
JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 7 15 FEBRUARY 2003
Rectification of laser-induced electronic transport through molecules
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We study the influence of laser radiation on the electron transport through a molecular wire weakly
coupled to two leads. In the absence of a generalized parity symmetry, the molecule rectifies the
laser-induced current, resulting in directed electron transport without any applied voltage. We
consider two generic ways of dynamical symmetry breaking: mixing of different harmonics of the
laser field and molecules consisting of asymmetric groups. For the evaluation of the nonlinear
current, a numerically efficient formalism is derived which is based upon the Floquet solutions of
the driven molecule. This permits a treatment in the nonadiabatic regime and beyond linear
response. ©2003 American Institute of Physics.@DOI: 10.1063/1.1536639#
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I. INTRODUCTION

During the last several years, we experienced a wealt
experimental activity in the field of molecular electronics.1–3

Its technological prospects for nanocircuits4 have created
broad interest in the conductance of molecules attache
metal surfaces or tips. In recent experiments5–8 weak tunnel-
ing currents through only a few or even single molecu
coupled by chemisorbed thiol groups to the gold surface
leads has been achieved. The experimental developme
accompanied by an increasing theoretical interest in
transport properties of such systems.9,10 An intriguing chal-
lenge presents the possibility to control the tunneling curr
through the molecule. Typical energy scales in molecules
in the optical and the infrared regime, where today’s la
technology provides a wealth of coherent light sourc
Hence, lasers represent an inherent possibility to contro
oms or molecules and to direct currents through them.

A widely studied phenomenon in extended, strong
driven systems is the so-termed ratchet effect,11–16originally
discovered and investigated for overdamped class
Brownian motion in periodic nonequilibrium systems in t
absence of reflection symmetry. Counterintuitively to t
second law of thermodynamics, one then observes a dire
transport although all acting forces possess no net bias.
effect has been established as well within the regime of
sipative, incoherent quantum Brownian motion.17 A related
effect is found in the overdamped limit of dissipative tunn
ing in tight-binding lattices. Here the spatial symmetry
typically preserved and the nonvanishing transport is brou
about by harmonic mixing of a driving field that include
higher harmonics.18–20 For overdamped Brownian motion
both phenomena can be understood in terms of breakin
generalized reflection symmetry.21

Recent theoretical descriptions of molecular conduc
ity are based on a scattering approach.22,23Alternatively, one
can assume that the underlying transport mechanism i

a!Electronic mail: sigmund.kohler@physik.uni-augsburg.de
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electron transfer reaction and that the conductivity can
derived from the corresponding reaction rate.9 This analogy
leads to a connection between electron transfer rates
donor–acceptor system and conduction in the same sys
when operating as a molecular wire between two me
leads.24 Within the high-temperature limit, the electron tran
port on the wire can be described by inelastic hopp
events.9,25–27 For a more quantitativeab initio analysis, the
molecular orbitals may be taken from electronic structu
calculations.28

Isolated atoms and molecules in strong oscillating fie
have been widely studied within a Floquet formalism29–34

and many corresponding theoretical techniques have b
developed in that area. This suggests the procedure follo
in Ref. 35: Making use of these Floquet tools, a formalis
for the transport through time-dependent quantum syst
has been derived that combines Floquet theory for a dri
molecule with the many-particle description of transp
through a system that is coupled to ideal leads. This
proach is devised much in the spirit of the Floquet–Mark
theory36,37 for driven dissipative quantum systems. It a
sumes that the molecular orbitals that are relevant for
transport are weakly coupled to the contacts, so that
transport characteristics are dominated by the molecule
self. Yet, this treatment goes beyond the usual rotating-w
approximation as frequently employed, such as, e.g., in R
37 and 38.

A time-dependent perturbative approach to the probl
of driven molecular wires has recently been described
Tikhonovet al.39,40 However, their one-electron treatment
this essentially inelastic transmission process cannot con
tently handle the electronic populations on the leads. Mo
over, while their general formulation is not bound to the
independent channel approximation, their actual applica
of this approximation is limited to the small light-molecu
interaction regime.

With this work we investigate the possibilities for mo
lecular quantum wires to act as coherent quantum ratch
3 © 2003 American Institute of Physics
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i.e., as quantum rectifiers for the laser-induced electrical
rent. In doing so, we provide a full account of the derivati
published in letter format in Ref. 35. In Sec. II we presen
more detailed derivation of the Floquet approach to the tra
port through a periodically driven wire. This formalism
employed in Sec. III to investigate the rectification propert
of driven molecules. Two generic cases are discus
namely mixing of different harmonics of the laser field
symmetric molecules and harmonically driven asymme
molecules. We focus thereby on how the symmetries of
model system manifest themselves in the expressions fo
time-averaged current. The general symmetry considerat
of a quantum system under the influence of a laser field
deferred to the Appendix.

II. FLOQUET APPROACH TO THE ELECTRON
TRANSPORT

The entire system of the driven wire, the leads, and
molecule–lead coupling as sketched in Fig. 1 is described
the Hamiltonian

H~ t !5Hwire~ t !1H leads1Hwire-leads. ~1!

The wire is modeled byN atomic orbitalsun&, n51,...,N,
which are in a tight-binding description coupled by hoppi
matrix elements. Then, the corresponding Hamiltonian
the electrons on the wire reads in a second quantized fo

Hwire~ t !5 (
n,n8

Hnn8~ t !cn
†cn8 , ~2!

where the fermionic operatorscn , cn
† annihilate, respectively

create, an electron in the atomic orbitalun& and obey the
anticommutation relation@cn ,cn8

†
#15dn,n8 . The influence

of the laser field is given by a periodic time-dependence
the on-site energies yielding a single particle Hamiltonian
the structureHnn8(t)5Hnn8(t1T), whereT52p/V is de-
termined by the frequencyV of the laser field.

The orbitals at the left and the right end of the molecu
which we shall term donor and acceptor,u1& anduN&, respec-
tively, are coupled to ideal leads~cf. Fig. 1! by the tunneling
Hamiltonians

Hwire-leads5(
q

~VqL cqL
† c11VqRcqR

† cN!1H.c. ~3!

FIG. 1. Level structure of a molecular wire withN58 atomic sites which
are attached to two leads.
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The operatorcqL (cqR) annihilates an electron on the le
~right! lead in stateLq (Rq) orthogonal to all wire states
Later, we shall treat the tunneling Hamiltonian as a pert
bation, while taking into account exactly the dynamics of t
leads and the wire, including the driving.

The leads are modeled as noninteracting electrons w
the Hamiltonian

H leads5(
q

~eqL cqL
† cqL1eqRcqR

† cqR!. ~4!

A typical metal screens electric fields that have a freque
below the so-called plasma frequency. Therefore, any e
tromagnetic radiation from the optical or the infrared spec
range is almost perfectly reflected at the surface and will
change the bulk properties of the gold contacts. This justi
the assumption that the leads are in a state close to equ
rium and, thus, can be described by a grand-canonical
semble of electrons, i.e., by a density matrix

% leads,eq}exp@2~H leads2mLNL2mRNR!/kBT#, ~5!

where mL/R are the electrochemical potentials andNL/R

5(qcqL/R
† cqL/R the electron numbers on the left/right lea

As a consequence, the only nontrivial expectation values
lead operators read

^cqL
† cqL&5 f ~eqL2mL!, ~6!

whereeqL is the single particle energy of the stateqL and
correspondingly for the right lead. Here,f (x)5(1
1ex/kBT)21 denotes the Fermi function.

A. Time-dependent electrical current

The net~incoming minus outgoing! current through the
left contact is given by the negative time derivative of t
electron number in the left lead, multiplied by the electr
charge2e, i.e.,

I L~ t !5e
d

dt
^NL& t5

ie

\
^@H~ t !,NL#& t . ~7!

Here, the angular brackets denote expectation values at
t, i.e.,^O& t5Tr@Or(t)#. The dynamics of the density matri
is governed by the Liouville–von Neumann equati
i\%̇(t)5@H(t),%(t)# together with the factorizing initial
condition %(t0)5%wire(t0) ^ % leads,eq. For the Hamiltonian
~1!, the commutator in Eq.~7! is readily evaluated to

I L~ t !5
2e

\
Im (

q
VqL^cqL

† c1& t . ~8!

To proceed, it is convenient to switch to the interaction p
ture with respect to the uncoupled dynamics, where
Liouville–von Neumann equation reads

i\
d

dt
%̃~ t,t0!5@H̃wire-leads~ t,t0!,%̃~ t,t0!#. ~9!

The tilde denotes the corresponding interaction picture
erators,X̃(t,t8)5U0

†(t,t8)X(t)U0(t,t8), where the propaga
tor of the wire and the lead in the absence of the lead–w
coupling is given by the time-ordered product
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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U0~ t,t8!5TQ expS 2
i

\ E
t8

t

dt9@Hwire~ t9!1H leads# D . ~10!

Equation~9! is equivalent to the integral equation

%̃~ t,t0!5%̃~ t0 ,t0!

2
i

\ E
t0

t

dt8@H̃wire-leads~ t8,t0!,%̃~ t8,t0!#. ~11!

Inserting this relation into Eq.~8!, we obtain an expres
sion for the current that depends on the density of state
the leads times their coupling strength to the connected s
At this stage it is convenient to introduce the spectral den
of the lead–wire coupling

GL/R~e!5
2p

\ (
q

uVqL/Ru2d~e2eqL/R!, ~12!

which fully describes the leads’ influence. If the lead sta
are dense,GL/R(e) becomes a continuous function. Since w
restrict ourselves to the regime of a weak wire–lead c
pling, we can furthermore assume that expectation value
lead operators are at all times given by their equilibriu
values~6!. Then we find after some algebra for the stationa
~i.e., for t0→2`), time-dependentnet electrical current
through the left contact the result

I L~ t !5
e

p\
ReE

0

`

dtE de GL~e!ei et/\$^c1
† c̃1~ t,t

2t!& t2t2@c1
† ,c̃1~ t,t2t!#1 f ~e2mL!%. ~13!

A corresponding relation holds true for the current throu
the contact on the right-hand side. Note that the anticom
tator @c1

† ,c̃1(t,t2t)#1 is in fact a c-number~see Eq.~22!
below!. Like the expectation valuêc1

†c̃1(t,t2t)& t2t , it de-
pends on the dynamics of the isolated wire and is influen
by the external driving.

It is frequently assumed that the attached leads can
described by a one-dimensional tight-binding lattice w
hopping matrix elementsD8. Then, the spectral densitie
GL/R(e) of the lead–wire couplings are given by th
Anderson–Newns model,41 i.e., they assume an elliptica
shape with a bandwidth 2D8. However, because we ar
mainly interested in the behavior of the molecule and no
the details of the lead–wire coupling, we assume that
conduction bandwidth of the leads is much larger than
remaining relevant energy scales. Consequently, we app
mate in the so-called wide-band limit the functionsGL/R(e)
by the constant valuesGL/R . The first contribution of thee
integral in Eq.~13! is then readily evaluated to yield an e
pression proportional tod~t!. Finally, this term becomes lo
cal in time and readseGL^c1

†c1& t .

B. Floquet decomposition

Let us next focus on the single-particle dynamics of
driven molecule decoupled from the leads. Since its Ham
tonian is periodic in time,Hnn8(t)5Hnn8(t1T), we can
solve the corresponding time-dependent Schro¨dinger equa-
Downloaded 14 Oct 2003 to 137.250.81.34. Redistribution subject to A
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tion within a Floquet approach. This means that we make
of the fact that there exists a complete set of solutions of
form29–31,33,34

uCa~ t !&5e2 i eat/\uFa~ t !&, uFa~ t !&5uFa~ t1T !& ~14!

with the quasienergiesea . Since the so-called Floque
modesuFa(t)& obey the time-periodicity of the driving field
they can be decomposed into the Fourier series

uFa~ t !&5(
k

e2 ikVtuFa,k&. ~15!

This suggests that the quasienergiesea come in classes,

ea,k5ea1k\V, k50,61,62,..., ~16!

of which all members represent the same solution of
Schrödinger equation. Therefore, the quasienergy spect
can be reduced to a single ‘‘Brillouin zone’’2\V/2<e
,\V/2. In turn, all physical quantities that are comput
within a Floquet formalism are independent of the choice
a specific class member. Thus, a consistent description m
obey the so-called class invariance, i.e., it must be invar
under the substitution of one or several Floquet states
equivalent ones,

ea , uFa~ t !&→ea1ka\V, eikaVtuFa~ t !&, ~17!

wherek1 , . . . ,kN are integers. In the Fourier decompositio
~15!, the prefactor exp(ikaVt) corresponds to a shift of the
side band index so that the class invariance can be expre
equivalently as

ea , uFa,k&→ea1ka\V, uFa,k1ka
&. ~18!

Floquet states and quasienergies can be obtained
the quasienergy equation29–34

S (
n,n8

un&Hnn8~ t !^n8u2 i\
d

dtD uFa~ t !&5eauFa~ t !&.

~19!

A wealth of methods for the solution of this eigenvalue pro
lem can be found in the literature.33,34 One such method is
given by the direct numerical diagonalization of the opera
on the left-hand side of Eq.~19!. To account for the periodic
time-dependence of theuFa(t)&, one has to extend the origi
nal Hilbert space by aT-periodic time coordinate. For a ha
monic driving, the eigenvalue problem~19! is band-diagonal
and selected eigenvalues and eigenvectors can be comp
by a matrix-continued fraction scheme.33,42

In cases where many Fourier coefficients~in the present
context frequently called ‘‘sidebands’’! must be taken into
account for the decomposition~15!, direct diagonalization is
often not very efficient and one has to apply more elabor
schemes. For example, in the case of a large driving am
tude, one can treat the static part of the Hamiltonian a
perturbation.30,43,44The Floquet states of the oscillating pa
of the Hamiltonian then form an adapted basis set for a s
sequently more efficient numerical diagonalization.

A completely different strategy to obtain the Floqu
states is to propagate the Schro¨dinger equation for a com
plete set of initial conditions over one driving period to yie
the one-period propagator. Its eigenvalues represent the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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quet states at timet50, i.e.,uFa(0)&. Fourier transformation
of their time-evolution results in the desired sidebands.
another, very efficient propagation scheme is the so-ca
(t,t8) formalism.45

As the equivalent of the one-particle Floquet sta
uFa(t)&, we define a Floquet picture for the fermionic cr
ation and annihilation operatorscn

† , cn , by the time-
dependent transformation

ca~ t !5(
n

^Fa~ t !un&cn . ~20!

The inverse transformation

cn5(
a

^nuFa~ t !&ca~ t ! ~21!

follows from the mutual orthogonality and the completene
of the Floquet states at equal times.33,34 Note that the right-
hand side of Eq.~21! becomest-independent after the sum
mation. In the interaction picture, the operatorca(t) obeys

c̃a~ t,t8!5U0
†~ t,t8!ca~ t !U0~ t,t8!5e2 i ea(t2t8)/\ca~ t8!.

~22!
n

be
a
th

y
s
3

th
,
it
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This is easily verified by differentiating the definition in th
first line with respect tot and using thatuFa(t)& is a solution
of the eigenvalue equation~19!. The fact that the initial con-
dition c̃a(t8,t8)5ca(t8) is fulfilled completes the proof. Us
ing Eqs.~21! and ~22!, we are able to express the anticom
mutator of wire operators at different times by Floquet sta
and quasienergies:

@cn8 ,c̃n
†~ t,t8!#15(

a
ei ea(t2t8)/\^n8uFa~ t8!&

3^Fa~ t !un&. ~23!

This relation together with the spectral decompositi
~15! of the Floquet states allows one to carry out the tim
and energy integrals in expression~13! for the net current
entering the wire from the left lead. Thus, we obtain

I L~ t !5(
k

e2 ikVtI L
k , ~24!

with the Fourier components
I L
k5eGLF (

abk8k9
^Fa,k81k9u1&^1uFb,k1k9&Rab,k82

1

2 (
ak8

~^Fa,k8u1&^1uFa,k1k8&1^Fa,k82ku1&^1uFa,k8&! f ~ea,k82mL!

2
i

2 (
ak8

~^Fa,k8u1&^1uFa,k1k8&2^Fa,k82ku1&^1uFa,k8&!PE de

p

f ~e2mL!

e2ea,k8
G . ~25!
re

the

tic
-

Here, P denotes the principal value of the integral; it does
contribute to the dc componentI L

0 . Moreover, we have in-
troduced the expectation values

Rab~ t !5^ca
†~ t !cb~ t !& t5Rba* ~ t ! ~26!

5(
k

e2 ikVtRab,k . ~27!

The Fourier decomposition in the last line is possible
cause allRab(t) are expectation values of a linear, dissip
tive, periodically driven system and therefore share in
long-time limit the time-periodicity of the driving field. In
the subspace of a single electron,Rab reduces to the densit
matrix in the basis of the Floquet states which has been u
to describe dissipative driven quantum systems in Refs.
36, 37, 46–48.

C. Master equation

The last step toward the stationary current is to find
Fourier coefficientsRab,k at asymptotic times. To this end
we derive an equation of motion for the reduced dens
operator%wire(t)5Trleads%(t) by reinserting Eq.~11! into the
ot

-
-
e

ed
4,

e

y

Liouville–von Neumann equation~9!. We use that to zeroth
order in the molecule–lead coupling the interaction-pictu
density operator does not change with time,%̃(t2t,t0)
'%̃(t,t0). A transformation back to the Schro¨dinger picture
results after tracing out the leads’ degrees of freedom in
master equation

%̇wire~ t !52
i

\
@Hwire~ t !,%wire~ t !#

2
1

\2 E
0

`

dtTrleads@Hwire-leads,@H̃wire-leads~ t

2t,t !,%wire~ t ! ^ % leads,eq##. ~28!

Since we only consider asymptotic timest0→2`, we have
set the upper limit in the integral to infinity. From Eq.~28!
follows directly an equation of motion for theRab(t). Since
all the coefficients of this equation, as well as its asympto
solution, areT-periodic, we can split it into its Fourier com
ponents. Finally, we obtain for theRab,k the inhomogeneous
set of equations
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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i

\
~ea2eb1k\V!Rab,k5

GL

2 (
k8

S (
b8k9

^Fb,k81k9u1&^1uFb8,k1k9&Rab8,k81 (
a8k9

^Fa8,k81k9u1&^1uFa,k1k9&Ra8b,k8

2^Fb,k82ku1&^1uFa,k8& f ~ea,k82mL!2^Fb,k8u1&^1uFa,k81k& f ~eb,k82mL!D
1same terms with the replacement$GL ,mL ,u1&^1u%→$GR ,mR ,uN&^Nu%. ~29!
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For a consistent Floquet description, the current formula
gether with the master equation must obey class invaria
Indeed, the simultaneous transformation with Eq.~18! of
both the master equation~29! and the current formula~25!
amounts to a mere shift of summation indices and, th
leaves the current as a physical quantity unchanged.

For the typical parameter values used in the following
large number of sidebands contributes significantly to
Fourier decomposition of the Floquet modesuFa(t)&. Nu-
merical convergence for the solution of the master equa
~29!, however, is already obtained by just using a few si
bands for the decomposition ofRab(t). This keeps the nu-
merical effort relatively small and justifiesa posteriori the
use of the Floquet representation~21!. Yet we are able to
treat the problem beyond a rotating-wave approximation

D. Average current

Equation ~24! implies that the currentI L(t) obeys the
time-periodicity of the driving field. Since we consider he
excitations by a laser field, the corresponding frequency
in the optical or infrared spectral range. In an experiment
will thus only be able to measure the time average of
current. For the net current entering through the left con
it is given by

Ī L5I L
05eGL(

ak F(
bk8

^Fa,k81ku1&^1uFb,k8&Rab,k

2^Fa,ku1&^1uFa,k& f ~ea,k2mL!G . ~30!

Mutatis mutandiswe obtain for the time-averaged net curre
that enters through the right contact

Ī R5eGR(
ak F(

bk8
^Fa,k81kuN&^NuFb,k8&Rab,k

2^Fa,kuN&^NuFa,k& f ~ea,k2mR!G . ~31!

Total charge conservation of the original wire–le
Hamiltonian ~1! of course requires that the charge on t
wire can only change by current flow, amounting to the co
tinuity equation Q̇wire(t)5I L(t)1I R(t). Since asymptoti-
cally, the charge on the wire obeys at most the periodic tim
dependence of the driving field, the time-average ofQ̇wire(t)
must vanish in the long-time limit. From the continuity equ
tion one then finds thatĪ L1 Ī R50, and we can introduce th
time-averaged current
Downloaded 14 Oct 2003 to 137.250.81.34. Redistribution subject to A
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Ī 5 Ī L52 Ī R . ~32!

For consistency, Eq.~32! must also follow from our ex-
pressions for the average current~30! and ~31!. In fact, this
can be shown by identifyingĪ L1 Ī R as the sum over the
right-hand sides of the master equation~29! for a5b and
k50,

Ī L1 Ī R5(
a

F i

\
~ea2eb1k\V!Rab,kG

a5b,k50

50,

~33!

which vanishes as expected.

E. Rotating-wave approximation

Although we can now in principle compute time
dependent currents beyond a rotating-wave approxima
~RWA!, it is instructive to see under what conditions o
may employ this approximation and how it follows from th
master equation~29!. We note that from a computationa
viewpoint there is no need to employ a RWA since within t
present approach the numerically costly part is the comp
tion of the Floquet states rather than the solution of the m
ter equation. Nevertheless, our motivation is that a RWA
lows an analytical solution of the master equation to low
order in the lead–wire couplingG. We will use this solution
in the following to discuss the influence of symmetries
the G-dependence of the average current.

The master equation~29! can be solved approximatel
by assuming that the coherent oscillations of allRab(t) are
much faster than their decay. Then it is useful to factor
Rab(t) into a rapidly oscillating part that takes the cohere
dynamics into account and a slowly decaying prefactor.
the latter, one can derive a new master equation with os
lating coefficients. Under the assumption that the coher
and the dissipative time scales are well separated, it is p
sible to replace the time-dependent coefficients by their tim
averages. The remaining master equation is generally
simpler form than the original one. Because we work h
already with a spectral decomposition of the master equat
we give the equivalent line of argumentation for the Four
coefficientsRab,k .

It is clear from the master equation~29! that if

ea2eb1k\V@GL/R , ~34!

then the correspondingRab,k emerge to be small and, thu
may be neglected. Under the assumption that the wire–
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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couplings are weak and that the Floquet spectrum has
degeneracies, the RWA condition~34! is well satisfied excep
for

a5b, k50, ~35!

i.e., when the prefactor of the left-hand side of Eq.~34! van-
ishes exactly. This motivates the ansatz

Rab,k5Pada,bdk,0 , ~36!

which means physically that the stationary state consist
an incoherent population of the Floquet modes. The occu
tion probabilitiesPa are found by inserting the ansatz~36!
into the master equation~29! and read

Pa5
(k@wa,k

1 f ~ea,k2mL!1wa,k
N f ~ea,k2mR!#

(k~wa,k
1 1wa,k

N !
. ~37!

Thus, the populations are determined by an average ove
Fermi functions, where the weights

wa,k
1 5GLu^1uFa,k&u2, ~38!

wa,k
N 5GRu^NuFa,k&u2, ~39!

are given by the effective coupling strengths of thekth Flo-
quet sidebanduFa,k& to the corresponding lead. The avera
current~32! is within RWA readily evaluated to read

Ī RWA5e (
a,k,k8

wa,k
1 wa,k8

N

(k9~wa,k9
1

1wa,k9
N

!

3@ f ~ea,k82mR!2 f ~ea,k2mL!#. ~40!

III. RECTIFICATION OF THE DRIVING-INDUCED
CURRENT

In the absence of an applied voltage, i.e.,mL5mR , the
average force on the electrons on the wire vanishes. Ne
theless, it may occur that the molecule rectifies the la
induced oscillating electron motion and consequently a n
zero dc current through the wire is established. In this sec
we investigate such ratchet currents in molecular wires.

As a working model we consider a molecule consist
of a donor and an acceptor site andN22 sites in between
~cf. Fig. 1!. Each of theN sites is coupled to its neare
neighbors by a hopping matrix elementsD. The laser field
renders each level oscillating in time with a positio
dependent amplitude. The corresponding time-depen
wire Hamiltonian reads

Hnn8~ t !52D~dn,n8111dn11,n8!1@En2a~ t !xn#dnn8 ,
~41!

wherexn5(N1122n)/2 is the scaled position of siteun&,
the energya(t) equals the electron charge multiplied by t
time-dependent electrical field of the laser and the dista
between two neighboring sites. The energies of the do
and the acceptor orbitals are assumed to be at the level o
chemical potentials of the attached leads,E15EN5mL

5mR . The bridge levelsEn , n52, . . . ,N21, lie EB above
the chemical potential, as sketched in Fig. 1. Later, we w
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also study the modified bridge sketched in Fig. 6. We rem
that for the sake of simplicity, intra-atomic dipole excitatio
are neglected within our model Hamiltonian.

In all numerical studies, we will use the hopping matr
elementD as the energy unit; in a realistic wire molecule,D
is of the order 0.1 eV. Thus, our chosen wire–lead hopp
rate G50.1D/\ yields eG52.5631025 A and V53D/\
corresponds to a laser frequency in the infrared. Note tha
a typical distance of 5 Å between two neighboring sites,
driving amplitudeA5D is equivalent to an electrical field
strength of 23106 V/cm.

A. Symmetry

It is known from the study of deterministically rocke
periodic potentials49 and of overdamped classical Brownia
motion21 that the symmetry of the equations of motion m
rule out any nonzero average current at asymptotic tim
Thus, before starting to compute ratchet currents, let us
analyze what kind of symmetries may prevent the soug
after effect. Apart from the principle interest, such situatio
with vanishing average current are also of computational
evance since they allow one to test numerical implemen
tions.

The current formula~25! and the master equation~29!
contain, besides Fermi factors, the overlap of the Floq
states with the donor and the acceptor orbitalsu1& and uN&.
Therefore, we focus on symmetries that relate these two
we choose the origin of the position space at the center of
wire, it is the parity transformationP:x→2x that exchanges
the donor with the acceptor,u1&↔uN&. Since we deal here
with Floquet statesuFa(t)&, respectively, with their Fourier
coefficientsuFa,k&, we must also take into account the tim
t. This allows for a variety of generalizations of the pari
that differ by the accompanying transformation of the tim
coordinate. For a Hamiltonian of the structure~41!, two sym-
metries come to mind:a(t)52a(t1p/V) and a(t)52a
(2t). Both are present in the case of a purely harmo
driving, i.e., a(t)}sin(Vt). We shall derive their conse
quences for the Floquet states in the Appendix and s
argue here why they yield a vanishing average current wit
the present perturbative approach.

1. Generalized parity

As a first case, we investigate a driving field that obe
a(t)52a(t1p/V). Then, the wire Hamiltonian~41! is in-
variant under the so-called generalized parity transforma

SGP:~x,t !→~2x,t1p/V!. ~42!

Consequently, the Floquet states are either even or odd u
this transformation, i.e., they fulfill the relation~A5!, which
reduces in the tight-binding limit to

^1uFa,k&5sa~21!k^NuFa,k&, ~43!

where sa561, according to the generalized parity of th
Floquet stateuFa(t)&.

The average currentĪ is defined in Eq.~32! by the cur-
rent formulas~30! and~31! together with the master equatio
~29!. We apply now the symmetry relation~43! to them in
order to interchange donor stateu1& and acceptor stateuN&. In
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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addition we substitute in both the master equation and
current formulasRab,k by R̃ab,k5sasb(21)kRab,k . The
result is that the new expressions for the current, includ
the master equation, are identical to the original ones ex
for the fact thatĪ L , GL and Ī R , GR are now interchanged
~recall that we consider the casemL5mR). Therefore, we can
conclude that

Ī L

GL
5

Ī R

GR
, ~44!

which yields together with the continuity relation~32! a van-
ishing average currentĪ 50.

2. Time-reversal parity

A further symmetry is present if the driving is an od
function of time,a(t)52a(2t). Then, as detailed in the
Appendix, the Floquet eigenvalue equation~19! is invariant
under the time-reversal parity

STP:~F,x,t !→~F* ,2x,2t !, ~45!

i.e., the usual parity together with time-reversal and comp
conjugation of the Floquet statesF. The consequence for th
Floquet states is the symmetry relation~A7! which reads for
a tight-binding system

^1uFa,k&5^NuFa,k&* 5^Fa,kuN&. ~46!

Inserting this into the current formulas~30! and ~31! would
yield, if all Rab,k were real, again the balance condition~44!
and, thus, a vanishing average current. However, theRab,k

are in general only real forGL5GR50, i.e., for very weak
coupling such that the condition~34! for the applicability of
the rotating-wave approximation holds. Then, the solution
the master equation is dominated by the RWA solution~36!,
which is real. In the general case, the solution of the ma
equation ~29! is however complex and consequently t
symmetry~46! does not inhibit a ratchet effect. Still we ca
conclude from the fact that within the RWA the average c
rent vanishes, thatĪ is of the orderG2 for G→0, while it is
of the orderG for broken time-reversal symmetry.

FIG. 2. Shape of the harmonic mixing fielda(t) in Eq. ~47! for A152A2 for
different phase shiftsf. For f50, the field changes its sign fort→2t
which amounts to the time-reversal parity~45!.
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B. Rectification from harmonic mixing

The symmetry analysis in Sec. III A explains that a sy
metric bridge like the one sketched in Fig. 1 will not result
an average current if the driving is purely harmonic sinc
nonzero value is forbidden by the generalized parity~42!. A
simple way to break the time-reversal part of this symme
is to add a second harmonic to the driving field, i.e., a c
tribution with twice the fundamental frequencyV, such that
it is of the form

a~ t !5A1 sin~Vt !1A2 sin~2Vt1f!, ~47!

as sketched in Fig. 2. While now shifting the timet by a half
period p/V changes the sign of the fundamental frequen
contribution, the second harmonic is left unchanged. T
generalized parity is therefore broken and we find general
nonvanishing average current.

Here, the phase shiftf plays a subtle role. Forf50 ~or
equivalently any multiple ofp! the time-reversal parity is
still present. Thus, according to the above-mentioned s
metry considerations, the current vanishes within
rotating-wave approximation. However, as discussed ear
we expect beyond RWA for small coupling a currentĪ }G2.
Figure 3 confirms this prediction. Yet one observes that

FIG. 3. Average current response to the harmonic mixing signal with a
plitudesA152A25D, as a function of the coupling strength for differen
phase shiftsf. The remaining parameters areV510D/\, EB55D, kBT
50.25D, N510. The dotted line is proportional toG; it represents a curren
which is proportional toG2.

FIG. 4. Average current response to the harmonic mixing signal~47! for
V510D/\ and phasef5p/2. The wire–lead coupling strength isG
50.1D, the temperaturekBT50.25D, and the bridge heightEB55D. The
arrows indicate the driving amplitudes used in Fig. 5.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ready a small deviation fromf50 is sufficient to restore the
usual weak coupling behavior, namely a current which
proportional to the coupling strengthG.

The average current for such a harmonic mixing sit
tion is depicted in Fig. 4. For large driving amplitudes, it
essentially independent of the wire length and, thus, a w
that consists of only a few orbitals, mimics the behavior
an infinite tight-binding system. Figure 5 shows the leng
dependence of the average current for different driv
strengths. The current saturates as a function of the leng
a nonzero value. The convergence depends on the dri
amplitude and is typically reached once the number of s
exceeds a value ofN'10. For low driving amplitudes the
current response is more sensitive to the wire length.

C. Rectification in ratchet-like structures

A second possibility to realize a finite dc current is
preserve the symmetries of the time-dependent part of
Hamiltonian by employing a driving field of the form

a~ t !5A sin~Vt !, ~48!

while making the level structure of the molecule asymmet
Asymmetry in molecular structures can be achieved in m
ways, and was explored as a source of molecular rectify
since the early paper of Aviram and Ratner.50 In general, it
can be controlled by attaching different chemical groups
the opposite sides of an otherwise symmetric molecu

FIG. 6. Level structure of the wire ratchet withN58 atomic sites, i.e.,
Ng52 asymmetric molecular groups. The bridge levels areEB above the
donor and acceptor levels and are shifted by6ES/2.

FIG. 5. Length dependence of the average current for harmonic mixing
phasef5p/2 for different driving amplitudes; the ratio of the driving am
plitudes is fixed byA152A2 . The other parameters are as in Fig. 4; t
dotted lines serve as a guide to the eye.
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wire.8,51 A tight-binding model of such a structure i
sketched in Fig. 6.35,52 In this molecular wire model, the
inner wire states are arranged inNg groups of three, i.e.,N
2253Ng . The levels in each such group are shifted
6ES/2, forming an asymmetric saw-tooth-like structure.

Figure 7 shows for this model the stationary tim
averaged currentĪ as a function of the driving amplitudeA.
In the limit of a very weak laser field, we findĪ }A2ES , as
can be seen from Fig. 8. This behavior is expected fr
symmetry considerations: On one hand, the asymptotic
rent must be independent of any initial phase of the driv
field and therefore is an even function of the field amplitu
A. On the other hand,Ī vanishes for zero step sizeES since
then both parity symmetries are restored. TheA2 dependence
indicates that the ratchet effect can only be obtained from
treatmentbeyond linear response. For strong laser fields, we
find that Ī is almost independent of the wire length. If th
driving is moderately strong,Ī depends in a short wire sen
sitively on the driving amplitudeA and the number of asym
metric molecular groupsNg ; even the sign of the curren
may change withNg , i.e., we find a current reversal as
function of the wire length. For long wires that comprise fi
or more wire units~corresponding to 17 or more sites!, the

FIG. 7. Time-averaged current through a molecular wire that consists oNg

bridge units as a function of the driving strengthA. The bridge parameters
areEB510D, ES5D, the driving frequency isV53D/\, the coupling to
the leads is chosen asGL5GR50.1D/\, and the temperature iskBT
50.25D. The arrows indicate the driving amplitudes used in Fig. 9.

th

FIG. 8. Absolute value of the time-averaged current in a ratchet-like st
ture with Ng51 as a function ofA2ES demonstrating the proportionality to
A2ES for small driving amplitudes. All other parameters are as in Fig. 7.

the dips on the right-hand side, the currentĪ changes its sign.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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average current becomes again length-independent, as c
observed in Fig. 9. This identifies the current reversal a
finite size effect.

Figure 10 depicts the average current versus the driv
frequencyV, exhibiting resonance peaks as a striking fe
ture. Comparison with the quasienergy spectrum reveals
each peak corresponds to a nonlinear resonance betwee
donor/acceptor and a bridge orbital. While the broader pe
at \V'EB510D match the 1:1 resonance~i.e., the driving
frequency equals the energy difference!, one can identify the
sharp peaks for\V&7D as multiphoton transitions. Owing
to the broken spatial symmetry of the wire, one expects
asymmetric current–voltage characteristic. This is indeed
case as depicted with the inset of Fig. 10.

IV. CONCLUSIONS

With this work we have detailed our recently presen
approach35 for the computation of the current through a tim
dependent nanostructure. The Floquet solutions of the
lated wire provide a well-adapted basis set that keeps
numerical effort for the solution of the master equation re

FIG. 9. Time-averaged current as a function of the number of bridge u
Ng , N53Ng12, for the laser amplitudes indicated in Fig. 7. All oth
parameters are as in Fig. 7. The connecting lines serve as a guide to th

FIG. 10. Time-averaged current as a function of the angular driving
quencyV for Ng51. All other parameters are as in Fig. 7. The inset displa
the dependence of the average current on an externally applied static vo
V, which we assume here to drop solely along the molecule. The dri
frequency and amplitude areV53D/\ ~cf. arrow in main panel! and A
5D, respectively.
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tively low. This allows an efficient theoretical treatment th
is feasible even for long wires in combination with stron
laser fields.

With this formalism we have investigated the possibil
to rectify with a molecular wire an oscillating external forc
brought about by laser radiation, thereby inducing a n
vanishing average current without any net bias. A gene
requirement for this effect is the absence of any reflect
symmetry, even in a generalized sense. A most signific
difference between ‘‘true’’ ratchets and molecular wires stu
ied here is that the latter lack the strict spatial periodic
owing to their finite length. However, as demonstrated e
lier, already relatively short wires that consist of appro
mately 5 to 10 units can mimic the behavior of an infin
ratchet. If the wire is even shorter, we find under cert
conditions a current reversal as a function of the wire leng
i.e., even the sign of the current may change. This dem
strates that the physics of a coherent quantum ratche
richer than the one of its units, i.e., the combination of c
herently coupled wire units, the driving, and the dissipat
resulting from the coupling to leads bears new intrigui
effects. A quantitative analysis of a tight-binding model h
demonstrated that the resulting currents lie in the range
1029 A and, thus, can be measured with today’s techniqu

An experimental realization of the phenomena discus
in this paper is obviously not a simple problem. The requi
ment for asymmetric molecular structures is easily realiz
as discussed earlier, however difficulties associated with
many possible effects of junction illumination have to
surmounted.53 First is the issue of bringing the light into th
junction. This is a difficult problem in a break-junction setu
but possible in a STM configuration. Second, in addition
the mechanism discussed in this paper, which is associ
with modulation of electronic states on the molecular brid
other processes involving excitation of the metal surface m
also affect electron transport. A complete theory of illum
nated molecular junction should consider this possible eff
Also, part of the junction response to an oscillating elect
magnetic field may involve displacement currents associa
with the junction capacity. Finally, junction heating may co
stitute a severe problem when strong electromagnetic fi
are applied. On the other hand, the light-induced rectificat
phenomenon discussed in this paper is generic in the s
that it does not require a particular molecular electro
structure as long as an inherent molecular asymmetry
present. The prediction that with proper illumination o
might induce a unidirectional current without applied volta
suggests a possibility to observe the effect without the ba
ground of a direct current component.

An alternative experimental realization of the presen
results is possible in semiconductor heterostructures, wh
instead of a molecule, coherently coupled quantum do54

form the central system. A suitable radiation source t
matches the frequency scales in this case must operate i
microwave spectral range.
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APPENDIX: PARITY OF A SYSTEM UNDER DRIVING
BY A DIPOLE FIELD

Although we describe in this work the molecule within
tight-binding approximation, it is more convenient to stu
its symmetries as a function of a continuous position and
regard the discrete sites as a special case. Let us first con
a Hamiltonian that is an even function ofx and, thus, is
invariant under the parity transformationP:x→2x. Then,
its eigenfunctionswa can be divided into two classes: eve
and odd ones, according to the sign inwa(x)56wa(2x).

Adding a periodically time-dependent dipole forcexa(t)
to such a Hamiltonian evidently breaks parity symme
sinceP changes the sign of the interaction with the radiatio
In a Floquet description, however, we deal with states t
are functions of both position and time—we work in th
extended space$x,t%. Instead of the stationary Schro¨dinger
equation, we address the eigenvalue problem

H~x,t !F~x,t !5e F~x,t ! ~A1!

with the so-called Floquet Hamiltonian given by

H~ t !5H0~x!1xa~ t !2 i\
]

]t
, ~A2!

where we assume a symmetric static part,H0(x)5H0

(2x). Our aim is now to generalize the notion of parity
the extended space$x,t% such that the overall transformatio
leaves the Floquet equation~A1! invariant. This can be
achieved if the shape of the drivinga(t) is such that an
additional time transformation ‘‘repairs’’ the acquired min
sign. We consider two types of transformation: generaliz
parity and time-reversal parity. Both occur for purely ha
monic driving,a(t)5sin(Vt). In the following two sections
we derive their consequences for the Fourier coefficients

Fk~x!5
1

T E
0

T

dt eikVtF~x,t ! ~A3!

of a Floquet statesF(x,t).

1. Generalized parity

It has been noted55–57 that a Floquet Hamiltonian of the
form ~A2! with a(t)5sin(Vt) may possess degenera
quasienergies due to its symmetry under the so-called ge
alized parity transformation

SGP: ~x,t !→~2x,t1p/V!, ~A4!

which consists of spatial parity plus a time shift by half
driving period. This symmetry is present in the Floqu
Hamiltonian ~A2!, if the driving field obeysa(t)52a(t
1p/V), since thenSGP leaves the Floquet equation invar
ant. Owing toSGP

2 51, we find that the corresponding Floqu
states are either even or odd,SGPF(x,t)5F(2x,t1p/V)
56F(x,t). Consequently, the Fourier coefficients~A3!
obey the relation

Fk~x!56~21!kFk~2x!. ~A5!
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2. Time-inversion parity

A further symmetry is found ifa is an odd function of
time, a(t)52a(2t). Then, time inversion transforms th
Floquet Hamiltonian~A2! into its complex conjugate so tha
the corresponding symmetry is given by the antilinear tra
formation

STP: ~F,x,t !→~F* ,2x,2t !. ~A6!

This transformation represents a further generalization of
parity P; we will refer to it astime-inversion paritysince in
the literature the term generalized parity is mostly used in
context of the transformation~A4!.

Let us now assume that that the Floquet Hamiltonian
invariant under the transformation~A6!, H(x,t)5H* (2x,
2t), and thatF(x,t) is a Floquet state, i.e., a solution of th
eigenvalue equation~A1! with quasienergye. Then, F*
(2x,2t) is also a Floquet state with the same quasiene
In the absence of any degeneracy, both Floquet states
be identical and, thus, we find as a consequence of the t
inversion paritySTP that F(x,t)5F* (2x,2t). This is not
necessarily the case in the presence of degeneracies, bu
we are able to choose linear combinations of the~degenerate!
Floquet states which fulfill the same symmetry relatio
Again we are interested in the Fourier decomposition~A3!
and obtain

Fk~x!5Fk* ~2x!. ~A7!

The time-inversion discussed here can be generalize
an additional time-shift to readt→t02t. Then, we find by
the same line of argumentation thatFk(x) andFk* (2x) dif-
fer at most by a phase factor. However, for convenience
may choose already from the start the origin of the time a
such thatt050.
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