

case. For our choice of, the Gaussian smearing arising ever, it was shown in Ref. 22 that by an appropriate Gaussian
from the projection onto a minimal uncertainty state affects me:'slrin of the real- and. momentu);n-s apc% d%nsities one can
areas in phase space which contain a number of grid point3 . gor’ L : P

efine marginal distributions which allow one to reproduce

tsr;ﬁ;IIIZr Zl;atllhees ggiirotol];\(/atrés\c/)%egtﬁgw;zrag\?:r?;wc?u Or? tthe behavior of the IPR in phase space. Unfortunately, this
' ' 9 r?a proach does not result in a reduction of the numerical ef-

absolute resolu_tlon degrades, relatl\_/e o the size of the SYSort as compared to the calculation of the IPR in phase space.
tem the resolution becomes increasingly better as the system

size is increased. This holds for amywhich scales with
system size likd_® where 0<a<1. In contrast, the limiting

casesa=0 anda=1 behave quite differently. Fa¥=0, we In the following, we shall present a detailed comparison
have optimal resolution in real space but cannot resolve phef the |PRs in real, momentum, and phase space by consid-

nomena in momentum space, even in the thermodynamigring the Anderson model for a quantum particle in a disor-
limit. The opposite is true for=1 where one would obtain  dered potential. Its Hamiltonian

a pure momentum-space description. Our choicevefl/2
leads to an ideal balance between these two extreme cases,
and allows one to track features to the thermodynamic limit H=—t 2 (X WX+ XX ) +W X vn )X (6)
which rely on both real and momentum space. (xx’) ¥

The Husimi function contains a tremendous amount ofis defined on al-dimensional square lattice with sites in
information about a quantum state. It turns out, however, thagéach direction. The energy scale is set by the hopping matrix
relevant information can already be extracted by consideringlementst=1 between nearest neighbor sitgsx’). In or-
the inverse participation ratio in phase sp&ce, der to avoid boundary effects we choose periodic boundary

here the basis of momentum eigenstatesis given by
x|k)= exp (k- x)/LY2

As will be seen below, even the combined information
rom the IPRs in real and momentum-space is not equivalent

Ill. ANDERSON MODEL
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FIG. 1. Gray scale plot for the distributions of the logarithms of  FIG. 2. Mean IPR in phase space as a function of the disorder
the inverse participation ratios i@ real space(b) phase space, strength for(a) one, (b) two, and(c) three dimensions for system
and(c) momentum space as a function of the disorder streigth sizes(a) L=128, 192, 256, 384, 512, 768, 1024, 1536, and 2048;
The data represemflz states around the band center, for 50 differ- (b) L=16, 24, 32, 48, 64, and 96¢) L=14, 16, 18, 20, 22, and
ent disorder realizations of the two-dimensional Anderson model o24. The arrows indicate how the positiov of the extrema shifts
sizeL=64. with increasingL.

. . L . behavior of the phase-space IPR, which describes the spread
conditions in each direction so that every site hdsn2arest  c .1 \vave function in real and momentum space on an
nelghb_ors. The on-_5|te energies forming the (_j|sqrde_red equal footing, can be expected to provide more subtle infor-
potential are drawn independently from a box distribution ONhation. Indeed. the behavior of the phase-space IPR depends
the interval[ — 1/2;1/2] andW denotes the disorder strength. on the details c;f the model, as can be seen by a comparison

The structure of the quantum eigenstates of the Andersogf the one-dimensional Aﬁderson model and the Aubry-
model depends on the disorder strength. For vanishing disolx, yre model® and within the Anderson model itself, where
der, the eigenstates are plane waves and thus are localized,j{), dimensio'nality plays a crucial roté.
momentum space. In the opposite limit of strong disorder, For the two-dimensional case, the IPR in phase space de-
localization in real space takes place. In order to describe th icted in Fig. 1b) displays a muc'h richer structure than the
behgvior of the states in the whole parameter region, a_“o! iﬁDRs in real and momentum space. In particular, the depen-
particular the transition between the limiting regimes, it ISgence on the disorder strengftiis nonmonotonic, and one
very useful to_work with phase-space quantities which adTinds a minimum at an intermediate valueWfwhich can be
equately take into account real-space as well as momentuisqqciated with diffusive behavibrThis nontrivial behavior
space properties at the same time. motivates the following in-depth study of the Anderson
model by means of the IPR in phase space.

Figures. 2a)—2(c) depict the mean IPR in phase space for
one, two, and three dimensions, respectively, for various sys-
tem sized.. The arrows indicate the shift of the extrema with

In order to appreciate the advantage of the phase-spadecreasing system size. The data have been scaled with the
approach, we start by comparing the IPR’s in real spBRge, length dependence™%? of the limiting cases atv=0 and
phase spaceP, and momentum spacd},, for the two- W-—cx, cf. Sec. V. Before giving a detailed discussion of the
dimensional Anderson model. In Fig. 1, numerical results arelependence oh in Sec. VI, we concentrate on the overall
shown for a lattice of size 6464. For each given disorder behavior as a function of the disorder strength.
strengthW, we have diagonalized Hamiltoniai®) for 50 One of the most striking aspects of the results presented in
different disorder realizationgv,}, and usedL?/2 states Figs. 2a)—2(c) is that the behavior of the phase-space IPR at
around the band center to calculate distributions of logaweak disorder depends on the spatial dimension in a crucial
rithms of the IPRs. way. While ind=1 the IPR increases with increasiiy it

In Fig. 1(a) we observe a monotonic increase of the real-decreases id=2. Together with the fact that, independently
space IPR with increasing disorder strenyfth This corre-  of the dimensiord, at strong disorder the limiting value for
sponds to the tendency towards localization of the eigenfunc/— c is approached from above, this has important conse-
tions. According to Fig. (), the IPR in momentum space quences for the global behavior of the phase-space IPR. In
simultaneously decreases, thereby indicating delocalizatiod=1, the two limits are joined by a peak indicating local-
in momentum space. This behavior Bf and Py is an im-  ization in phase space. In contrast, in two and three dimen-
mediate consequence of the system’s change from the ballisions,P decreases in the regime of small disorder, and as-
tic regime for weak disorder, e.g., localization in momentumsumes a minimum indicating a large spreading in phase
space, to localized states in real space for strong disorder. space followed by a more or less steep rise towards a maxi-

Since the IPRs in real and momentum space evolve itmum, as can be seen in Figghpand Zc).
opposite directions as a function of the disorder strength, the The minimum of the phase-space IPR in two and higher

IV. INVERSE PARTICIPATION RATIOS
FOR THE ANDERSON MODEL
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A A I sufficient to take into account only the coupling to the near-
L 4+ . est neighbor state which is closest in energy to the initial site.
For the resulting two state system, the IPRs may be calcu-
lated explicitly. The other nearest neighbor sites enter in the
calculation only when the disorder average is performed.

In a first step, we thus focus on two nearest neighbor
Wannier states on a lattice of sizd. The absolute value of
the difference between the corresponding on-site energies
will be denoted byA. Then the effective Hamiltonian for the
two level system in the Wannier basis reads

In(L¥25(P))

—er 1d7[ 2d]

m sl ol L sl 1l L sl 0l _A/Z _t
1 10 100 1 10 100 1 10 100 Hys= . 7)

w w w -t A2

FIG. 3. The standard deviatian(P) of the IPR in phase space It is straightforward to determine the two eigenstates and the
as a function of the disorder Strength f(@ one’(b) two, and(c) Corresponding |PRS, which are identical for both states. In-

three dimensions and the same parameters as in Fig. 2. troducing the eigenenergigs= +[(A/2)?+t?]Y2 the IPRs
are given by

dimensions can be associated with the existence of a diffu-

sive regime where the system size is much larger than the t?

mean free path but smaller than the localization length. The Px(A)=1~- el

resulting mixing of the plane waves by the disorder potential
considerably alters the structure of the states and leads to a
spreading both in real and momentum space and thus to a P (A)=L"¢
small value of the phase-space IPR. This is reminiscent of
the emergence of quantum chaos and can be confirmed by
determining the energy level statistics around the minimum t2
of P. One indeed finds Wigner-Dyson statisticwhich char- P(A)=L"% 1+ —[2 exp(—1/40?) - 1]] .
acterizes the diffusivéchaotig regime. 2A

In addition to the mean value, the distribution of the |n particular, one finds,(0)=1/2 because for degenerate
phase-space IPR at given disorder strergthFig. 1(b) for o _sjte potentials the two states are both equally distributed
the cased=2] can be characterized by the standard deviagyer the two sites. Furthermore, and consistent with the re-
tion o(P) depicted in Fig. 3 for one, two, and three dimen-sjts of Sec. IV, the IPRs in real and momentum space be-
sions. Here, we have employed the same scaling with systefpye oppositely a'W is increased. For a large system size,

size as in Fig. 2. The overall structure resembles the onge |PR in phase space increases Wi, just as the IPR in
found for the mean values. The strong suppression of thg,omentum space.

standard deviation occur'ring in .the' diffusive regime, being |n order to compare with our numerical results, we need
particularly pronounced inl=3, indicates that the phase- {5 perform a disorder average. Since the on-site energies are
space structure is quite independent of the individual state%qua”y distributed inside the intervdl—W/2:W/2], the

This ponf_irms once more lthe universal chaotic character_of,robab”ity densityp, that two neighboring on-site energies
the diffusive states which is expected due to the strong mixgiter by A reads

ing present in this regime.

2

t
1+E , (8)

2
V. PERTURBATION THEORY p1(A)= W(W_A)' 9

The numerical results for the phase-space IPR presenteldne index 1 indicates that only one nearest neighbor site is

in Figs. 2 and 3 indicate that the changes in the global be- .
taken into account.

havior as a function of the disorder strength can be under- Furthermore. we need to ensure that the enerayv difference
stood in terms of the limiting behavior for strong disorder ' gy

and, in particular, for weak disorder. Therefore, we proc:ee(ﬁS IS th? smallest among the energy d|ﬁgr9nces with all near-
est neighbors. Therefore, for the remainind-21 nearest

next to a detailed perturbative investigation of the IPRs in~". . ; . )
these two limits. We start with the simpler case given by thenelghbor_s, the difference in on-site energy W'th respect to the
limit of strong disorder central site should be larger than The probability density

for such a 2l nearest neighbor configuration is given by

A. IPR at strong disorder

W 2d—-1
. : : L A)=N"1p,(A J
For W—o, all eigenstates are localized on single sites in P2q(A) Pa( )( N dXDl(X))

real space. A finite ratié/W then leads to a coupling to the ado1
nearest neighbor sites due to the kinetic energy in (BQ. :4d( A)

Such a perturbation can be treated analytically as long as it is =W (10

w
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value. Finally, the dash-dotted line corresponding to the
phase-space termis well described by the leading pertur-
bative correction according to E¢L2) down to W~ 30 for
this system of 64 64 sites.

As for the case of two sites, E(B), the IPRs in real and
momentum space move in the opposite direction as a func-
tion of t/W. Moreover, the IPR in phase space still behaves
similarly to the momentum-space IPR, for the averaged
guantities given by Eq12). The key to an understanding of
this behavior of the IPR in phase space lies in the limited

resolution provided by the Husimi function. Since its spatial

0.01 I ""'1'0 e "'1'(')0 R resolution is of ordet.*2, changes which occur only on two

W lattice sites will not affect the Husimi functions, in particular
in the case of large system sizes. Only the small deviation of

FIG. 4. Comparison of the perturbative result@t/W) (solid  the factor 2 exp€1/40?)—1 from 1 can be traced back to
line) with the numerically computed values for deviations of the real-space behavior as an incomplete overlap of the Gauss-

10 ¢

Cqy Cy C

0.1k

IPRs from their value aWW=< in real space ¢, dotted ling, ians centered at the two sites in question. Small scale
momentum spacec(, dashed ling and phase space,(dashed- changes in real space, however, lead to large scale changes in
dotted ling, for the parameters of Fig. 1. momentum space. In the regime discussed above, one ob-
serves beatings in the momentum-space density as a conse-
whereN is a normalization constant. quence of the required orthogonality of the two eigenstates

Within the assumption that we can restrict ourselves to af Eq. (7). This effect can be resolved by the Husimi func-
effective two level system, we therewith obtain the IPR intjon, so that momentum-space effects dominate the phase-
phase space, space behavior at strong disorder.

w Finally, the difference of.%? in the prefactor of the IPRs
p— f dAp,g(A)P(A) (1 N phase space and momentum space stems frqm the Gauss-
0 ian smearing in phase space which contributes, in our case of

_ _ _ _ spatially well-localized states, a factor:L ' for each spa-
together with corresponding expressions for the IPRs in regls| dimension.

and momentum space. Making use of KE8). and (10), to
leading order int/W, one obtains .
B. IPR at weak disorder
As shown in Fig. 1, the IPRs in real and momentum space
exchange their qualitative role as compared to the strong
disorder limit. This is not surprising, because ballistic motion
t of a quantum particle implies the existence of plane waves
1+27rdv—v), (12 with well localized momentum and delocalization in real
space. Exchanging real and momentum space, this corre-
¢ sponds to the real-space scenario for strong disorder.
p:Ld/2(1+2ﬂ-d_[2 exp(—1/402)—1]), The situation, however, is more complicated in phase
w space, and the behavior in the limit of weak disordaf,

with corrections of order t(W)2In(t\W). Configurations -0 iS by far more complex. Only in one dimension, the
where more than one nearest neighbor site is energeticallf’ R in Phase space can indeed be understood in terms of the

degenerate with the central site do not modify res(® eal-space IPR_ at weak disqrder and the momentum—space
because the probability to find such a configuration vanisheé'.:)R at strong dl_sordéi‘._ln pa_rt|cular, the IPR n phase space
In order to compare the numerical data presented in Fig. jncreases with increasing disorder strength in the regime of

with the perturbative result, we introduce the quantitigs WeaK disorder. The scenario, however, is very different for
=1-P,, c,=L%P—1, and c=(LYP—1)/[2 exp 1/ two and higher dimensions as can already be seen from Fig.
X b

40%)—1]. Within the perturbative results of E¢12), we 1@ where thg phase-space IPR displays a decreas'e at Weff’lk
have c,= ¢, = c=2md(t/W). The numerical results for the disorder. In this case, the momentum-space behawor'doml-
two-dimensional Anderson model are shown in Fig. 4. Thelates the phase-space IPR at both weak and strong disorder.

agreement with the leading perturbative results is remarkabl _xampl_es of IPRs in real, _mom_ent_um, and phase space in
good for disorder strengths down to rather small value#/of IMensions up Faﬂ=_3_are given in Fig. 4 of Ref. 23. In the
This is particularly true for the IPR in momentum space©!lowing, we will distinguish the cases=1 andd=2.
represented by the dashed line. The fact that IPRs are by )

definition positive quantities implies that the correctmnof 1. IPR at weak disorder for &1

the IPR in real space depicted by the dotted line is limited First, we briefly review the phase-space properties of the
from above by 1. Therefore, the leading correctionftp  one-dimensional Anderson model, which were already dis-
given by Eq.(12) must fail whenc, reaches this limiting cussed in Refs. 11 and 6 in some detail. A6+ 0, two plane

t
P,=1-2md,

Pe=L"¢
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waves at momentum valuésand —k are energetically de- different signs of the components, while the factbrac-
generate, and there is an ambiguity in the choice of the coreounts for the number of possible permutations of a set of
responding two basis states. We choose symmetric and anthomentum values, provided they are all different. For ex-
symmetric combinations of the two plane waves, in order teample, in three dimensions all eight different combinations
obtain real wave functions. The solutions in the liit  of the signs ink=(=*=k,*k,,*ks3), and all six permuta-
—0 singled out by degenerate perturbation theory contaitions of the momentum componerts, ,k,,ks} lead to the
additional phases which, however, do not influence any ofame energyE= —2t( cosk;+ cosk, + cosk;). Occasion-
the discussed IPRs. ally, the degeneracies may even be larger. This is the case
In the clean cas&\V/=0, one findsP, = 1/2 for states with when the same total energy can be achieved by different sets
nonvanishing momentum. This corresponds to the equallpf momentum components.
weighted contribution of the two momernitaand — k. In real While for two degenerate states the linit—0 leads to a
space, the sum appearing in the IPR can be approximated luniversal value for the IPRs, this is no longer true in the case
an integral and it is sufficient to consider as a representativef higher degeneracies, where the IPRs depend on the disor-
the wave functiony2/L cos kX). This yields, for the IPR in  der realization, even in the limitv—0. This can already be

real spacé® seen from the existence of different types (ofa) wave
functions. An optimal localization in momentum space can
L 2 4 3 be obtained by pairing only two plane waves with opposite
fo dx( \[[cos(kx)> TR (13 momentak and —k, leading to

_ dr2
In phase space the Husimi function resolves the two mo- P(x)=(2IL)"=cos(k-x). (14)

menta k and —k which are well separated for energies
around the band center. While fo¥—o a single stripe in
phase space leads to an inverse participation tatit?, the
two stripes now result i~ ¥%2.

The presence of a disorder potential leads to a coupling of

A wide distribution in momentum space is achieved by a
linear combination of all energetically degenerate states. For
a generic state this yields

plane waves with different momenta. In contrast to the op- d
posite case of strong disord&/— «, where the coupling of d(x)= —(Zd‘2d| Ld)l’ZP%}) {2’]} cos “~ 7iKiXi |,
the Wannier states occurs only between neighboring sites, for ' ' (15)

weak disordeiN— 0, the coupling of the plane waves is not

restricted to neighboring momenta. In fact, the averaged Magere the first sum is to be taken over all permutations of the

trix element of the disorder potential is independent of thegq, of (differenth momentum components while the second
momenta of the states involved. Within perturbation theoryg, 1 over the set of, is to be taken over all combinations of

however, the energy difference of the states comes into pl%ctors +1 with 7,=+1 kept fixed. Only ford=1 the
so that effect!;/e!y the couplm_g (tjo states close in enelyt statesiy/(x) and ¢(x) coincide, again hinting at the differ-
not necessarily in mome”t‘)f.“s ominant. . ._ence between the weak disorder behavior in one dimension
O_nly for the one—(_jlmensmnal case d_oes the dlspersmgnd the subtleties appearing in higher dimensions.

rerl]"?‘t'r?n E= I_Zt cosk imply, that Ireal Iba5|s_ states W:g It follows that in two and higher dimensions a nontrivial
VAV Ich are close I enelrg& are aiq ﬁose ”? mqmentu ) distribution of IPRs already appears in the livit—0. Fig-

sa cf?n_seqluence, :)r:jyt:)states w Ikc dare g osein mc_)r?e'ral\tlume 5 depicts such distributions for a set of eightfold degen-
are efficiently coupled by a weak disorder potential. Al g 56 states in two dimensions with momentum components

though the perturbative treatment is more complicated fori\,_-m/24 and+3m/4. The system size df =48 ensures that

weak than for strong disorder, a q!JaIitative impre_ssion_ of itS[he overlap of the Husimi functions corresponding to the
effect on the phase-space properties can be obtained in an@li-

: - ht different momentum vectors is negligible.
ogy to the cas®V/— « by interchanging real and momentum g 91g

e ; .. The two stateg14) and (15) help to understand the dis-
space. Now, because of the limited resolution of the HUSIM{,p ion for the momentum-space IPR. On the one hand
function, the coupling to close states in momentum spac ’ '

(s) . . .
- ) X) yields the maximum IPR in momentum space for real
does not have a significant effect while the large scale mod 709 y P

lation in real space associated with the coupling affects thﬂ-fwe functionsPy=1/2. On the other hand, all plane waves
Husimi function. Therefore, while the value of the IPR in ight be equally weighted as in stafitx), thus leading to

h for a clean one-dimensional Anderson mod |a inverse participation ratio of 1/8 in momentum space. It
Svilsoe_spag_e Ot a ciean one- f?h slo al' i erson model gh s out that the mixing of the plane waves due to a random
—U IS a direct consequence of the localization n mom(':'n]:)otential is quite efficient, thus making the first limit rather

tum space, the corrections for fink#— 0 are dominated by

I froct improbable.
real-space etlects. For the case presented in Fig. 5, the two momentum com-

ponentsk; and k, are well separated on the scale of the
phase-space resolution in momentum directigr/L. Con-
Generic ballistic states on @dimensional cubic lattice sequently, the overlap of the resulting stripes in phase space
display a 2d!-fold energetic degeneracy. The factof 2 is negligible. Therefore, the distributions for the IPR in mo-
arises from the degeneracy between momentum vectors witmentum space and phase space coincide up to a scaling fac-

2. IPR at weak disorder for &2
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15 - - - - - - - - - ing rise to an increase of the degeneracy. These special states

A P, are relevant for a detailed description of the complete distri-

¢ o P ] bution of IPRs for a given system size, which may exhibit a

Am complex structure. However, in the limit of large system size,
the generic states discussed above dominate the distributions.

f From the perturbative investigation of the IPR in the lim-

A its of very strong and very weak disorder, we can conclude

2 ] that real-space properties will only dominate at weak disor-
¢

—_
o
T

probability density
o
o]

4 der strength, if a coupling is induced predominantly between
1 plane waves close in momentum. As long as the distance in
momentum is below the momentum uncertainfyr/L in
phase space, such a coupling will become apparent only via
8L2P,/21, LP, P, the large scale real-space structure appearing in the Husimi
function. Therefore, in this scenario which is characteristic
FIG. 5. Distributions of the IPRs in real spaggangles, phase  for one dimension, real space dominates at weak disorder
space(circles, and momentum spadsquaresin the zero disorder  strength and the phase-space IPR increases with increasing
limit W—0. A generic set of eightfold degenerate states in twodisorder. It is only the value oP(W=0) itself which is
dimensions with momentum componentS7/24 and +=3w/4 is determined by momentum-space properties.
considered for a system of size=48 where the overlap of the In two and higher dimensions the picture changes drasti-
Husimi functions for stripes at; andk, is negligible. The distri- cally, because states close in energy are not necessarily close
bytions are o_bta?ned _by taking all eight degenerate states for 10 008 momentum anymore. In this case, the disorder potential
disorder realizations into account. may scatter plane waves into other momentum directions and
Cdi? s . . . .. thus induces a strong mixing in momentum space. In particu-
tor L. _whlch arises from the flmte width of the Husimi lar, states of the type of E§L4), which yield large values for
function in thed momentum directions. P, are affected by such processes. The mixing will thus lead
In contrast to the behavior in momentum and phase spacg, 5 decrease of the IPR in phase space as a consequence of
an equally weighted combination of_ all energetically d_egena[he dominance of momentum space. In contrast, the real-
erate plane waves leads to a maximum of the IPR in realy,ce structure will appear on relatively small length scales
space. For every pair of different and nonzero momentunyhich are typically not resolved by the Husimi function. As
components, andk,, which are both a multiple of /L, \ye will see in Sec. VI, this decrease®in d=2 implies the
the IPR for such a state becomes, in an integral approximasyistence of a regime of intermediate disorder where phase
tion, space is well covered by the Husimi function and which can
be associated with diffusive behavior. Furthermore, this sce-

L 21 nario opens the possibility of a delocalization-localization
szf dx p(x)*=—. (16 .t_p P y
0 sL ransition.

When only one momentum direction contributes, the oppo-

site limit is reached, and the IPR in real space becomes VL. SYSTEM SIZE DEPENDENCE

While the Anderson model in three dimensions exhibits a

P — fL dX (x)%=— 17 phase transition from delocalized states at weak potential to
*Jo L2’ localized states at strong potential, such a phase transition is

absent for the Anderson model in two dimensions, where all

which, up to a factor 1/, coincides with the result in one states are localized in the thermodynamic limit. Neverthe-
dimension, cf. Eq.(13). Since the equally weighted states less, for a fixed system size, both models show qualitatively
described by Eq(15) now lead to larger values of the IPR, the same behavior of the IPR in phase space, calling for an
the result in real space is essentially a mirror image of theanalysis of the size dependence of the IPR in order to check
IPRs in momentum and phase spdsee Fig. 5. whether or not the strong increase of the phase-space IPR at
In three dimensions the IPRs for a generic situation ofthe crossover between the diffusive and the localized regime

48-fold degeneracy may be obtained as well. Whif#P evolves towards an abrupt jump which would indicate a

and Py yield values between 1/48 and 1/2, the IPR in realphase transition in the limit —oo.

space assumes values betweern. 3/2nd 61/163. The latter To this end we plot in Fig. 6, versus the system dizéhe
values are obtained by a calculation analogous to that undedisorder strength¥/ at which for the Anderson model in one,
lying Egs.(16) and (17). two and three dimensions maxima and minima of the phase-

We emphasize once more that the states discussed abosgace IPR occur. The locations of minima and maxima are
represent the generic states. In addition, there exist statesthiown as open and full symbols, respectively. While scaling
where some or all of the momentum components are equddws cannot be extracted from the datane can neverthe-
so that the number of degenerate states is decreased. On thes clearly observe the direction of the shift of minima and
other hand, in certain cases a given total energy can be comaxima as a function of the system size. This reveals an
structed by different sets of momentum components thus givimportant difference between the cases of two and three di-
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100 T T — dimensional Anderson model. In contrast, = 15.8 (tri-
gL ] angles, one would expect that the curve continues to fall
a ] even for larger system sizes. This implies a critical value for
4. 1 the disorder strength between 15.8 and 17.4. While these
A 1 considerations are not necessarily stringent, the results pre-
sented in Fig. 7 as well as in Figs. 2 and 6 are perfectly
= 10 7 consistent with the known value ¥¥,~16.5 for the Ander-
o ] son transition in the band centér.
" 1 In contrast, according to the data depicted in Fig. 6 for
o ] two dimensions, the positions of the minimum and maximum
e . ] IPR’s both move towards lower disorder values wihem-
o creases. It seems plausible that they both go to zero in the
1000 limit of infinite system size, consistent with an extension of
L the localized regime down to infinitesimal disorder strength
) o and the absence of a phase transition in two dimensions.
FIG. 6. Values of the disorder strengftifor the minima(open  However, the fact that the overall behavior in a finite system
symbol$ and maxima(full symbolg of the inverse participation  sjze in two and three dimensions is very similar, hints at the
ratio in phase space, as a function of the system size. The circleggle of d=2 as a marginal dimension in the Anderson model.
triangle_s, and squares are for one, two, and three dimensions, A petter insight into the behavior of the phase-space IPR
respectively. can be gained by considering the position of the maxima,
which shift to a smaller disorder strength with increasing
mensions. In three dimensions, the position of the maximunsystem size, independently of the dimensionality. For a given
moves to lower disorder values when the system size is insystem size, the maximum phase-space IPR appears in the
creased, while the position of the minimum shifts in the op-localized regime at a certain disorder strengthNow, for a
posite direction. From this trend, one can expect that in théocalized state at this fixed disorder strength, but at larger
limit L—oc, the positions of the maximum and the minimum SyStém size, the phase-space IPR becomes independent of

converge towards the same finite disorder value, with thdn€ spatial structure once the width of the minimal uncer-
emergence of a nonmonotonic step in the disordertainty state(2) exceeds the Iopallzathn length. In this re-
dependence of the phase-space IPR as a clear signature of HE"®: the phase—;pace IPR is dominated by momentum-
Anderson transition in phase space. space features. Since we know té®, /dW<0, we can

In order to get an estimate of the critical disorder strengttFonclude thad P/dW<0. Therefore, the maximum &H(W)
W, for the Anderson model id=3, in Fig. 7 we depict the shifts to a smaller disorder strength when the system size is

change of the phase-space IPR as a function of the systei[rﬁcreased. Furthermore, from this argument it follows that in
size for fixed values of the disorder strength. Mg W, , one and tWO, dlmepS|ons the maximum Sh'ftSNQ:,O n 'the
the phase-space IPR should decrease with increasivigle limit L—o if we mfer that all states are localized in the
for W>W, it increases. Fow=19.1 (indicated by circles  thermodynamic limit. . .

P will increase with the system size. Faf=17.4(squares In order to discuss the position of the minimum IPR, we
P decreases for the system sizes accessible to us, but o8V tlgm to the tI)a”'St'C regime zt er.}ak dlséorder. Th% cou-
may anticipate that the curve will rise for larger system sizesP'"d between plane waves within first order perturbation
Such a behavior can also be observed for the twolh€ory depends on two contrary effects. On the one hand, the
number of plane waves into which scattering may occur in-

creases with the system size. On the other hand, since the

o disorder potentials at different lattice sites are uncorrelated,
= the individual coupling matrix elements decrease with the
P————— size of the system. However, independently of the dimension
[ e o | the increased density of states dominates and scattering be-
A, | e o o o] comes more effective as the system size increases. This cor-
S A\A\A\Aﬂ\A responds to a shrinking of the ballistic regime, which can be
= 0l \ ] seen in Fig. 2 as a shift of the curves to smalgrwith
C \ ] increasingL. This discussion, however, does not restrict the
I \ ] position of the minimum ofP as a function of system size
: . since the minimum always appears in the diffusive regime.
Indeed, as Fig. 6 shows, with increasinghe position of the
0.01 ' ' ' ' ' e ) ) X
14 16 18 20 22 24 minimum clearly shifts towards weaker disorder in two
L dimensions while it shifts to stronger disorder in three
dimensions.
FIG. 7. Dependence of the phase-space IPR on the system size
for the Anderson model ird=3 at fixed disorder strengthg/ VIl. CONCLUSIONS

=6.9, 9.1, 11.0, 12.0, 13.2, 14.5, 15(8iangles, 17.4 (squarey
19.1(circles, 20.9, 22.9, 25.1, 27.5, 30.2, 36.3, and 47.9 from the In this study of the phase-space properties of the Ander-
lower to the upper curve. son model, we have demonstrated the potential immanent to
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this approach and, in particular, its advantages over apweatments of the Aubry-Andrmodel, the system size may
proaches based purely on real or momentum-space propdse varied by more than two orders of magnitude, thus allow-
ties. In contrast to the latter ones, the phase-space approaitty for a much more detailed study of the phase transftion.
allows one to treat real and momentum space on the same Moreover, by putting together the insights gained from
footing. The well-studied Anderson model has allowed us tgphase space into the Aubry-Andneodel and the Anderson
establish an interpretation of the phase-space IPR which wilinodel, a unified physical interpretation of the different de-
be useful in cases where no independent information ipendencies on dimensionality emerges. In both cases, a
available. potential-induced coupling of plane waves with distant mo-
We found that the crossover between the diffusive and thenenta is required for a phase transition to occur. This mecha-
localized regimes is accompanied by an increase of thaism explains the different critical dimensions in the two
phase-space IPR which, in three dimensions, evolves to models.
sharp step in the thermodynamic limit. This is a signature of It will be interesting to apply these phase-space concepts
the Anderson metal-insulator transition. to interacting systems where the possibility to characterize
The jump of the phase-space IPR at the Anderson transindividual many-particle states is expected to be of great
tion implies a dramatic reorganization of the Husimi distri- value. Work along these lines is in progress.
bution from a large spread over phase space to localization
not only in real space but also in phase space. This scenario
is not only relevant for thel=3 Anderson model, but corre-
sponds to the very similar one that was recently found for the This work was supported by the Sonderforschungsbereich
Aubry-Andremodel® It is advantageous to exploit this simi- 484 of the Deutsche Forschungsgemeinschaft. D.W. thanks
larity. The one-dimensional Aubry-Andraodel allows for a the European Union for financial support within the RTN
direct visualization of the changes in the Husimi function atprogram. The numerical calculations were carried out partly
the metal-insulator transition. Furthermore, in numericalat the Leibniz-Rechenzentrum chen.
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