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Abstract

The Brownian motion of a single, classical particle, meandering in a zigzag-shaped, two-
dimensional potential pipeline is addressed. When driven away from thermal equilibrium by an
unbiased, alternating force of moderate frequency, the particle exhibits the phenomenon of abso-
lute negative mobility. Two competing physical mechanisms governing the e0ect are identi1ed,
giving rise to the possibility of an even more intriguing, new response behavior, such as the
occurrence of multiple current reversals.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

To most people it appears obvious that a system at rest, when perturbed by an
external static force, responds by moving into the direction of that force. Indeed, if
the unperturbed system is at thermal equilibrium then any other kind of behavior, e.g.
a permanent motion without external force or in the direction opposite to the applied
force, is forbidden by the second law of thermodynamics, since it could be exploited to
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construct a perpetuum mobile of the second kind. 1 Far away from thermal equilibrium,
however, no basic principles a priori rule out such counter-intuitive e0ects. In fact, the
former case is well-known as ratchet e7ect in non-equilibrium systems possessing
an intrinsic asymmetry [2–8], whereas the latter case is known as absolute negative
mobility (ANM). More precisely, ANM is de1ned as follows: Upon application of
an external static “load” force F of whatever direction the system responds with an
average motion (or “current”) which always runs into the direction opposite to that
of F (provided F is not too large in modulus). Especially, no average current arises
when F = 0. In other words, the current–load characteristics of the system exhibits a
passage through the origin with a negative slope as its most prominent feature. ANM
has been investigated in di0erent quantum mechanical non-equilibrium systems [9–19],
in models of interacting Brownian particles [20–25], and, more recently, has also been
shown to exist in classical, single-particle systems [26–28].
In Ref. [27], several distinct models of the latter class have been shown to exhibit

ANM under slow non-equilibrium perturbations. In the present paper, we will extend
our studies of one of those models from Ref. [27] to the case when it is disequili-
brated by moderately fast perturbations. As it turns out, this system reveals several
particularly interesting, new properties, caused by the fact that here two di0erent, new
physical mechanisms are governing the occurrence (or not) of ANM. Due to their com-
peting character, the current–load characteristics can be tailored to exhibit additional,
qualitatively distinct features, such as multiple current reversals superimposed to ANM
(see Fig. 3b).

2. Model

We consider the following two-dimensional overdamped coupled Brownian motion

�ẋ(t) =−9xV (x(t); y(t)) +
√
2�kBT
x(t) ; (1)

�ẏ(t) =−9yV (x(t); y(t)) +
√
2�kBT 
y(t) + Ftot(t) ; (2)

where kB is Boltzmann’s constant and � the viscous friction coeLcient. As usual, 
x(t)
and 
y(t) denote independent, unbiased, �-correlated Gaussian noise sources represent-
ing the Nuctuations due to the thermal environment at temperature T . Furthermore,
the Brownian motion is con1ned to a corridor-like, spatially periodic and symmet-
ric hard-wall potential V (x; y) as depicted in Fig. 1a. Finally, the thermal equilib-
rium is broken by an externally applied force Ftot(t) composed of a static part F and
some unbiased, time-dependent part which will be speci1ed in more detail below (see

1 An apparent counter example [1] is a bubble in a liquid under the action of a force generated by
gravitation: it always moves in the direction opposite to the applied force (gravitation), while the force-free
setup (in the absence of gravitation) is at thermal equilibrium. However, in this case the (gravitational) force
does not act on the bubble (system) itself, it only a0ects the liquid (environment) by giving the buoyancy.
Accordingly, no work can be gained and no perpetuum mobile constructed.
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Fig. 1. Di0erent possible geometries of potential landscapes V (x; y) in (1) and (2) that can exhibit ANM.
In each case, the particle is con1ned to the inner white regions where V (x; y) ≡ 0; the black walls are
de1ned to have in1nite potential. All these hard-wall “corridors” are periodic (shown are two periods) and
symmetric under inversion of the y-axis. The common feature of all the di0erent potentials is the existence
of particle traps with increasing “stickiness” as the external force strength along the y-axis increases (see
main text). (a) The particle is trapped in the corners where the “vertical parts” of the corridor are joined
to the “diagonal parts”. Note that the angle enclosed by the “vertical” and diagonal elements is smaller
than �=2. (b) The traps are represented by the attached “1ns” and are entered by lateral di0usion along the
x-direction while “falling down” the central “backbone”. (c) The vertical parts of the corridor act as traps.
The particle “falls into” them when “sliding down the diagonal ramps”. (d) The particle traps are given by
the sharp corners between the “corridor walls” and the obstacles.

Eq. (4)). Aiming at mobility properties of this model, our basic quantity of interest is
the average particle current

〈ẏ〉 := lim
t→∞

y(t)
t

(3)

along the direction of the externally applied static force F .
The considered hard-wall potential (Fig. 1a) is composed of “vertical parts” (parallel

to the y-direction) and intermediate “diagonal parts”, forming a periodic and spatially
symmetric “zigzag” pattern. The sharp corners between “vertical” and “diagonal ele-
ments”, in combination with the external force, play a key role for the Brownian motion
(1), (2) as particle traps: Under the action of a purely static force Ftot(t) ≡ F=const:
(which we may assume to be positive due to symmetry reasons), the induced drift of
the particle along the y-direction will quickly get stuck in such a corner. An escape out
of the corner is then possible only due to the ambient thermal noise when the particle
di0usively moves “up” the adjacent diagonal part of the “corridor” against the force F
until it reaches the next “vertical element”. The particle thus lingers the longer in this
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trap the larger the force F is. 2 As shown in Refs. [26,27], the existence of such traps
with increasing “depth” or “stickiness” as the external force increases can be exploited
to generate ANM under suLciently slow non-equilibrium perturbations Ftot(t).

More generally, the common feature of all the di0erent corridor shapes depicted
in Fig. 1 is that each of them provides traps with the above-mentioned “stickiness”
property and, thus, can exhibit ANM according to the same basic slow-driving
mechanism [27].
The ANM-phenomenon in such corridors is, however, not restricted to adiabatically

slow non-equilibrium perturbations [26,27], but may show up for (moderately) fast
driving as well. In this latter regime, however, the physical mechanisms for ANM
depend on the geometrical details of the “corridor”. The potential landscape from
Fig. 1a reveals a particularly rich dynamical behavior in this context as we will discuss
in detail in the following.

3. ANM and beyond in the zigzag corridor

We consider a deterministic non-equilibrium perturbation that switches periodically 3

between the two states ±A moderately fast, that is, with a sojourn time � much smaller
than the mean escape time out of the traps, but large enough that the particle can at
least travel completely through a vertical part of the “corridor” by free drift. Together
with the static bias F , the total force Ftot(t) then adopts alternatingly the values F ±A
within a period 2�, that means

Ftot(t) = F + A sign[sin (t �=�)] : (4)

We assume that F¿ 0, A¿ 0 and A¿F , such that the two total forcing states F +
A¿ 0 and F − A¡ 0 have opposite sign. As a consequence, a particle that becomes
trapped in a corner of the “corridor” from Fig. 1a is typically locked for a short
time only, namely until the external force Ftot(t) switches from its current state, e.g.
F + A¿ 0, to F − A¡ 0, or vice versa. Correspondingly, thermally induced escapes
out of the traps can be neglected. To understand what happens instead, let us consider
a particle that is trapped, say, in corner 1 of Fig. 2a by Ftot(t) = F + A¿ 0. After
the reversal of Ftot(t) to the state F − A¡ 0 the particle either “falls down vertically”
through the “corridor” to the opposite corner 2 (to be trapped again), or else it “slides
down the adjacent diagonal branch” and reaches the next “vertical segment” ending
up in corner 3, see Fig. 2a. After the next switch of Ftot(t) back to F + A¿ 0,
the particle has again these two possibilities to leave its corner, namely “vertically”
or “diagonally” (see Fig. 2a). The latter alternative is realized whenever the particle

2 The escape process out of the trapping corner can be approximately described [27] as thermally activated
surmounting of a potential barrier [29], where the height of the barrier increases linearly with the external
force.

3 For the sake of simplicity, we restrict ourselves to the case of a periodic non-equilibrium driving. The
ANM-phenomenon is expected to be robust against various modi1cations of this simple choice [26,27].
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Fig. 2. (a) Typical traveling routes of a particle starting in corner 1 with Ftot(t) = F − A¡ 0, see main
text. ANM results from the sketched solid path, whereas the dashed ones do not contribute to ANM.
Whenever being “freed” from its trapped state in a corner by a switch of Ftot(t), the particle can either
follow the adjacent “vertical branch” or else the “diagonal branch”. The respective probabilities for these
two alternatives are determined by the mechanisms illustrated in the panels (b) and (c). (b) When a particle
is trapped in a corner its position within this trap can be described according to some probability distribution
(due to the ambient thermal noise). This distribution is sketched for Ftot(t) = F + A¿ 0 (corner 1) and for
Ftot(t) = F − A¡ 0 (corner 2); note that F + A¿ |F − A|. The 1lled parts of the sketched distributions
represent the probabilities for entering the diagonal branch. (c) If the “corridor” width is small [as in (b)],
the “branching probability” is practically not a0ected by di0usion in x-direction during the “free fall” along
the y-direction which follows the reversal of Ftot(t); for wider “corridors” (in particular for wider “diagonal
elements”) this mechanism becomes crucial. Sketched are the probability distributions of the particle, after it
has passed the width of the diagonal branches in y-direction: “branch” 1 for the large (in modulus) trapping
force F + A¿ 0, branch 2 for the small (in modulus) trapping force F − A¡ 0. Again, the 1lled parts of
the distributions indicate the probabilities for entering the diagonal branch.

di0usively overcomes a lateral distance just larger than the width of the vertical parts of
Fig. 1a during the (short) time it is locked in a corner and, thus, is located somewhere
inside the “diagonal branch” at the reversal of Ftot(t). Exactly, as for a genuine escape
out of the trap, this “incomplete escape” process occurs with greater probability for
smaller trapping forces, i.e., the particle “branches o0” into the diagonal part more
frequently in those corners where it becomes trapped by the smaller force (in modulus)
F −A (Fig. 2b). Consequently, it gradually “climbs up the corridor” into the direction
opposite to the static force F and hence exhibits ANM. This mechanism is more
eLcient for narrower corridors; then the lateral distance to be overcome for entering a
“diagonal branch” is decreased. These predictions are fully con1rmed by the simulations
of (1), (2), see Fig. 3a.
The above-mentioned force-dependent “branching probability” is modi1ed by an ad-

ditional mechanism: If the particle falls down vertically along the y-axis just after a
reversal of Ftot(t), it can thermally di0use along the x-direction and subsequently move
into the diagonal branch, as long as the “free fall” has not yet covered the width of
this diagonal branch. The probability of such a “di0usive branching” process increases
with increasing available time for di0usion and, therefore, is greater if the particle has
been trapped by the larger force (in modulus) F + A (the free fall then results from
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Fig. 3. Current–load characteristics of (1) and (2) for the “zigzag potential” V (x; y) shown in the inset
of panel (a). The results are obtained by numerical simulations of (1) and (2). Dimensionless parameters:
l1 = 1:5, � = 80◦, kBT = 0:1, � = 1:0; l2 is chosen such that the length of the period along the y-axis is
identical for all shown cases. (a) Periodic non-equilibrium driving from (4) with � = 1:0, A = 10. Open
circles: b1 =b2 =0:10, l2 =2:10. Filled circles: b1 =b2 =0:01, l2 =2:01. (b) Periodic non-equilibrium driving
from (5) with � = 1:5, � = 1

3 , A = 10. Open circles: b1 = b2 = 0:3, l2 = 2:3. Filled circles: b1 = b2 = 0:6,
l2 = 2:6. Stars: b1 = 1:0, b2 = 0:6, l2 = 3:0. The interconnecting dotted lines serve as a guide for the eyes.

the smaller force F −A), see Fig. 2c. Correspondingly, di0usive branching is more ef-
1cient for wider corridors, in particular for wider “diagonal segments”. In other words,
this physical mechanism works just opposite to the previously discussed “incomplete
escape” process and thus weakens or even completely suppresses ANM.
When slightly modifying the so far considered periodic non-equilibrium forcing (4),

however, the above-described di0usive branching mechanism can be exploited to gen-
erate ANM as well: Between the original states F ± A of the driving Ftot(t) we insert
“breaks” [30] where only the static force F acts along the y-direction, i.e., where
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Ftot(t) ≡ F in (2). The duration of these breaks is chosen to cover the fraction
06 �¡ 1 of each half-period �, i.e.,

Ftot(t) =

{
F for 06 tmod �¡ �� ;

F + A sign[sin (t�=�)] for ��6 tmod �¡� :
(5)

Then, a particle which is locked in a corner due to the force Ftot(t) = F − A¡ 0
(e.g. in corner 2 or 3 of Fig. 2a) will next be subject to F ¿ 0 and thus travel along
the y-direction. Vice versa, a particle that is trapped by the force F + A¿ 0 (e.g.
in corner 1 or 4 of Fig. 2a) remains trapped by the next forcing state F ¿ 0 until
Ftot(t) switches to F − A¡ 0. Consequently, for small static forces F & 0 di0usive
branching is the prominent ANM-mechanism, whereas for large forces F . A, incom-
plete escape processes are at the roots of ANM. Together with our observation that
these two mechanisms are supported by distinct widths of the corridor we can control
either mechanism by adjusting the geometrical properties of the “corridor”, thereby
creating qualitatively di0erent current–load characteristics with ANM (examples are
depicted in Fig. 3b): (i) The current–load curve as illustrated by the stars in Fig. 3b
exhibits a non-monotonic ANM-e0ect. (ii) The 1lled circles in Fig. 3b show a similar
non-monotonic behavior, but now giving rise to several current reversals “superim-
posed” to ANM: Upon increasing F in modulus (starting from F =0) the current 1rst
exhibits ANM, afterwards changes its direction to adopt the same orientation as the
load force F , and then, for even larger F , reverses once more running again into the
direction opposite to F . (iii) The current–load curve indicated by the open circles in
Fig. 3b does not exhibit ANM in the strict sense as de1ned above (no negative slope
at F=0). Instead, the response of the system to an external load F that is not too large
is as usually expected, namely a current in the same direction as the applied force F .
Surprisingly enough, upon further increasing F the current all of a sudden switches
its direction and runs opposite to the external load.

4. Discussion

An amazing consequence of ANM arises when the original homogeneous static force
F is replaced by a spatially very slowly varying force 1eld F(y), deriving from a poten-
tial W (y), i.e., F(y)=−W ′(y). Then, ANM still survives locally, with the consequence
of a global motion towards the maxima of the potential W (y). In other words, ANM
is tantamount to the stabilization of the unstable states of the potential W (y) [20].
Similarly, as for the quantum mechanical and collective systems mentioned in the

introduction, ANM for a single classical Brownian particle is, so far, mainly of principal
interest while sweeping applications, e.g. for practical technological purposes or for
elucidating some existing natural phenomena are not yet clearly identi1able. However,
some directions which may deserve a more detailed exploration in the future could be
the separation of di0erent types of particles or the construction of a “Brownian switch”
by exploiting the sensitive dependence of the current–load characteristics on the system
parameters as exempli1ed by Fig. 3b, see also Refs. [28,31,32]. Immediate experimental



108 R. Eichhorn et al. / Physica A 325 (2003) 101–109

implementations of our theoretical concepts should be possible in Coulomb blockade
systems [33,34], the vortex dynamics in superconductors [35–38], and by means of
colloidal suspensions [39].
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