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Phase-space signatures of the Anderson transition
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We use the inverse participation ratio based on the Husimi function to perform a phase-space analysis of the
Anderson model in one, two, and three dimensions. Important features of the quantum states remain observable
in phase space in the large system size limit, while they would be lost in a real- or momentum-space descrip-
tion. From perturbative approaches in the limits of weak and strong disorder, we find that the appearance of a
delocalization-localization transition is connected to the coupling, by a weak potential, of momentum eigen-
states which are far apart in momentum space. While this is fully consistent with the known dependence of the
existence of the Anderson transition on dimensionality, the resulting criterion can be applied to other models as
well. The phase-space approach thus sheds new light on the metal-insulator transition.
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I. INTRODUCTION

Phase-space concepts are widely used in various are
physics like quantum optics1 and quantum chaos,2,3 while
they are rarely employed in condensed matter physics. In
work, we use a phase-space analysis to address the And
metal-insulator transition, and demonstrate that such a
scription is very useful and represents a powerful tool
describe and to elucidate how, as a function of a param
the nature of the eigenstates changes from delocalize
localized.

While delocalized states call for a description in terms
momentum eigenstates, in particular in the ballistic regim
real-space methods are expected to be appropriate in th
calized regime. Even though the real-space wave functio
itself contains already the full information about a quantu
state, a phase-space representation may be much better
to display the relevant information, e.g., in the vicinity of
delocalization-localization transition, where both real-spa
and momentum-space features are expected to play an
portant role.

The relevance of a phase-space description has rec
been illustrated by comparing the one-dimensional Ander
model and the Aubry-Andre´ model. In the first case, alread
the presence of very weak disorder leads to localized st
in the thermodynamic limit.4 In the quasiperiodic potential o
the Aubry-Andrémodel, however, a localization transitio
occurs at a critical potential strength.5 From a phase-spac
analysis, it was concluded that this qualitative difference
tween the two one-dimensional models is due to the v
different couplings of the momentum eigenstates, induced
the disorder and the quasiperiodic potential, respectively6

In this work, we study the phase-space behavior of
Anderson model in one, two and three dimensions and s
that the above considerations are not restricted to o
dimensional models. Conversely, it turns out that the p
posed relation between the coupling of momentum eig
states due to a weak potential and the occurrence of a m
insulator transition allows to explain why the Anders
transition cannot occur in one dimension.
0163-1829/2003/68~8!/085103~9!/$20.00 68 0851
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In view of the wealth of known results,7 the Anderson
model is particularly well suited for this kind of study. Firs
studies of the one- and two-dimensional Anderson mo
based on the Wehrl entropy8,9 had already demonstrated th
the diffusive regime present in two dimensions becomes
parent in phase space.10 An extension to the three
dimensional Anderson model has become possible by ca
lating inverse participation ratios in phase space instead
entropies.11 Using the phase-space analysis, we recover
in the thermodynamic limit all states are localized in o
dimension, while two dimensions represent the margi
case. In three and higher dimensions, the phase-space b
ior provides clear signatures of the Anderson transit
where states become localized only above a critical diso
strength.12 This allows one to gain a detailed understandi
of the phase-space concepts and opens the road towards
application to more complicated systems.

In Sec. II we start by introducing the characterization
quantum states by their inverse participation ratio~IPR! in
phase space as well as the corresponding quantities in
and momentum space. The Anderson model is introduce
Sec. III, and numerical results for its phase-space behavio
the whole range from the ballistic to the localized regime
presented in Sec. IV. The observed features are discuss
the light of known properties of the eigenstates. Since
behavior in the limiting cases of weak and strong disor
turns out to depend on the dimensionality and to be indi
tive of the existence of a metal-insulator transition, we d
vote the main part of this paper to a detailed investigation
these limits. Perturbative expansions for the inverse par
pation ratios in the different spaces are presented for str
disorder in Sec. V A and for the limit of weak disorder
Sec. V B. Here, a crucial dependence of the inverse par
pation ratio on dimension is identified, and related to t
structure of the coupling of momentum eigenstates by w
disorder. This important property is only apparent in pha
space while such signatures cannot be extracted from
inverse participation ratios neither in real nor momentu
space. Our interpretation and the relation to the known pr
erties of the Anderson model, in particular in the margin
©2003 The American Physical Society03-1
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WOBST, INGOLD, HÄNGGI, AND WEINMANN PHYSICAL REVIEW B 68, 085103 ~2003!
case of two dimensions, is confirmed by an analysis of
dependence of the inverse participation ratio on system
in Sec. VI. Finally, we present our conclusions in Sec. V

II. CHARACTERIZATION OF STATES

Among the infinite variety of possible phase-space rep
sentations of a quantum state,13 the Husimi14 or Q function15

is best suited for our purpose because it guarantees a po
definite density. This property will allow us to define an i
verse participation ratio in Eq.~3! below. The positivity is a
direct consequence of the definition of the Husimi functio

r~x0,k0!5u^x0,k0uc&u2, ~1!

where the stateuc& is projected onto a minimal uncertaint
stateux0,k0& centered around positionx0 and momentumk0
in phase space. The minimal uncertainty state assum
Gaussian form both in position and momentum represe
tion. Its real-space wave function reads

^xux0,k0&5S 1

2ps2D d/4

expS 2
~x2x0!

2

4s2
1 ik0•xD . ~2!

In the definition ~1! of the Husimi function, the widths
appearing in Eq.~2! determines the relative importance
structures in real and momentum space. We adopt this d
nition for lattice models with periodic boundary condition
provided thats!L. Here,L is the number of lattice sites in
one spatial direction and the lattice constant sets the
length. Throughout this paper, we chooses5AL/4p which
yields an equal width of the Gaussian relative to t
system sizeL and the momentum interval running fromk
52p to p.

Since we are ultimately interested in the thermodynam
limit, L→`, let us first discuss the dependence on sys
size of the phase-space resolution provided by the Hus
function. Since thed spatial components are independent
each other, it is sufficient to consider the one-dimensio
case. For our choice ofs, the Gaussian smearing arisin
from the projection onto a minimal uncertainty state affe
areas in phase space which contain a number of grid po
that is of the order ofAL3AL. Structures appearing o
smaller scales cannot be resolved. However, even though
absolute resolution degrades, relative to the size of the
tem the resolution becomes increasingly better as the sy
size is increased. This holds for anys which scales with
system size likeLa where 0,a,1. In contrast, the limiting
casesa50 anda51 behave quite differently. Fora50, we
have optimal resolution in real space but cannot resolve p
nomena in momentum space, even in the thermodyna
limit. The opposite is true fora51 where one would obtain
a pure momentum-space description. Our choice ofa51/2
leads to an ideal balance between these two extreme c
and allows one to track features to the thermodynamic li
which rely on both real and momentum space.

The Husimi function contains a tremendous amount
information about a quantum state. It turns out, however,
relevant information can already be extracted by conside
the inverse participation ratio in phase space,11
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Ld
@r~x,k!#2, ~3!

where the sum runs over all phase-space points~x,k!. The
normalization in Eq.~3! is chosen in such a way thatP
51/2 corresponds to an optimal localization around one
tice point. In phase space, this is achieved by a m
mal uncertainty state. A distribution of the Husimi dens
over a larger volume in phase space corresponds to lo
values ofP.

Although the IPR in phase space~3! is defined in terms of
the Husimi functionr~x,k!, it may be calculated directly
from the wave function,11,16,17by means of a straightforward
generalization of the one-dimensional expression given
Refs. 11 and 16. Such an approach provides significant
merical advantages and is crucial for the treatment of high
dimensional systems.

The IPR in phase spaceP should be compared with th
IPR in real space which has frequently been employed
describe quantum states in disordered systems.18–21Here, the
stateuc& is projected onto a Wannier stateux& localized on a
single site of the lattice. This allows one to define the IPR
real space as

Px5 (
x

u^cux&u4, ~4!

which corresponds to the limits→0 of the IPR in phase
space. It is also convenient to introduce the IPR in mom
tum space as

Pk5 (
k

u^cuk&u4, ~5!

where the basis of momentum eigenstatesuk& is given by
^xuk&5 exp (ik•x)/Ld/2.

As will be seen below, even the combined informati
from the IPRs in real and momentum-space is not equiva
to the information provided by the IPR in phase space. Ho
ever, it was shown in Ref. 22 that by an appropriate Gaus
smearing of the real- and momentum-space densities one
define marginal distributions which allow one to reprodu
the behavior of the IPR in phase space. Unfortunately,
approach does not result in a reduction of the numerical
fort as compared to the calculation of the IPR in phase sp

III. ANDERSON MODEL

In the following, we shall present a detailed comparis
of the IPRs in real, momentum, and phase space by con
ering the Anderson model for a quantum particle in a dis
dered potential. Its Hamiltonian

H52t (
^x,x8&

~ ux8&^xu1ux&^x8u!1W(
n

vn ux&^xu ~6!

is defined on ad-dimensional square lattice withL sites in
each direction. The energy scale is set by the hopping ma
elementst51 between nearest neighbor sites^x,x8&. In or-
der to avoid boundary effects we choose periodic bound
3-2
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PHASE-SPACE SIGNATURES OF THE ANDERSON TRANSITION . . . PHYSICAL REVIEW B68, 085103 ~2003!
conditions in each direction so that every site has 2d nearest
neighbors. The on-site energiesvn forming the disordered
potential are drawn independently from a box distribution
the interval@21/2;1/2# andW denotes the disorder strengt

The structure of the quantum eigenstates of the Ander
model depends on the disorder strength. For vanishing d
der, the eigenstates are plane waves and thus are localiz
momentum space. In the opposite limit of strong disord
localization in real space takes place. In order to describe
behavior of the states in the whole parameter region, an
particular the transition between the limiting regimes, it
very useful to work with phase-space quantities which
equately take into account real-space as well as momen
space properties at the same time.

IV. INVERSE PARTICIPATION RATIOS
FOR THE ANDERSON MODEL

In order to appreciate the advantage of the phase-s
approach, we start by comparing the IPR’s in real space,Px ,
phase space,P, and momentum space,Pk , for the two-
dimensional Anderson model. In Fig. 1, numerical results
shown for a lattice of size 64364. For each given disorde
strengthW, we have diagonalized Hamiltonian~6! for 50
different disorder realizations$vn%, and usedL2/2 states
around the band center to calculate distributions of lo
rithms of the IPRs.

In Fig. 1~a! we observe a monotonic increase of the re
space IPR with increasing disorder strengthW. This corre-
sponds to the tendency towards localization of the eigenfu
tions. According to Fig. 1~c!, the IPR in momentum spac
simultaneously decreases, thereby indicating delocaliza
in momentum space. This behavior ofPx and Pk is an im-
mediate consequence of the system’s change from the b
tic regime for weak disorder, e.g., localization in momentu
space, to localized states in real space for strong disord

Since the IPRs in real and momentum space evolve
opposite directions as a function of the disorder strength,

FIG. 1. Gray scale plot for the distributions of the logarithms
the inverse participation ratios in~a! real space,~b! phase space
and ~c! momentum space as a function of the disorder strengthW.
The data representL2/2 states around the band center, for 50 diff
ent disorder realizations of the two-dimensional Anderson mode
sizeL564.
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behavior of the phase-space IPR, which describes the sp
of the wave function in real and momentum space on
equal footing, can be expected to provide more subtle in
mation. Indeed, the behavior of the phase-space IPR dep
on the details of the model, as can be seen by a compar
of the one-dimensional Anderson model and the Aub
André model,6 and within the Anderson model itself, wher
the dimensionality plays a crucial role.11

For the two-dimensional case, the IPR in phase space
picted in Fig. 1~b! displays a much richer structure than th
IPRs in real and momentum space. In particular, the dep
dence on the disorder strengthW is nonmonotonic, and one
finds a minimum at an intermediate value ofW which can be
associated with diffusive behavior.11 This nontrivial behavior
motivates the following in-depth study of the Anderso
model by means of the IPR in phase space.

Figures. 2~a!–2~c! depict the mean IPR in phase space
one, two, and three dimensions, respectively, for various s
tem sizesL. The arrows indicate the shift of the extrema wi
increasing system size. The data have been scaled with
length dependenceL2d/2 of the limiting cases atW50 and
W→`, cf. Sec. V. Before giving a detailed discussion of t
dependence onL in Sec. VI, we concentrate on the overa
behavior as a function of the disorder strength.

One of the most striking aspects of the results presente
Figs. 2~a!–2~c! is that the behavior of the phase-space IPR
weak disorder depends on the spatial dimension in a cru
way. While in d51 the IPR increases with increasingW, it
decreases ind>2. Together with the fact that, independent
of the dimensiond, at strong disorder the limiting value fo
W→` is approached from above, this has important con
quences for the global behavior of the phase-space IPR
d51, the two limits are joined by a peak indicating loca
ization in phase space. In contrast, in two and three dim
sions,P decreases in the regime of small disorder, and
sumes a minimum indicating a large spreading in ph
space followed by a more or less steep rise towards a m
mum, as can be seen in Figs. 2~b! and 2~c!.

The minimum of the phase-space IPR in two and hig

f

f

FIG. 2. Mean IPR in phase space as a function of the diso
strength for~a! one, ~b! two, and~c! three dimensions for system
sizes~a! L5128, 192, 256, 384, 512, 768, 1024, 1536, and 20
~b! L516, 24, 32, 48, 64, and 96;~c! L514, 16, 18, 20, 22, and
24. The arrows indicate how the positionW of the extrema shifts
with increasingL.
3-3
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WOBST, INGOLD, HÄNGGI, AND WEINMANN PHYSICAL REVIEW B 68, 085103 ~2003!
dimensions can be associated with the existence of a d
sive regime where the system size is much larger than
mean free path but smaller than the localization length. T
resulting mixing of the plane waves by the disorder poten
considerably alters the structure of the states and leads
spreading both in real and momentum space and thus
small value of the phase-space IPR. This is reminiscen
the emergence of quantum chaos and can be confirme
determining the energy level statistics around the minim
of P. One indeed finds Wigner-Dyson statistics11 which char-
acterizes the diffusive~chaotic! regime.

In addition to the mean value, the distribution of th
phase-space IPR at given disorder strength@cf. Fig. 1~b! for
the cased52] can be characterized by the standard dev
tion s(P) depicted in Fig. 3 for one, two, and three dime
sions. Here, we have employed the same scaling with sys
size as in Fig. 2. The overall structure resembles the
found for the mean values. The strong suppression of
standard deviation occurring in the diffusive regime, be
particularly pronounced ind53, indicates that the phase
space structure is quite independent of the individual sta
This confirms once more the universal chaotic characte
the diffusive states which is expected due to the strong m
ing present in this regime.

V. PERTURBATION THEORY

The numerical results for the phase-space IPR prese
in Figs. 2 and 3 indicate that the changes in the global
havior as a function of the disorder strength can be und
stood in terms of the limiting behavior for strong disord
and, in particular, for weak disorder. Therefore, we proce
next to a detailed perturbative investigation of the IPRs
these two limits. We start with the simpler case given by
limit of strong disorder.

A. IPR at strong disorder

For W→`, all eigenstates are localized on single sites
real space. A finite ratiot/W then leads to a coupling to th
nearest neighbor sites due to the kinetic energy in Eq.~6!.
Such a perturbation can be treated analytically as long as

FIG. 3. The standard deviations(P) of the IPR in phase spac
as a function of the disorder strength for~a! one, ~b! two, and~c!
three dimensions and the same parameters as in Fig. 2.
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sufficient to take into account only the coupling to the ne
est neighbor state which is closest in energy to the initial s
For the resulting two state system, the IPRs may be ca
lated explicitly. The other nearest neighbor sites enter in
calculation only when the disorder average is performed

In a first step, we thus focus on two nearest neigh
Wannier states on a lattice of sizeLd. The absolute value o
the difference between the corresponding on-site ener
will be denoted byD. Then the effective Hamiltonian for the
two level system in the Wannier basis reads

HTLS5S 2D/2 2t

2t D/2D . ~7!

It is straightforward to determine the two eigenstates and
corresponding IPRs, which are identical for both states.
troducing the eigenenergiesD̃56@(D/2)21t2#1/2, the IPRs
are given by

Px~D!512
t2

2D̃2
,

Pk~D!5L2dF11
t2

2D̃2G , ~8!

P~D!5L2d/2F11
t2

2D̃2
@2 exp~21/4s2!21#G .

In particular, one findsPx(0)51/2 because for degenera
on-site potentials the two states are both equally distribu
over the two sites. Furthermore, and consistent with the
sults of Sec. IV, the IPRs in real and momentum space
have oppositely ast/W is increased. For a large system siz
the IPR in phase space increases witht/W, just as the IPR in
momentum space.

In order to compare with our numerical results, we ne
to perform a disorder average. Since the on-site energies
equally distributed inside the interval@2W/2;W/2#, the
probability densityp1 that two neighboring on-site energie
differ by D reads

p1~D!5
2

W2
~W2D!. ~9!

The index 1 indicates that only one nearest neighbor sit
taken into account.

Furthermore, we need to ensure that the energy differe
D is the smallest among the energy differences with all ne
est neighbors. Therefore, for the remaining 2d21 nearest
neighbors, the difference in on-site energy with respect to
central site should be larger thanD. The probability density
for such a 2d nearest neighbor configuration is given by

p2d~D!5N21p1~D!S E
D

W

dxp1~x! D 2d21

54dS 12
D

WD 4d21

, ~10!
3-4



a
in

re

a

e
g.

h
b

ce

te

the
r-

nc-
es
ed
f

ted
ial
o
r
of

o
uss-
ale
es in
ob-
nse-
tes
c-
ase-

auss-
e of

ace
ong
on
ves
al
rre-

se

e
f the
ace
e
of

for
Fig.
weak
mi-
rder.
e in

the
is-

he

PHASE-SPACE SIGNATURES OF THE ANDERSON TRANSITION . . . PHYSICAL REVIEW B68, 085103 ~2003!
whereN is a normalization constant.
Within the assumption that we can restrict ourselves to

effective two level system, we therewith obtain the IPR
phase space,

P5 E
0

W

dDp2d~D!P~D! ~11!

together with corresponding expressions for the IPRs in
and momentum space. Making use of Eq.~8! and ~10!, to
leading order int/W, one obtains

Px5122pd
t

W
,

Pk5L2dS 112pd
t

WD , ~12!

P5L2d/2S 112pd
t

W
@2 exp~21/4s2!21# D ,

with corrections of order (t/W)2ln(t/W). Configurations
where more than one nearest neighbor site is energetic
degenerate with the central site do not modify results~12!
because the probability to find such a configuration vanish

In order to compare the numerical data presented in Fi
with the perturbative result, we introduce the quantitiescx
512Px , ck5LdPk21, and c5(Ld/2P21)/@2 exp (21/
4s2)21#. Within the perturbative results of Eq.~12!, we
havecx5ck5c52pd(t/W). The numerical results for the
two-dimensional Anderson model are shown in Fig. 4. T
agreement with the leading perturbative results is remarka
good for disorder strengths down to rather small values ofW.
This is particularly true for the IPR in momentum spa
represented by the dashed line. The fact that IPRs are
definition positive quantities implies that the correctioncx of
the IPR in real space depicted by the dotted line is limi
from above by 1. Therefore, the leading correction toPx
given by Eq.~12! must fail whencx reaches this limiting

FIG. 4. Comparison of the perturbative result 2pd(t/W) ~solid
line! with the numerically computed values for deviations of t
IPRs from their value atW5` in real space (cx , dotted line!,
momentum space (ck , dashed line!, and phase space (c, dashed-
dotted line!, for the parameters of Fig. 1.
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value. Finally, the dash-dotted line corresponding to
phase-space termc is well described by the leading pertu
bative correction according to Eq.~12! down to W'30 for
this system of 64364 sites.

As for the case of two sites, Eq.~8!, the IPRs in real and
momentum space move in the opposite direction as a fu
tion of t/W. Moreover, the IPR in phase space still behav
similarly to the momentum-space IPR, for the averag
quantities given by Eq.~12!. The key to an understanding o
this behavior of the IPR in phase space lies in the limi
resolution provided by the Husimi function. Since its spat
resolution is of orderL1/2, changes which occur only on tw
lattice sites will not affect the Husimi functions, in particula
in the case of large system sizes. Only the small deviation
the factor 2 exp (21/4s2)21 from 1 can be traced back t
real-space behavior as an incomplete overlap of the Ga
ians centered at the two sites in question. Small sc
changes in real space, however, lead to large scale chang
momentum space. In the regime discussed above, one
serves beatings in the momentum-space density as a co
quence of the required orthogonality of the two eigensta
of Eq. ~7!. This effect can be resolved by the Husimi fun
tion, so that momentum-space effects dominate the ph
space behavior at strong disorder.

Finally, the difference ofLd/2 in the prefactor of the IPRs
in phase space and momentum space stems from the G
ian smearing in phase space which contributes, in our cas
spatially well-localized states, a factors}L1/2 for each spa-
tial dimension.

B. IPR at weak disorder

As shown in Fig. 1, the IPRs in real and momentum sp
exchange their qualitative role as compared to the str
disorder limit. This is not surprising, because ballistic moti
of a quantum particle implies the existence of plane wa
with well localized momentum and delocalization in re
space. Exchanging real and momentum space, this co
sponds to the real-space scenario for strong disorder.

The situation, however, is more complicated in pha
space, and the behavior in the limit of weak disorder,W
→0, is by far more complex. Only in one dimension, th
IPR in phase space can indeed be understood in terms o
real-space IPR at weak disorder and the momentum-sp
IPR at strong disorder.11 In particular, the IPR in phase spac
increases with increasing disorder strength in the regime
weak disorder. The scenario, however, is very different
two and higher dimensions as can already be seen from
1~b! where the phase-space IPR displays a decrease at
disorder. In this case, the momentum-space behavior do
nates the phase-space IPR at both weak and strong diso
Examples of IPRs in real, momentum, and phase spac
dimensions up tod53 are given in Fig. 4 of Ref. 23. In the
following, we will distinguish the casesd51 andd>2.

1. IPR at weak disorder for dÄ1

First, we briefly review the phase-space properties of
one-dimensional Anderson model, which were already d
cussed in Refs. 11 and 6 in some detail. ForW50, two plane
3-5
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WOBST, INGOLD, HÄNGGI, AND WEINMANN PHYSICAL REVIEW B 68, 085103 ~2003!
waves at momentum valuesk and 2k are energetically de
generate, and there is an ambiguity in the choice of the
responding two basis states. We choose symmetric and
symmetric combinations of the two plane waves, in orde
obtain real wave functions. The solutions in the limitW
→0 singled out by degenerate perturbation theory con
additional phases which, however, do not influence any
the discussed IPRs.

In the clean case,W50, one findsPk51/2 for states with
nonvanishing momentum. This corresponds to the equ
weighted contribution of the two momentak and2k. In real
space, the sum appearing in the IPR can be approximate
an integral and it is sufficient to consider as a representa
the wave functionA2/L cos (kx). This yields, for the IPR in
real space,26

E
0

L

dxSA2

L
cos~kx! D 4

5
3

2L
. ~13!

In phase space the Husimi function resolves the two m
menta k and 2k which are well separated for energie
around the band center. While forW→` a single stripe in
phase space leads to an inverse participation ratioL21/2, the
two stripes now result inL21/2/2.

The presence of a disorder potential leads to a couplin
plane waves with different momenta. In contrast to the
posite case of strong disorder,W→`, where the coupling of
the Wannier states occurs only between neighboring sites
weak disorderW→0, the coupling of the plane waves is n
restricted to neighboring momenta. In fact, the averaged
trix element of the disorder potential is independent of
momenta of the states involved. Within perturbation theo
however, the energy difference of the states comes into
so that effectively the coupling to states close in energy~but
not necessarily in momentum! is dominant.

Only for the one-dimensional case does the dispers
relation E522t cosk imply, that real basis states atW50
which are close in energyE are also close in momentumk.
As a consequence, only states which are close in momen
are efficiently coupled by a weak disorder potential. A
though the perturbative treatment is more complicated
weak than for strong disorder, a qualitative impression of
effect on the phase-space properties can be obtained in
ogy to the caseW→` by interchanging real and momentu
space. Now, because of the limited resolution of the Hus
function, the coupling to close states in momentum sp
does not have a significant effect while the large scale mo
lation in real space associated with the coupling affects
Husimi function. Therefore, while the value of the IPR
phase space for a clean one-dimensional Anderson mod
W50 is a direct consequence of the localization in mom
tum space, the corrections for finiteW→0 are dominated by
real-space effects.

2. IPR at weak disorder for dÐ2

Generic ballistic states on ad-dimensional cubic lattice
display a 2dd!-fold energetic degeneracy. The factor 2d

arises from the degeneracy between momentum vectors
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different signs of the components, while the factord! ac-
counts for the number of possible permutations of a set od
momentum values, provided they are all different. For e
ample, in three dimensions all eight different combinatio
of the signs ink5(6k1 ,6k2 ,6k3), and all six permuta-
tions of the momentum components$k1 ,k2 ,k3% lead to the
same energyE522t( cosk11 cosk2 1 cosk3). Occasion-
ally, the degeneracies may even be larger. This is the c
when the same total energy can be achieved by different
of momentum components.

While for two degenerate states the limitW→0 leads to a
universal value for the IPRs, this is no longer true in the c
of higher degeneracies, where the IPRs depend on the d
der realization, even in the limitW→0. This can already be
seen from the existence of different types of~real! wave
functions. An optimal localization in momentum space c
be obtained by pairing only two plane waves with oppos
momentak and2k, leading to

c~x!5~2/L !d/2 cos~k•x!. ~14!

A wide distribution in momentum space is achieved by
linear combination of all energetically degenerate states.
a generic state this yields

f~x!5
1

~2d22d!Ld!1/2 (
P($ki %)

(
$h%

cosS (
i 51

d

h ikixi D ,

~15!

where the first sum is to be taken over all permutations of
set of~different! momentum componentski while the second
sum over the set ofh i is to be taken over all combinations o
factors 61 with h1511 kept fixed. Only ford51 the
statesc(x) and f(x) coincide, again hinting at the differ
ence between the weak disorder behavior in one dimen
and the subtleties appearing in higher dimensions.

It follows that in two and higher dimensions a nontrivi
distribution of IPRs already appears in the limitW→0. Fig-
ure 5 depicts such distributions for a set of eightfold deg
erate states in two dimensions with momentum compone
65p/24 and63p/4. The system size ofL548 ensures tha
the overlap of the Husimi functions corresponding to t
eight different momentum vectors is negligible.

The two states~14! and ~15! help to understand the dis
tribution for the momentum-space IPR. On the one ha
c(x) yields the maximum IPR in momentum space for re
wave functions,Pk51/2. On the other hand, all plane wave
might be equally weighted as in statef(x), thus leading to
an inverse participation ratio of 1/8 in momentum space
turns out that the mixing of the plane waves due to a rand
potential is quite efficient, thus making the first limit rath
improbable.

For the case presented in Fig. 5, the two momentum c
ponentsk1 and k2 are well separated on the scale of t
phase-space resolution in momentum directionAp/L. Con-
sequently, the overlap of the resulting stripes in phase sp
is negligible. Therefore, the distributions for the IPR in m
mentum space and phase space coincide up to a scaling
3-6
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PHASE-SPACE SIGNATURES OF THE ANDERSON TRANSITION . . . PHYSICAL REVIEW B68, 085103 ~2003!
tor L2d/2 which arises from the finite width of the Husim
function in thed momentum directions.

In contrast to the behavior in momentum and phase sp
an equally weighted combination of all energetically deg
erate plane waves leads to a maximum of the IPR in
space. For every pair of different and nonzero moment
componentsk1 andk2, which are both a multiple of 2p/L,
the IPR for such a state becomes, in an integral approxi
tion,

Px5 E
0

L

dx f~x!45
21

8L2
. ~16!

When only one momentum direction contributes, the op
site limit is reached, and the IPR in real space becomes

Px5 E
0

L

dx c~x!45
3

2L2
, ~17!

which, up to a factor 1/L, coincides with the result in one
dimension, cf. Eq.~13!. Since the equally weighted state
described by Eq.~15! now lead to larger values of the IPR
the result in real space is essentially a mirror image of
IPRs in momentum and phase space~see Fig. 5!.

In three dimensions the IPRs for a generic situation
48-fold degeneracy may be obtained as well. WhileL3/2P
and Pk yield values between 1/48 and 1/2, the IPR in re
space assumes values between 3/2L3 and 61/16L3. The latter
values are obtained by a calculation analogous to that un
lying Eqs.~16! and ~17!.

We emphasize once more that the states discussed a
represent the generic states. In addition, there exist s
where some or all of the momentum components are e
so that the number of degenerate states is decreased. O
other hand, in certain cases a given total energy can be
structed by different sets of momentum components thus

FIG. 5. Distributions of the IPRs in real space~triangles!, phase
space~circles!, and momentum space~squares! in the zero disorder
limit W→0. A generic set of eightfold degenerate states in t
dimensions with momentum components65p/24 and63p/4 is
considered for a system of sizeL548 where the overlap of the
Husimi functions for stripes atk1 and k2 is negligible. The distri-
butions are obtained by taking all eight degenerate states for 10
disorder realizations into account.
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ing rise to an increase of the degeneracy. These special s
are relevant for a detailed description of the complete dis
bution of IPRs for a given system size, which may exhibi
complex structure. However, in the limit of large system si
the generic states discussed above dominate the distribut

From the perturbative investigation of the IPR in the lim
its of very strong and very weak disorder, we can conclu
that real-space properties will only dominate at weak dis
der strength, if a coupling is induced predominantly betwe
plane waves close in momentum. As long as the distanc
momentum is below the momentum uncertaintyAp/L in
phase space, such a coupling will become apparent only
the large scale real-space structure appearing in the Hu
function. Therefore, in this scenario which is characteris
for one dimension, real space dominates at weak diso
strength and the phase-space IPR increases with increa
disorder. It is only the value ofP(W50) itself which is
determined by momentum-space properties.

In two and higher dimensions the picture changes dra
cally, because states close in energy are not necessarily
in momentum anymore. In this case, the disorder poten
may scatter plane waves into other momentum directions
thus induces a strong mixing in momentum space. In part
lar, states of the type of Eq.~14!, which yield large values for
P, are affected by such processes. The mixing will thus le
to a decrease of the IPR in phase space as a consequen
the dominance of momentum space. In contrast, the r
space structure will appear on relatively small length sca
which are typically not resolved by the Husimi function. A
we will see in Sec. VI, this decrease ofP in d>2 implies the
existence of a regime of intermediate disorder where ph
space is well covered by the Husimi function and which c
be associated with diffusive behavior. Furthermore, this s
nario opens the possibility of a delocalization-localizati
transition.

VI. SYSTEM SIZE DEPENDENCE

While the Anderson model in three dimensions exhibit
phase transition from delocalized states at weak potentia
localized states at strong potential, such a phase transitio
absent for the Anderson model in two dimensions, where
states are localized in the thermodynamic limit. Neverth
less, for a fixed system size, both models show qualitativ
the same behavior of the IPR in phase space, calling fo
analysis of the size dependence of the IPR in order to ch
whether or not the strong increase of the phase-space IP
the crossover between the diffusive and the localized reg
evolves towards an abrupt jump which would indicate
phase transition in the limitL→`.

To this end we plot in Fig. 6, versus the system sizeL, the
disorder strengthsW at which for the Anderson model in one
two and three dimensions maxima and minima of the pha
space IPR occur. The locations of minima and maxima
shown as open and full symbols, respectively. While scal
laws cannot be extracted from the data,27 one can neverthe
less clearly observe the direction of the shift of minima a
maxima as a function of the system size. This reveals
important difference between the cases of two and three

00
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mensions. In three dimensions, the position of the maxim
moves to lower disorder values when the system size is
creased, while the position of the minimum shifts in the o
posite direction. From this trend, one can expect that in
limit L→`, the positions of the maximum and the minimu
converge towards the same finite disorder value, with
emergence of a nonmonotonic step in the disord
dependence of the phase-space IPR as a clear signature
Anderson transition in phase space.

In order to get an estimate of the critical disorder stren
Wc for the Anderson model ind53, in Fig. 7 we depict the
change of the phase-space IPR as a function of the sy
size for fixed values of the disorder strength. ForW,Wc ,
the phase-space IPR should decrease with increasingL while
for W.Wc it increases. ForW519.1 ~indicated by circles!,
P will increase with the system size. ForW517.4 ~squares!,
P decreases for the system sizes accessible to us, but
may anticipate that the curve will rise for larger system siz
Such a behavior can also be observed for the tw

FIG. 6. Values of the disorder strengthW for the minima~open
symbols! and maxima~full symbols! of the inverse participation
ratio in phase space, as a function of the system size. The cir
triangles, and squares are for one, two, and three dimens
respectively.

FIG. 7. Dependence of the phase-space IPR on the system
for the Anderson model ind53 at fixed disorder strengthsW
56.9, 9.1, 11.0, 12.0, 13.2, 14.5, 15.8~triangles!, 17.4 ~squares!,
19.1 ~circles!, 20.9, 22.9, 25.1, 27.5, 30.2, 36.3, and 47.9 from
lower to the upper curve.
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dimensional Anderson model. In contrast, forW515.8 ~tri-
angles!, one would expect that the curve continues to f
even for larger system sizes. This implies a critical value
the disorder strength between 15.8 and 17.4. While th
considerations are not necessarily stringent, the results
sented in Fig. 7 as well as in Figs. 2 and 6 are perfec
consistent with the known value ofWc'16.5 for the Ander-
son transition in the band center.24

In contrast, according to the data depicted in Fig. 6
two dimensions, the positions of the minimum and maximu
IPR’s both move towards lower disorder values whenL in-
creases. It seems plausible that they both go to zero in
limit of infinite system size, consistent with an extension
the localized regime down to infinitesimal disorder streng
and the absence of a phase transition in two dimensio
However, the fact that the overall behavior in a finite syst
size in two and three dimensions is very similar, hints at
role of d52 as a marginal dimension in the Anderson mod

A better insight into the behavior of the phase-space I
can be gained by considering the position of the maxim
which shift to a smaller disorder strength with increasi
system size, independently of the dimensionality. For a gi
system sizeL, the maximum phase-space IPR appears in
localized regime at a certain disorder strengthW. Now, for a
localized state at this fixed disorder strength, but at lar
system size, the phase-space IPR becomes independe
the spatial structure once the width of the minimal unc
tainty state~2! exceeds the localization length. In this r
gime, the phase-space IPR is dominated by moment
space features. Since we know thatdPk /dW,0, we can
conclude thatdP/dW,0. Therefore, the maximum ofP(W)
shifts to a smaller disorder strength when the system siz
increased. Furthermore, from this argument it follows that
one and two dimensions the maximum shifts toW50 in the
limit L→` if we infer that all states are localized in th
thermodynamic limit.

In order to discuss the position of the minimum IPR, w
now turn to the ballistic regime at weak disorder. The co
pling between plane waves within first order perturbati
theory depends on two contrary effects. On the one hand
number of plane waves into which scattering may occur
creases with the system size. On the other hand, since
disorder potentials at different lattice sites are uncorrela
the individual coupling matrix elements decrease with
size of the system. However, independently of the dimens
the increased density of states dominates and scattering
comes more effective as the system size increases. This
responds to a shrinking of the ballistic regime, which can
seen in Fig. 2 as a shift of the curves to smallerW with
increasingL. This discussion, however, does not restrict t
position of the minimum ofP as a function of system siz
since the minimum always appears in the diffusive regim
Indeed, as Fig. 6 shows, with increasingL, the position of the
minimum clearly shifts towards weaker disorder in tw
dimensions while it shifts to stronger disorder in thr
dimensions.

VII. CONCLUSIONS

In this study of the phase-space properties of the And
son model, we have demonstrated the potential immanen
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this approach and, in particular, its advantages over
proaches based purely on real or momentum-space pro
ties. In contrast to the latter ones, the phase-space appr
allows one to treat real and momentum space on the s
footing. The well-studied Anderson model has allowed us
establish an interpretation of the phase-space IPR which
be useful in cases where no independent information
available.

We found that the crossover between the diffusive and
localized regimes is accompanied by an increase of
phase-space IPR which, in three dimensions, evolves
sharp step in the thermodynamic limit. This is a signature
the Anderson metal-insulator transition.

The jump of the phase-space IPR at the Anderson tra
tion implies a dramatic reorganization of the Husimi dist
bution from a large spread over phase space to localiza
not only in real space but also in phase space. This scen
is not only relevant for thed53 Anderson model, but corre
sponds to the very similar one that was recently found for
Aubry-Andrémodel.6 It is advantageous to exploit this sim
larity. The one-dimensional Aubry-Andre´ model allows for a
direct visualization of the changes in the Husimi function
the metal-insulator transition. Furthermore, in numeri
.
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treatments of the Aubry-Andre´ model, the system size ma
be varied by more than two orders of magnitude, thus allo
ing for a much more detailed study of the phase transitio25

Moreover, by putting together the insights gained fro
phase space into the Aubry-Andre´ model and the Anderson
model, a unified physical interpretation of the different d
pendencies on dimensionality emerges. In both case
potential-induced coupling of plane waves with distant m
menta is required for a phase transition to occur. This mec
nism explains the different critical dimensions in the tw
models.

It will be interesting to apply these phase-space conce
to interacting systems where the possibility to characte
individual many-particle states is expected to be of gr
value. Work along these lines is in progress.
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