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Abstract

Using a stochastic generalization of the Hodgkin–Huxley model, we consider the in2uence of
intrinsic channel noise on the synchronization between the spiking activity of the excitable mem-
brane and an externally applied periodic signal. For small patches, i.e., when the channel noise
dominates the excitable dynamics, we 5nd the phenomenon of intrinsic coherence resonance. In
this case, the relatively regular spiking behavior is practically independent of the applied exter-
nal driving; therefore no synchronization occurs. Synchronization takes place, however, only for
su7ciently large ion channel assemblies. The neuronal signal processing is thus likely rooted in
the collective properties of optimally large assemblies of ion channels.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A fundamental question in neurophysiology concerns the limiting factors of the re-
liability of neuronal responses to given stimuli. In this article we focus on a particular
aspect of this complex issue: the impact of channel noise, which is generated by random
gating dynamics of the ion channels in membrane patches of 5nite size. In particular,
we investigate the eAect of channel noise on the synchronization between the action
potential produced by the cell membrane patch of 5nite size and the applied periodic
stimulus.
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The topic of synchronization, especially in biological systems, attracts ever grow-
ing interest, see Refs. [1–4]. Some prominent examples are the collective 2ashing of
5re2ies [5], the synchronization between the respiratory and cardiac activity in human
cardiorespiratory system [6], and the signal processing in sensory systems [7,8]. Re-
cently, the phenomena of frequency and phase synchronization have been explored in
presence of ambient noise sources, both for a noisy (overdamped) relaxation dynamics
[3,9,10] and for an oscillatory stochastic dynamics [3,11]. The theoretical research is
further inspired by experimental activities, and vice versa. In the context of theoretical
modeling, the frequency and phase synchronization [12] has been observed, for exam-
ple, in the integrate-and-5re model of the excitable dynamics driven by white noise
and an externally applied stochastic spike train [13]. For an optimal dose of noise the
mean 5ring rate of the driven neuron becomes locked by the mean frequency of the
external spike train.

2. The Hodgkin–Huxley model

Our starting point is the well-established model of Hodgkin and Huxley [14]. The
membrane patch of area S is considered as an electrical capacitor possessing the spe-
ci5c area capacitance C. The membrane separates two ionic bath solutions (which in
vivo correspond to the interior and the exterior of the excitable cell) with diAerent
concentrations of the ions of diAerent sorts, mainly potassium, K+, sodium, Na+, and
chloride, Cl− ions. The macroscopic concentration diAerences are kept approximately
constant. In the cell, this task is accomplished by the ATP-driven ionic pumps. Fur-
thermore, the ionic baths are on the average electrically neutral. However, due to the
diAerent ionic concentrations on the opposite sides of the semi-permeable membrane,
the membrane becomes charged. As a consequence, an equilibrium transmembrane elec-
trical potential diAerence emerges. The lipid membrane creates an almost impenetrable
barrier for the ions. However, they can 2ow across the membrane through special ion
selective pores created by specialized membrane proteins—the ion channels [15]. The
speci5c potassium, IK , and sodium, INa, ion currents through the open ion channels
are approximately proportional to the diAerences of the transmembrane potential V
and the speci5c (for the particular sort of ions) equilibrium potentials, EK and ENa,
respectively. The stochastically averaged, mean conductances, GNa(m; h) and GK (n),
are, however, strongly nonlinear functions of V . This nonlinearity emerges due to the
gating dynamics (see below). There exists also the leakage current IL, mainly due to
the chloride ions. If the membrane is driven by the external current Iext(t), the sum of
the speci5c ion currents and the capacitive current, IC , must be equal to Iext(t) as a
consequence of the charge conservation. Therefore, the equation for the transmembrane
potential V (t) reads

C
d
dt

V + GK (n) (V − EK) + GNa(m; h) (V − ENa) + GL (V − EL) = Iext(t) :

(1)
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For a squid giant axon, the parameters in Eq. (1) are ENa = 50 mV, EK = −77 mV,
EL=−54:4 mV, and C=1 �F=cm2. Furthermore, the leakage conductance is assumed to
be constant, GL=0:3 mS=cm2. On the contrary, the sodium and potassium conductances
are controlled by the voltage-dependent gating dynamics of single ion channels and
are proportional to their respective numbers. These latter assumptions have been fully
con5rmed in the single-channel recordings by Neher, Sakmann and colleagues which
indeed have proven that ion channels undergo the opening-closing stochastic gating dy-
namics [16]. In the Hodgkin–Huxley model, the opening of the potassium ion channel is
governed by four identical activation gates characterized by the opening probability n.
The channel is open when all four gates are open. In the case of sodium channel, the dy-
namics is governed by the three independent, identical fast activation gates (m) and an
additional slow, so-termed inactivation gate (h). The independence of the gates implies
that the probability PK;Na of the occurrence of the conducting conformation is PK = n4

for a potassium channel and PNa = m3 h for a sodium channel, respectively. In the
mean-5eld description, the macroscopic potassium and sodium conductances thus read:

GK (n) = gmax
K n4; GNa(m; h) = gmax

Na m3h ; (2)

where gmax
K = 36 mS=cm2 and gmax

Na = 120 mS=cm2 denote the maximal conductances
(when all channels are open). The two-state, open–closing dynamics of the gates is
given by the voltage dependent opening and closing rates �x(V ) and �x(V ) (x=m; h; n),
i.e.,

�m(V ) =
0:1(V + 40)

1− exp[− (V + 40)=10]
; (3a)

�m(V ) = 4 exp[− (V + 65)=18] ; (3b)

�h(V ) = 0:07 exp[− (V + 65)=20] ; (3c)

�h(V ) = {1 + exp[− (V + 35)=10]}−1 ; (3d)

�n(V ) =
0:01 (V + 55)

1− exp[− (V + 55)=10]
; (3e)

�n(V ) = 0:125 exp[− (V + 65)=80] : (3f)

Hence, the dynamics of the opening probabilities for the gates are given by

ẋ = �x(V ) (1− x)− �x(V ) x; x = m; h; n : (4)

The voltage equation (1), (2), and the rate equations of the gating dynamics (3),(4)
de5ne the original, purely deterministic Hodgkin–Huxley model [14] for the squid giant
axon. Operating with the average number of open channels, disregards, however, the
corresponding number 2uctuations (the so-called channel noise [16,17]). Therefore, the
Hodgkin–Huxley model is valid, strictly speaking, only within the limit of very large
system size where these 2uctuations can be neglected. The role of internal 2uctuations
in membrane patches of 5nite size cannot, however, be a priori neglected. In fact,
the recent theoretical studies make it clear that the channel noise can be functionally
important for the excitable dynamics [17–20].
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3. Stochastic generalization of Hodgkin–Huxley model

To account for the eAect of channel noise, we use the model which presents a
stochastic generalization of the Hodgkin–Huxley equations (1)–(4) due to Fox and Lu
[21]. The dynamics of the gating variables is given by the following Langevin equation:

ẋ = �x(V ) (1− x)− �x(V ) x + �x(t); x = m; h; n ; (5)

with independent Gaussian white noise sources �x(t) of vanishing mean which take
into account the 2uctuations of the number of open gates. The noise strengths depend
on the membrane voltage. The noise correlations assume the following form for an
excitable membrane patch with NNa sodium and NK potassium ion channels [21]:

〈�m(t)�m(t′)〉= 2
NNa

�m�m

(�m + �m)
�(t − t′) ; (6a)

〈�h(t)�h(t′)〉= 2
NNa

�h�h

(�h + �h)
�(t − t′) ; (6b)

〈�n(t)�n(t′)〉= 2
NK

�n�n

(�n + �n)
�(t − t′) : (6c)

To ensure the con5nement of the gating variables between 0 (all gates are closed) and
1 (all gates are open) we implemented numerically the re2ecting boundaries at 0 and
1. With the assumption of homogeneous ion channel densities, �Na = 6× 1013 m−2 =
60 �m−2 and �K = 1:8× 1013 m−2 = 18 �m−2, the ion channel numbers are given by

NNa = �NaS; NK = �KS : (7)

With decreasing patch size S we observe from our numerical simulations of the
Langevin equations (5)–(6) the more and more increasing spiking activity due to the
internal channel noise, see Fig. 1.

4. Synchronization in excitable membranes

4.1. Channel noise induced spiking activity: intrinsic coherence resonance

We investigate numerically the in2uence of channel noise in the absence of external
stimulation. For small internal noise strengths, i.e., large patch sizes, the occurrence
of action potentials is very rare in the autonomous, nondriven regime: Iext = 0, see
Fig. 1. The distribution of interspike intervals {Ti := ti+1 − ti} is widely spread with
longer intervals becoming less and less probable, see the solid line in Fig. 2(a). With
increasing channel noise the 5ring rate increases as well, and the interspike interval
time–histogram depicts a more distinct peak structure, Fig. 2(b). For small membrane
patches, the 2uctuations of the number of open ion channels dominate the excitable
dynamics and after a 5ring event the membrane patch tends to 5re immediately again,
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(a)

(b)

(c)

Fig. 1. Three simulated realizations of voltage spike trains for diAerent patch sizes: (a) 1 �m2, (b) 16 �m2,
and (c) 128 �m2. With decreasing patch size (bottom-to-top) the 2uctuations of the number of open ion
channels dominate the dynamics; therefore more action potentials are produced, whereas for very large patch
sizes the intrinsic channel noise strength is not capable to produce corresponding voltage spikes.

(a) (b)

Fig. 2. The interspike interval histograms (ISIH) for the undriven case, Iext = 0, (solid line) and the driven
case, Iext =sin(0:3 · t), (dotted line) for two patch sizes: (a) 16 �m2, and (b) 1 �m2. The driving independent
single-peak-structure becomes more and more accentuated for decreasing patch size, i.e., with increasing
strength of the channel noise. The refractory period Tr acts as lower bound to the interspike intervals. It
varies with the patch area and becomes smaller for smaller patch sizes, cf. Tr ≈ 15 ms in part (a) vs.
Tr ¡ 10ms in part (b). The driving–induced peaks appear for su7ciently small internal noise at multiples
of the driving period Tdriving ≈ 21 ms, cf. part (a). In case of dominating channel noise, the in2uence of
driving on the ISIH is barely distinguishable, cf. part (b).

but after some refractory time which is necessary to achieve the resting potential af-
ter hyperpolarization. The above elucidation suggests that with decreasing patch size
the spiking activity becomes more regular. A quantity that measures this regularity is
the so-called coe7cient of variation (CV ), or the relative dispersion of the interspike
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(a) (b)

Fig. 3. (a) The dependence of the coe7cient of variation CV in (8) versus patch sizes. (b) Firing rates
k = 1=〈T 〉 for the undriven (solid line) and driven case (dotted line, Iext = sin(0:3 · t)) are depicted versus
the patch areas. While the 5ring rate is monotonically decreasing with increasing patch size the coe7cient
of variation evidences the phenomenon of intrinsic coherence resonance.

interval distribution, i.e.,

CV :=

√〈T 2〉 − 〈T 〉2
〈T 〉 ; (8)

which involves the mean interspike interval 〈T 〉 := limN→∞
∑

(ti+1 − ti)=N and the
mean squared interval 〈T 2〉 := limN→∞

∑
(ti+1 − ti)2=N . For a fully uncorrelated se-

quence of spikes, which corresponds to the Poissonian spike train, the coe7cient of
variation would assume the value CV = 1. For a more ordered spike train, the coef-
5cient of variation assumes values less then one, CV ¡ 1. For a purely deterministic
signal, the CV equals to zero.
Fig. 3 depicts the coe7cient of variation (8) and the 5ring rate k = 1=〈T 〉. While

the 5ring rate decreases monotonically with respect to the patch area, the CV reveals
the novel phenomenon of intrinsic coherence resonance [19]. At an optimal dose of
internal noise, i.e., an optimal size of the cell membrane patch near S = 1 �m2, the
CV exhibits a minimum, where the spike train becomes distinctly more ordered. With
decreasing noise level (large S) this feature becomes increasingly diminished, and the
CV increases.

4.2. Sub-threshold sinusoidal driving

Next, we switch on an external, sub-threshold sinusoidal driving, i.e.,

Iext := A sin("t) : (9)

with A¡Ath, where Ath is the threshold amplitude of driving in the deterministic limit,
S → ∞. For " = 0:3 ms−1 in Fig. 2, Ath ≈ 1:6 �A=cm2. Interestingly enough the
distribution of interspike intervals is not aAected much for small patch sizes near S ≈
1 �m2, cf. Fig. 2(b), where the solid and dotted curves are barely distinguishable; see
also Fig. 3(a) at S ≈ 1 �m2. In this case, the spiking activity possesses an internal
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(a) (b)

Fig. 4. Stochastic (Hilbert) phase process: (a) realization of the voltage signal (solid line) and the corre-
sponding Hilbert transform (dotted line); (b) The trajectory in {V; VH}-space is plotted for the time interval
in (a) which is determined by two dashed vertical lines at t=40 ms and t=80 ms, respectively, containing
a single 5ring event. The {V (t); VH (t)}-space trajectory undergoes a full 2$-revolution during such a single
5ring event.

rhythm which withstands the external disturbances. For larger patch sizes the internal
noise decreases and the periodic driving induces peaks at multiples of the driving
period, see Fig. 2(a). In this regime the external driving imposes a more ordered
spiking activity which is characterized by a reduced CV , see Fig. 3(a).

4.3. The concept of stochastic phase processes: frequency synchronization

In order to explore the stochastic phase and stochastic frequency synchronization
between the membrane spiking activity and the driving current, one has to invoke the
concept of a phase process linked to the stochastic voltage signal V (t). The Hilbert
phase %H (t) constitutes one such appropriate phase de5nition. The corresponding ap-
proach is based on the Hilbert transform, it has been originally introduced by Gabor
[22,23]. The signal is extended into the complex plane with the imaginary axis given
by the Hilbert transform of signal, VH , cf. Fig. 4:

zV (t) := V (t) + iVH (t) ; (10)

with

VH (t) = H [V ](t) =
1
$
P
∫ ∞

−∞

V (')
t − '

d' : (11)

The integral in (11) is evaluated in the sense of the Cauchy principal value (P). The
Hilbert transform is then used to de5ne the corresponding stochastic process for the
Hilbert phase %H (t), i.e.,

%H (t) = arctan
[
VH (t)
V (t)

]
: (12)

Here, the phase should be understood as continuously growing function of time. In
Fig. 4(a) a realization of the voltage signal and the related Hilbert transform are plotted.
Each repeated 5ring event corresponds to a cycle in the {V; VH}–space, see 4(b)); it
thus adds an 2$-increment to the phase of the voltage signal. The corresponding Hilbert
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(a) (b)

Fig. 5. (a) The dependence of Rice frequency (15) on the patch size is plotted for three sub-threshold ampli-
tudes A of the sinusoidal stimulus Iext(t)=A sin(0:2·t): A=0:0 �A=cm2 (short–dashed line), A=2:02 �A=cm2

(dotted line), A = 2:05 �A=cm2 (long–dashed line), and for a super-threshold amplitude A = 2:2 �A=cm2

(dotted–dashed line). The threshold amplitude is Ath ≈ 2:1 �A=cm2. The level line displays the angular
driving frequency " = 0:2 ms−1. For subthreshold signals the 5ring rate vanishes for large areas and the
Rice frequency approaches zero, while for a super-threshold amplitude the driving frequency value is at-
tained. (b) The phase probability density p(%dr) of spiking events versus the phase %dr ="t of the driving
signal is plotted for A = 2:05 �A=cm2 and four diAerent patch areas: S = 4 �m2 (solid line); S = 16 �m2

(short–dashed line); S = 64 �m2 (long–dashed line); S = 256 �m2 (dotted–dashed line).

phase frequency !H is then given by

!H := lim
t→∞

%H (t)
t

: (13)

An alternative phase de5nition uses the feature of the point process that is generated
by the spikes of the voltage signal V (t). These spikes de5ne marker events at times
{ti} with each of them pinpointing the completion of a cycle. The phase increase
between two subsequent marker events is then given exactly by 2$. Moreover, by a
linear interpolation it is possible to de5ne the instantaneous phase %R(t); i.e.,

%R(t) = 2$
t − ti

ti+1 − ti
+ 2$i (ti6 t6 ti+1) ; (14)

where the times ti are 5xed by the marker events. The average frequency of the process
%R(t) is then given by

!R = lim
t→∞

%R(t)
t

= 2 $ lim
t→∞

N (t)
t

; (15)

where N (t) denotes the total number of spikes within the time interval [0; t]. The index
R alludes to the so-called Rice frequency [3,11,24].
Since each action potential adds, on the one hand, the 2$-increment to the Hilbert-

phase and, on the other hand, de5nes the corresponding single marker event, the Hilbert
frequency equals the Rice frequency, although the two phase de5nitions are diAerent.

4.4. Imperfect synchronization for a periodically driven membrane patch

The dependence of the mean frequency !R on the patch size is depicted in Fig. 5(a)
for driving signals with frequency "=0:2 ms−1 and for diAerent driving amplitudes A.
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In the strong noise regime, the spiking activity is determined by the internal noise
and is independent of the driving frequency and amplitude. For intermediate-to-small
noise strengths the spike occurrences are locked to multiples of the driving period,
cf. Fig. 2(a).
This synchronization behavior is also reestablished in the phase probability density

p(%dr) of spiking events in Fig. 5(b). The latter quantity is de5ned with respect to
the phase %dr ="t of the driving signal within the driving period, i.e., 06%dr ¡ 2$.
For small patch sizes, i.e., for a large channel noise, the probability density p(%dr)
is relatively 2at. When the channel noise diminishes a peak structure becomes more
and more pronounced. It worth to notice that spikes occur most frequently before the
driving current reaches its maximum at "t = $=2. The occurrence of the spike thus
forecasts that the signal’s maximum will be reached soon. This eAect is similar to the
eAect of anticipated synchronization between master and slave neurons [25]. Moreover,
a very interesting new eAect is noticeable in Fig. 5(b): the phase lag between the
maximum of p(%dr) and the signal maximum at %dr = $=2 increases upon increasing
the channel noise strength. In other words, the smaller membrane patch 5res most
probably more in advance than the larger patch, although the probability distribution of
the spikes occurrence is increasingly 2attened. This prominent eAect can be explained as
follows. The increase of noise strength certainly helps to overcome the 5ring threshold.
Therefore, the system tends to 5re more and more in advance, before the maximum
of signal is reached. However, the noise increases also the uncertainty of 5ring events
and, therefore, the probability distribution becomes 2at.
Even though the observed locking behavior presents clearly some sort of synchro-

nization, no perfect frequency synchronization—characterized by a perfect locking of
the mean frequency (13) to the external driving frequency—can be detected, see
Fig. 5(a). While for large, but still sub-threshold stimuli A¡Ath ≈ 2:1 �A=cm2 a
plateau is formed over a wide range of noise strengths, the mean frequency, which
corresponds to this plateau, does not match the driving frequency. This frequency
mismatch happens due to the multimodal structure of ISIH, which is caused by the
locking of the 5ring occurrences to the external force period in ratios diAerent from
1:1. A similar phenomenon of imperfect synchronization has also been found in the
human cardiorespiratory activity [6]. The plateau corresponds to the situation where
nearly every maximum of the driving force produces a spike. Nevertheless, some driv-
ing maxima produce no spikes and therefore the mean frequency is smaller than the
driving frequency. We point out, however, that for a signal represented by a stochas-
tic spike train, like in Ref. [13], a perfect synchronization should be observed. The
reason is that a random driving with the mean frequency 〈"〉 will not produce addi-
tional maxima in the ISIH at the multiplies of the mean driving frequency. The oc-
currence of such maxima thereby destroys the perfect synchronization in the periodic
case.
The situation changes with a super-threshold stimuli, see dashed–dotted line in

Fig. 5(a): here the increasing strength of the channel noise with decreasing size S
destroys the perfect frequency synchronization. This is caused by the skipping of some
5ring events, or by the generation of additional spikes.
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5. Conclusions

In conclusion, we have investigated the synchronization in a noisy generalization
of the Hodgkin–Huxley model, which incorporates the spontaneous 2uctuations of the
membrane conductivity due to the individual ion channel dynamics—the so-called chan-
nel noise. In the absence of an externally applied stimulus the excitable membrane patch
exhibits a noise-induced rhythmic spiking activity at an optimal patch area. This eAect
can be regarded as the intrinsic coherence resonance [19,20]. In the presence of external
periodic driving, the interspike interval histograms clearly demonstrate a synchroniza-
tion of 5ring events with the external driving for large and intermediate patch sizes,
while for small membrane patches the channel noise reigns the spiking dynamics. Due
to the excitation of higher harmonics, a perfect frequency synchronization could not be
observed. Instead, the Rice frequency, which is de5ned by the occurrence frequency of
action potentials, exhibits a plateau-like structure for subthreshold signals: over a rather
wide range of channel noise strength the Rice frequency can be 5xed at a value smaller
than the driving frequency. Furthermore, it was shown that the Hilbert frequency of
the voltage signal equals to the Rice frequency of the spike process and, therefore, this
average Rice frequency also reveals an imperfect synchronization behavior.
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