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Rectification of laser-induced electronic transport through molecules
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We study the influence of laser radiation on the electron transport through a molecular wire weakly
coupled to two leads. In the absence of a generalized parity symmetry, the molecule rectifies the
laser-induced current, resulting in directed electron transport without any applied voltage. We
consider two generic ways of dynamical symmetry breaking: mixing of different harmonics of the
laser field and molecules consisting of asymmetric groups. For the evaluation of the nonlinear
current, a numerically efficient formalism is derived which is based upon the Floquet solutions of
the driven molecule. This permits a treatment in the nonadiabatic regime and beyond linear
response. €003 American Institute of Physic§DOI: 10.1063/1.1536639

I. INTRODUCTION electron transfer reaction and that the conductivity can be
c1(;rierived from the corresponding reaction rafehis analogy
experimental activity in the field of molecular electrontcs. eads 1o a connection between eleciron fransfer rates in a

lts technological prospects for nanocircfiitsave created donor—acceptor system and conduction in the same system

broad interest in the conductance of molecules attached t\e(hen 40p§ra}t|ng as a molecular wire between two metal
metal surfaces or tips. In recent experimémtsveak tunnel- leads”* Within the hlgh-temperature limit, th_e eIec'Fron tran.s-
ing currents through only a few or even single molecule®©" on25t[12e? wire can be described by inelastic hopping
coupled by chemisorbed thiol groups to the gold surface ofvents’ For a more quantitativab initio analysis, the
leads has been achieved. The experimental development folecular or8b|tals may be taken from electronic structure
accompanied by an increasing theoretical interest in th&alculations’
transport properties of such systeff8 An intriguing chal- Isolated atoms and molecules in strong oscillating fields
lenge presents the possibility to control the tunneling currenbave been widely studied within a Floquet formaffSni*
through the molecule. Typical energy scales in molecules ar@nd many corresponding theoretical techniques have been
in the optical and the infrared regime, where today’s lasefleveloped in that area. This suggests the procedure followed
technology provides a wealth of coherent light sourcesin Ref. 35: Making use of these Floquet tools, a formalism
Hence, lasers represent an inherent possibility to control afor the transport through time-dependent quantum systems
oms or molecules and to direct currents through them. has been derived that combines Floquet theory for a driven
A widely studied phenomenon in extended, stronglymolecule with the many-particle description of transport
driven systems is the so-termed ratchet efféctooriginally ~ through a system that is coupled to ideal leads. This ap-
discovered and investigated for overdamped classicgbroach is devised much in the spirit of the Floquet—Markov
Brownian motion in periodic nonequilibrium systems in the theory®®’ for driven dissipative quantum systems. It as-
absence of reflection symmetry. Counterintuitively to thesumes that the molecular orbitals that are relevant for the
second law of thermodynamics, one then observes a directethnsport are weakly coupled to the contacts, so that the
transport although all acting forces possess no net bias. Thigansport characteristics are dominated by the molecule it-
effect has been established as well within the regime of disself. Yet, this treatment goes beyond the usual rotating-wave
sipative, incoherent quantum Brownian motidnA related  approximation as frequently employed, such as, e.g., in Refs.
effect is found in the overdamped limit of dissipative tunnel-37 and 38.
ing in tight-binding lattices. Here the spatial symmetry is A time-dependent perturbative approach to the problem
typically preserved and the nonvanishing transport is broughtf driven molecular wires has recently been described by
about by harmonic mixing of a driving field that includes Tikhonov et al3*“°However, their one-electron treatment of
higher harmonics?~*° For overdamped Brownian motion, this essentially inelastic transmission process cannot consis-
both phenomena can be understood in terms of breaking @ntly handle the electronic populations on the leads. More-
generalized reflection symmgﬁ%_/. _ over, while their general formulation is not bound to their
Recent theoretical descriptions of molecular conductivindependent channel approximation, their actual application

ity are based on a scattering approdgfrAlternatively, one o this approximation is limited to the small light-molecule
can assume that the underlying transport mechanism is 3fteraction regime.

During the last several years, we experienced a wealth

With this work we investigate the possibilities for mo-
3Electronic mail: sigmund.kohler@physik.uni-augsburg.de lecular quantum wires to act as coherent quantum ratchets,
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B The operatorc,. (cqr) annihilates an electron on the left
A A A A A IN-D) (right) lead in stateLq (Rq) orthogonal to all wire states.
— == = =i — Later, we shall treat the tunneling Hamiltonian as a pertur-
bation, while taking into account exactly the dynamics of the

A Ep leads and the wire, including the driving.
b The leads are modeled as noninteracting electrons with
A N s the Hamiltonian
(donor) (acceptor)
_ T t
Hleads_% (5qLCqLCqL+EqRCqRCqR)- (4)

A typical metal screens electric fields that have a frequency
FIG. 1. Level structure of a molecular wire with=8 atomic sites which  below the so-called plasma frequency. Therefore, any elec-
are attached to two leads. tromagnetic radiation from the optical or the infrared spectral
range is almost perfectly reflected at the surface and will not
change the bulk properties of the gold contacts. This justifies
i.e., as quantum rectifiers for the laser-induced electrical cufe assumption that the leads are in a state close to equilib-
rent. In doing so, we provide a full account of the derivationyjym and, thus, can be described by a grand-canonical en-
published in letter format in Ref. 35. In Sec. Il we present agemple of electrons, i.e., by a density matrix
more detailed derivation of the Floquet approach to the trans-
port through a periodically driven wire. This formalism is  Qieads,e§ €XH — (Hieads™ LN — urNg)/KgT], 5

employed in Sec. Il to investigate the rectification properties here are the electrochemical potentials ahy
of driven molecules. Two generic cases are discussed. KLR IR

L ) ) IOty of he electron numbers on the left/right lead.
namely mixing of different harmonics of the laser field in aCqurCquir the electron numbers on the leftiright lead

. . . . As a consequence, the only nontrivial expectation values of
symmetric molecules and harmonically driven asymmetncIead operators read

molecules. We focus thereby on how the symmetries of the
r_nodel system manifest themselves in the expressio_ns for_ the (chch: f(equ— L), (6)
time-averaged current. The general symmetry considerations ) ) ]

of a quantum system under the influence of a laser field ar@here g, is the single particle energy of the stajé and

deferred to the Appendix. correspondingly for the right lead. Heref(x)=(1
+eX*sT)~1 denotes the Fermi function.

Il. FLOQUET APPROACH TO THE ELECTRON A. Time-dependent electrical current

TRANSPORT The net(incoming minus outgoingcurrent through the

. . . left contact is given by the negative time derivative of the
The entire SVS‘em of the driven wire, the _Ieads, a_nd theelectron number in the left lead, multiplied by the electron
molecule—lead coupling as sketched in Fig. 1 is described tharge—e ie

the Hamiltonian

H(t) =Huire(t) + Hicadst Huire-leads (1) IL(t):e%<NL>t:§<[H(t)aNL]>t- (7)
The wire is modeled byN atomic orbitals|n), n=1,... N,
which are in a tight-binding description coupled by hoppingHere, the angular brackets denote expectation values at time
matrix elements. Then, the corresponding Hamiltonian fot, i.e.,(O);=Tr[Op(t)]. The dynamics of the density matrix
the electrons on the wire reads in a second quantized formis governed by the Liouvile—von Neumann equation
iip(t)=[H(t),e(t)] together with the factorizing initial
Huire() = 2 Hon(Delcn (2)  condition @(tg) = @uwire(to) ® Cleadseq FOr the Hamiltonian
n,n’ (1), the commutator in Eq.7) is readily evaluated to
where the fermionic operatocs, cx annihilate, respectively, 26
create, an electron in the atomic orbital) and obey the IL(t):zlmE VqL<chc1)t. (8)
anticommutation relatior[cn,c;,]+=5nyn,. The influence q

of the laser field is given by a periodic time-dependence offo proceed, it is convenient to switch to the interaction pic-
the on-site energies yielding a single particle Hamiltonian ofyre with respect to the uncoupled dynamics, where the

the structureH,, (t) =H,n (t+7), where7=27/Q is de-  |jouville—von Neumann equation reads
termined by the frequenc§) of the laser field.

The orbitals at the left and the right end of the molecule,
which we shall term donor and acceptd), and|N), respec-
tively, are coupled to ideal leadsf. Fig. 1) by the tunneling
Hamiltonians

d -
ih 3{2(t.t0) =[Fuieeantt to) B(Lto) . ©)

The tilde denotes the corresponding interaction picture op-

erators}‘((t,t’)=Ug(t,t’)X(t)Uo(t,t’), where the propaga-

Hoooooo— Vo el e+ Vooelcn)+ Hoc. 3 tor of the wire and the lead in the absence of the lead—wire
wre-eaos 2, (VoL €1+ VarCirn) ® coupling is given by the time-ordered product
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_ e tion within a Floquet approach. This means that we make use
Uo(t,t")=Texpg —» J At [Hyire(t") +Hieagd | - (100 of the fact that there exists a complete set of solutions of the
t form29—31,33,34

Equation(9) is equivalent to the integral equation v (t))=e“€at’h|d> 1), | (0)=|D(t+T) (14)
2(t,t)=2(to,to) with the quasienergies,. Since the so-called Floquet

i It _ modes @ ,(t)) obey the time-periodicity of the driving field,
- %ﬁ dt'[Hyire-leadft’ 1), 2(t", o). (11)  they can be decomposed into the Fourier series
0

Inserting this relation into Eq8), we obtain an expres- D (1))y=>, e KM ). (15
sion for the current that depends on the density of states in K

the leads times their coupling strength to the connected siteFhis suggests that the quasienergigscome in classes,
At this stage it is convenient to introduce the spectral density

of the lead—wire coupling €ak= €Tk, k=012, (16)
o of which all members represent the same solution of the
I'yr(e)= 72 IVqurl?8(e—equr), (120  Schralinger equation. Therefore, the quasienergy spectrum

q can be reduced to a single “Brillouin zone>#Q/2<e

which fully describes the leads’ influence. If the lead states~7{2/2. In turn, all physical quantities that are computed
are densel’ | r(€) becomes a continuous function. Since we Within a Floquet formalism are independent of the choice of
restrict ourselves to the regime of a weak wire—lead cou@ specific class member. Thus, a consistent description must
pling, we can furthermore assume that expectation values &oey the so—callgd plass invariance, i.e., it must be invariant
lead operators are at all times given by their equilibriumund?r the substitution of one or several Floquet states by
values(6). Then we find after some algebra for the stationaryeduivalent ones,

(i.e., for tg— —), time-dependennet electrical current €nr | D (1)) = etk AQ, XD (1)), (17
through the left contact the result

wherekq, . .. ky are integers. In the Fourier decomposition
e °°d q Cerlh ) T (15), the prefactor exjiK,(t) corresponds to a shift of the
(= ERe o el (e)e (e Tyt side band index so that the class invariance can be expressed
equivalently as
—7T))t—,—[C1,Ce(t,t— f(e— . 13
i~ [C1,Cul 7). fe— )} (13 €, |<Da,k>—’6a+kaﬁ9, |q)a,k+ka>' (18)

A corresponding relation holds true for the current through ) . )

the contact on the right-hand side. Note that the anticommu-  Floguet states and quasienergies can be obtained from
tator [c] &, (t,t—7)], is in fact a c-numbefsee Eq.(22)  the quasienergy equatith

below). Like the expectation valugle,(t,t— 7)), it de- d

pends on the dynamics of the isolated wire and is influenced | > [MHan (D] =17 5 | [P o(1) = €, Do (D).
by the external driving. n.n’

It is frequently assumed that the attached leads can be (19
described by a one-dimensional tight-binding lattice withA wealth of methods for the solution of this eigenvalue prob-
hopping matrix elementd’. Then, the spectral densities lem can be found in the literatu?®3* One such method is
I' r(€) of the lead—wire couplings are given by the given by the direct numerical diagonalization of the operator
Anderson—Newns modé&t, i.e., they assume an elliptical on the left-hand side of E¢19). To account for the periodic
shape with a bandwidth £2. However, because we are time-dependence of tHé ,(t)), one has to extend the origi-
mainly interested in the behavior of the molecule and not imal Hilbert space by &-periodic time coordinate. For a har-
the details of the lead—wire coupling, we assume that thénonic driving, the eigenvalue probleth9) is band-diagonal
conduction bandwidth of the leads is much larger than allnd selected eigenvalues and eigenvectors can be computed
remaining relevant energy scales. Consequently, we approxpy a matrix-continued fraction scherfie!?
mate in the so-called wide-band limit the functiohigr(€) In cases where many Fourier coefficiefitsthe present
by the constant valueE, ,z. The first contribution of thee  context frequently called “sidebands’must be taken into
integral in Eq.(13) is then readily evaluated to yield an ex- account for the decompositiqii5), direct diagonalization is
pression proportional té(7). Finally, this term becomes lo- often not very efficient and one has to apply more elaborate
cal in time and readsI", (clc;);. schemes. For example, in the case of a large driving ampli-
tude, one can treat the static part of the Hamiltonian as a
perturbatiort®**4*4The Floquet states of the oscillating part
of the Hamiltonian then form an adapted basis set for a sub-
sequently more efficient numerical diagonalization.

Let us next focus on the single-particle dynamics of the A completely different strategy to obtain the Floquet
driven molecule decoupled from the leads. Since its Hamilstates is to propagate the Scotlirger equation for a com-
tonian is periodic in timeH,, (t)=H,,(t+7), we can plete set of initial conditions over one driving period to yield
solve the corresponding time-dependent Sdimger equa- the one-period propagator. Its eigenvalues represent the Flo-

B. Floquet decomposition
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quet states at time=0, i.e.,|® ,(0)). Fourier transformation This is easily verified by differentiating the definition in the
of their time-evolution results in the desired sidebands. Yefirst line with respect ta and using thaj® ,(t)) is a solution
another, very efficient propagation scheme is the so-calledf the eigenvalue equatidii9). The fact that the initial con-
(t,t") formalism#® ditionT,(t',t")=c,(t") is fulfilled completes the proof. Us-
As the equivalent of the one-particle Floquet statesng Egs.(21) and(22), we are able to express the anticom-
|®,(t)), we define a Floquet picture for the fermionic cre- mutator of wire operators at different times by Floquet states
ation and annihilation operatorsg, c,, by the time- and quasienergies:
dependent transformation

&t ' — i€ (t—t ' ’
Ca(t) =2 (@ y(t)M)Cy. (20 [Cn BRG] = 2 el (1))

The inverse transformation X(D,(t)[n). (23

This relation together with the spectral decomposition
(15 of the Floquet states allows one to carry out the time
and energy integrals in expressi¢hd) for the net current
S(9ntering the wire from the left lead. Thus, we obtain

cn=§ (@, (t))cu () (21)

follows from the mutual orthogonality and the completenes
of the Floquet states at equal tin8s* Note that the right-

hand side of Eq(21) becomeg-independent after the sum-
mation. In the interaction picture, the operatoxt) obeys |L(t)=§k: e kayk (24)

T (tt)=Ud(tt ) (HUg(t,t ) =e  lt=he (7).
(22 with the Fourier components

1
K=el| 2 (@il (LD gy Rapic — 52 (P e[ DAL P s 1) H(P e~k (L P o D F (€ — 421)
apBk’K"” ak’

[ de f(e—
5 (@ AP ) ~(@se DU ST

T € €4y

: (29

Here, P denotes the principal value of the integral; it does notiouville—von Neumann equatio(®). We use that to zeroth
contribute to the dc componehi. Moreover, we have in- order in the molecule—lead coupling the interaction-picture
troduced the expectation values density operator does not change with ting(t— ,tg)
_ ot - ~D(t,ty). A transformation back to the Schtimger picture
Rap() =(Cal)Ca(D)r Risa(1) (26) results after tracing out the leads’ degrees of freedom in the

o master equation
=Zk e KUR L. 27

The Fourier decomposition in the last line is possible be- Qwire(t):_I_[Hwire(t)vgwire(t)]
cause allR,4(t) are expectation values of a linear, dissipa- h
tive, periodically driven system and therefore share in the

long-time limit the time-periodicity of the driving field. In - %f drTnead{Hwi,e_,eads[ﬁwire_|eadgt

the subspace of a single electré),; reduces to the density 0

matrix in the basis of the Floquet states which has been used —7,1), Qwire(1) ® C eads ed - (28)
to describe dissipative driven quantum systems in Refs. 34, '

36, 37, 46-48.

Since we only consider asymptotic timgs— — o, we have
set the upper limit in the integral to infinity. From E@8)
follows directly an equation of motion for the,z(t). Since

The last step toward the stationary current is to find theall the coefficients of this equation, as well as its asymptotic
Fourier coefficientR, 5 at asymptotic times. To this end, solution, areZ-periodic, we can split it into its Fourier com-
we derive an equation of motion for the reduced densityponents. Finally, we obtain for the,; , the inhomogeneous
operatorg i(t) = Trieaqf (t) by reinserting Eq(11) into the  set of equations

C. Master equation
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i T,
%(Ea_eﬁ_}—kﬁﬂ)Raﬁ,k:?z 2 <®B,k'+k”|1><1|(D,B’,k+k”>Raﬁ’,k’+ 2 <(Da’,k’+k”|1><1|(I>a,k+k">Ra’,3,k'
K’ ﬁ’k” a'K!

(P -k (L@ k) F(€q i =) =( P (L[ Py 1) F(€p 00 — 1)

+same terms with the replacemdt, ,u, ,|1)(1|}—{Tg,ur,N){N|}. (29
|
For a consistent Floquet description, the current formula to- _:_L: _|—R' (32)
gether with the master equation must obey class invariance.
Indeed, the simultaneous transformation with E§8) of For consistency, Eq:32) must also follow from our ex-

both the master equatiof29) and the current formulé25) pressions for the average cu_rréﬁg) and (31). In fact, this

amounts to a mere shift of summation indices and, thusgan be shown by identifyind, + s as the sum over the

leaves the current as a physical quantity unchanged. right-hand sides of the master equati@9) for «= g and
For the typical parameter values used in the following, ak=0,

large number of sidebands contributes significantly to the

Fourier decomposition of the Floquet modes,(t)). Nu- — I

merical convergence for the solution of thg mast(>ar equation 't/ RZ; 7 (€a™ €T KRQ)R ) =0,
(29), however, is already obtained by just using a few side- ’ (33
bands for the decomposition &,4(t). This keeps the nu- _ _

merical effort relatively small and justifies posteriorithe ~ Which vanishes as expected.

use of the Floquet representati¢?l). Yet we are able to

treat the problem beyond a rotating-wave approximation.

E. Rotating-wave approximation

D. Average current Although we can now in principle compute time-

Equation(24) implies that the current, (t) obeys the dependent currents beyond a rotating-wave approximation
time-periodicity of the driving field. Since we consider here (RWA), it is instructive to see under what conditions one
excitations by a laser field, the corresponding frequency liesnay employ this approximation and how it follows from the
in the optical or infrared spectral range. In an experiment ongnaster equatior{29). We note that from a computational
will thus only be able to measure the time average of theviewpoint there is no need to employ a RWA since within the
current. For the net current entering through the left contacpresent approach the numerically costly part is the computa-

it is given by tion of the Floquet states rather than the solution of the mas-
ter equation. Nevertheless, our motivation is that a RWA al-
— % . . .
=1 L:eFLE > (@ o1 1)L P g )Rk lows an analytical splutlon of the master equation to I.owest
k| gk’ order in the lead—wire coupling. We will use this solution

in the following to discuss the influence of symmetries on
_ (300 theI'-dependence of the average current.

The master equatiofR9) can be solved approximately
by assuming that the coherent oscillations ofRyl;(t) are
much faster than their decay. Then it is useful to factorize
R,s(t) into a rapidly oscillating part that takes the coherent
— dynamics into account and a slowly decaying prefactor. For
IR:eFR% {Ek (P sk NXNID g )R the latter, one can derive a new master equation with oscil-

b lating coefficients. Under the assumption that the coherent

and the dissipative time scales are well separated, it is pos-

' 3D sible to replace the time-dependent coefficients by their time-
averages. The remaining master equation is generally of a

Total charge conservation of the original wire—leadsimpler form than the original one. Because we work here
Hamiltonian (1) of course requires that the charge on thealready with a spectral decomposition of the master equation,
wire can only change by current flow, amounting to the conwe give the equivalent line of argumentation for the Fourier
tinuity equation Qe(t)=1,(t)+1g(t). Since asymptoti- coefficientsR,z .
cally, the charge on the wire obeys at most the periodic time- It is clear from the master equati¢@9) that if
dependence of the driving field, the time-averag@gfre(t)
must vanish in the long-time limit. From the continuity equa-
tion one then finds thdf, +1z=0, and we can introduce the then the corresponding,s emerge to be small and, thus,
time-averaged current may be neglected. Under the assumption that the wire—lead

_<(I)Dz,|(| 1><1|(Da,k>f(6a,k_ Iu‘L)

Mutatis mutandisve obtain for the time-averaged net current
that enters through the right contact

_<(I)a/,k| N><N|q)a,k>f(6a,k_ IU’R)

Ea_€B+kﬁQ>FL/R, (34)
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couplings are weak and that the Floquet spectrum has nalso study the modified bridge sketched in Fig. 6. We remark
degeneracies, the RWA conditidd4) is well satisfied except that for the sake of simplicity, intra-atomic dipole excitations
for are neglected within our model Hamiltonian.

In all numerical studies, we will use the hopping matrix

a=pB, k=0, (35 elementA as the energy unit; in a realistic wire molecule,
i.e., when the prefactor of the left-hand side of E3g) van- 1S Of the order 0.1 eV. Thus, our chgien wire—lead hopping
ishes exactly. This motivates the ansatz rate I'=0.1A/% yields el'=2.56<10 > A and Q1 =3A/%
corresponds to a laser frequency in the infrared. Note that for
Rapk=Paba k0 (36)  a typical distance o5 A between two neighboring sites, a

hich hvsically that th . . riving amplitudeA=A is equivalent to an electrical field
which means physically that the stationary state consists trength of 2<1C° V/cm.

an incoherent population of the Floquet modes. The occupa-
tion probabilitiesP, are found by inserting the ansaf@6)  A. Symmetry

into the master equatiof29) and read It is known from the study of deterministically rocked

periodic potential¥ and of overdamped classical Brownian
(37) motiorf* that the symmetry of the equations of motion may
rule out any nonzero average current at asymptotic times.
Hl'éwus, before starting to compute ratchet currents, let us first
analyze what kind of symmetries may prevent the sought-
after effect. Apart from the principle interest, such situations

SUW (F(€qr— ) +WN ( F(€q— mr)]
P.,= T N .
Ek(Wa,k_}—Wa,k)

Thus, the populations are determined by an average over t
Fermi functions, where the weights

wh =T [(2] D012 (38 with vanishing average current are also of computational rel-
evance since they allow one to test numerical implementa-
Wy =TRI(N[® )|, (39 tions.

The current formula25) and the master equatidi29)
contain, besides Fermi factors, the overlap of the Floquet
states with the donor and the acceptor orbita}sand |N).
Therefore, we focus on symmetries that relate these two. If
we choose the origin of the position space at the center of the
T - wire, it is the parity transformatio®:x— — x that exchanges
a2 (Wo ot W ) the donor with the acceptofl)«|N). Since we deal here
(40) with Floquet states$d ,(t)), respectively, with their Fourier

coefficients|®,, ), we must also take into account the time

t. This allows for a variety of generalizations of the parity
IIl. RECTIFICATION OF THE DRIVING-INDUCED that differ by the accompanying transformation of the time
CURRENT coordinate. For a Hamiltonian of the structudd), two sym-

In the absence of an applied voltage, i@, = ug, the Melies come to minda(t)=—a(t+ /) anda(t)=—a
average force on the electrons on the wire vanishes. Neveft)- Both are present in the case of a purely harmonic
theless, it may occur that the molecule rectifies the laserdVing, i€, a(t)=sin(Qf). We shall derive their conse-
induced oscillating electron motion and consequently a nondueénces for the Floguet states in the Appendix and shall
zero dc current through the wire is established. In this sectioR"9U€ here why they yield a vanishing average current within
we investigate such ratchet currents in molecular wires. € Present perturbative approach.

As a working model we consider a molecule consisting ) )
of a donor and an acceptor site aNd-2 sites in between 1. Generalized parity
(cf. Fig. 1. Each of theN sites is coupled to its nearest As a first case, we investigate a driving field that obeys
neighbors by a hopping matrix elements The laser field a(t)=—a(t+#/Q). Then, the wire Hamiltonia41) is in-

renders each level oscillating in time with a position- variant under the so-called generalized parity transformation
dependent amplitude. The corresponding time-dependent
Sep: (X,t) = (=X, t+ 7/ Q). (42

wire Hamiltonian reads

Consequently, the Floquet states are either even or odd under
this transformation, i.e., they fulfill the relatid5), which
reduces in the tight-binding limit to
wherex,=(N+1-2n)/2 is the scaled position _of_sidem), (1D )=~ 1)k<N|¢a,k>, (43)
the energya(t) equals the electron charge multiplied by the
time-dependent electrical field of the laser and the distanc&here o, = * 1, according to the generalized parity of the
between two neighboring sites. The energies of the donorloquet statg®d ,(t)). o
and the acceptor orbitals are assumed to be at the level of the The average currentis defined in Eq(32) by the cur-
chemical potentials of the attached leads,=Ey=pu, rent formulag30) and(31) together with the master equation
=ug. The bridge levelE€,, n=2,... N—1, lie Eg above (29). We apply now the symmetry relatiod3) to them in
the chemical potential, as sketched in Fig. 1. Later, we willorder to interchange donor stale and acceptor statél). In

are given by the effective coupling strengths of kik Flo-
quet sidebandid , ) to the corresponding lead. The average
current(32) is within RWA readily evaluated to read

1 N
Wa,kwa,k’

lrua=€

X[f(€an —mr)—fleq—n)].

Hnn’(t) = A(an,n’ w1t 5n+1,n’) + [En_ a(t)xn] Snnt
4

Downloaded 14 Oct 2003 to 137.250.81.34. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



J. Chem. Phys., Vol. 118, No. 7, 15 February 2003 Rectification of laser-induced electronic transport through molecules 3289
15 1072
1.0
107*
— 05
E g
[
E 0.0 — 10-6
S 05
1.0 107°
-L.5 ) 05 5 05 ) 1074 103 1072 101 10
i o ' r[A]
t/T

FIG. 3. Average current response to the harmonic mixing signal with am-
plitudesA;=2A,=A, as a function of the coupling strength for different
phase shifts¢. The remaining parameters afe=10A/#, Eg=5A, kgT
=0.25\, N=10. The dotted line is proportional 13 it represents a current
which is proportional td"2.

FIG. 2. Shape of the harmonic mixing fieddt) in Eq.(47) for A;=2A, for
different phase shiftss. For ¢=0, the field changes its sign fdr——t
which amounts to the time-reversal pari{g5s).

addition we substitute in both the master equation and thg_Recitification from harmonic mixing
current formulasR, g by Rupk=0,05(—1)R.z. The
result is that the new expressions for the current, includin
the master equation, are identical to the original ones exce
for the fact thatl,, I', and g, I'r are now interchanged
(recall that we consider the cagg = ug). Therefore, we can
conclude that

The symmetry analysis in Sec. Il A explains that a sym-
gipetric bridge like the one sketched in Fig. 1 will not result in
%n average current if the driving is purely harmonic since a
nonzero value is forbidden by the generalized pa@g). A
simple way to break the time-reversal part of this symmetry
is to add a second harmonic to the driving field, i.e., a con-
tribution with twice the fundamental frequen€y, such that

it is of the form
a(t)=A;sin(Qt) +A, sin(2Qt+ ¢), (47)

as sketched in Fig. 2. While now shifting the timnby a half
period /() changes the sign of the fundamental frequency
contribution, the second harmonic is left unchanged. The
generalized parity is therefore broken and we find generally a
nonvanishing average current.

A further symmetry is present if the driving is an odd Here, the phase shifb plays a subtle role. Fap=0 (or
function of time,a(t)=—a(—t). Then, as detailed in the equivalently any multiple ofr) the time-reversal parity is
Appendix, the Floguet eigenvalue equatid®) is invariant  still present. Thus, according to the above-mentioned sym-
under the time-reversal parity metry considerations, the current vanishes within the

Sppi (D x,1) = (BF,— X, ~ 1), 45) rotating-wave approximation. However,.as discusied 2earlier,

we expect beyond RWA for small coupling a curréntl™~.

i.e., the usual parity together with time-reversal and compleXigure 3 confirms this prediction. Yet one observes that al-
conjugation of the Floquet statds The consequence for the

Floguet states is the symmetry relatigki7) which reads for
a tight-binding system

(1D ) =(N[D )" =(P 4 iN). (46)

Inserting this into the current formulg80) and (31) would
yield, if all R,z « were real, again the balance conditi@i)

and, thus, a vanishing average current. However,Rhg,

are in general only real fof =1'g=0, i.e., for very weak
coupling such that the conditio{34) for the applicability of

the rotating-wave approximation holds. Then, the solution of
the master equation is dominated by the RWA soluti@®),
which is real. In the general case, the solution of the master
equation (29) is however complex and consequently the
symmetry(46) does not inhibit a ratchet effect. Still we can
conclude from the fact that within the RWA the average cur-FIG. 4. Average current response to the harmonic mixing sig#ial for

[

re Tg’
which yields together with the continuity relati¢82) a van-
ishing average currert=0.

(44)

2. Time-reversal parity

(=]

T[1073¢I]

At b Ve

10 20 30 40
A = 24, [A]

. —. 2 . Q0 =10A/% and phase¢=m/2. The wire—lead coupling strength B
rent vanishes, thdt is of the order’™* for I'—~0, while it is g 14, the temperaturésT=0.25, and the bridge heighEs=5A. The

of the orderT” for broken time-reversal symmetry. arrows indicate the driving amplitudes used in Fig. 5.
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FIG. 5. Length dependence of the average current for harmonic mixing wittFIG. 7. Time-averaged current through a molecular wire that consistg of
phase¢ = /2 for different driving amplitudes; the ratio of the driving am- bridge units as a function of the driving strength The bridge parameters
plitudes is fixed byA;=2A,. The other parameters are as in Fig. 4; the areEg=10A, Es=A, the driving frequency i€)=3A/#, the coupling to
dotted lines serve as a guide to the eye. the leads is chosen aB =I'r=0.1A/A, and the temperature ikgT
=0.25\. The arrows indicate the driving amplitudes used in Fig. 9.

AlA]

ready a small deviation fronb= 0 is sufficient to restore the
usual weak coupling behavior, namely a current which isvire®>* A tight-binding model of such a structure is
proportional to the coupling strength sketched in Fig. 6>°2 In this molecular wire model, the
The average current for such a harmonic mixing situainner wire states are arrangedy groups of three, i.eN
tion is depicted in Fig. 4. For large driving amplitudes, it is —2=3Ng. The levels in each such group are shifted by
essentially independent of the wire length and, thus, a wiret Eg/2, forming an asymmetric saw-tooth-like structure.
that consists of only a few orbitals, mimics the behavior of ~ Figure 7 shows for this model the stationary time-
an infinite tight-binding system. Figure 5 shows the lengthaveraged current as a function of the driving amplitudé.
dependence of the average current for different drivingn the limit of a very weak laser field, we find<A2Eg, as
strengths. The current saturates as a function of the length @hn be seen from Fig. 8. This behavior is expected from
a nonzero value. The convergence depends on the drivinggmmetry considerations: On one hand, the asymptotic cur-
amplitude and is typically reached once the number of sitegent must be independent of any initial phase of the driving
exceeds a value dii~10. For low driving amplitudes the field and therefore is an even function of the field amplitude

current response is more sensitive to the wire length. A. On the other hand, vanishes for zero step sif; since
o . then both parity symmetries are restored. Mialependence
C. Rectification in ratchet-like structures indicates that the ratchet effect can only be obtained from a

A second possibility to realize a finite dc current is to treatmenteyond linear responsé&or strong laser fields, we
preserve the symmetries of the time-dependent part of thfind that| is almost independent of the wire length. If the
Hamiltonian by employing a driving field of the form driving is moderately strond, depends in a short wire sen-

a(t)=Asin(Qt), (48)  sitively on the driving amplitudé and the number of asym-

. . __metric molecular group®\y; even the sign of the current
while makmg the level structure of the molecul@T asyrr?metrlc.may change wittNy, i.e., we find a current reversal as a
Asymmetry in molecular structures can be achieved in many,nction of the wire length. For long wires that comprise five

ways, and was explored as a source of molecular rectifying, more wire units(corresponding to 17 or more sijeshe
since the early paper of Aviram and Ratf®in general, it
can be controlled by attaching different chemical groups to

the opposite sides of an otherwise symmetric molecular 10-7 DAL I

IN=1) I
—_— —_— —~
B 1B/ \ _/ =

By _ = 0

Ep
10710 |
KL ﬁ m MR ras il
(donor) (acceptor) 103 1072 1071
A2E5 [A]

FIG. 8. Absolute value of the time-averaged current in a ratchet-like struc-
FIG. 6. Level structure of the wire ratchet with=8 atomic sites, i.e.,, ture withNy,=1 as a function oA’Es demonstrating the proportionality to
Ng=2 asymmetric molecular groups. The bridge levels Bgeabove the AEg for small driving amplitudes. All otrfr parameters are as in Fig. 7. At
donor and acceptor levels and are shifted=bl¢/2. the dips on the right-hand side, the currérghanges its sign.
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2r T T T T T1TT tively low. This allows an efficient theoretical treatment that
oo, A 14A is feasible even for long wires in combination with strong
L S S | laser fields.

= . « i With this formalism we have investigated the possibility

p‘o“ s o A—6A to rectify with a molecular wire an oscillating external force
2 4Lk CBemge g, i brought about by laser radiation, thereby inducing a non-
i~ i R B vanishing average current without any net bias. A general
ok éfl_je{‘_)ée ______ NP requirement for t_his effect is _the absence of any r_eflggtion
e symmetry, even in a generalized sense. A most significant

3 AN TN TN N TN N S N difference between “true” ratchets and molecular wires stud-
12 3 4 5 6 7 8 910 ied here is that the latter lack the strict spatial periodicity

Ny owing to their finite length. However, as demonstrated ear-

FIG. 9. Time-averaged current as a function of the number of bridge unitsller’ already relatl\{ely ShOI’t. wlres that COOSISt of appl.’O.XI-
Ng, N=3Ny+2, for the laser amplitudes indicated in Fig. 7. All other mately 5 to 10 units can mimic the behaylor of an 'nﬁn't?
parameters are as in Fig. 7. The connecting lines serve as a guide to the ey@tchet. If the wire is even shorter, we find under certain
conditions a current reversal as a function of the wire length,
i.e., even the sign of the current may change. This demon-
average current becomes again length-independent, as can$jgates that the physics of a coherent quantum ratchet is
observed in Fig. 9. This identifies the current reversal as &icher than the one of its units, i.e., the combination of co-
finite size effect. herently coupled wire units, the driving, and the dissipation
Figure 10 depicts the average current versus the drivingesulting from the coupling to leads bears new intriguing
frequency(), exhibiting resonance peaks as a striking fea-effects. A quantitative analysis of a tight-binding model has
ture. Comparison with the quasienergy spectrum reveals thalemonstrated that the resulting currents lie in the range of
each peak corresponds to a nonlinear resonance between tH& ° A and, thus, can be measured with today's techniques.
donor/acceptor and a bridge orbital. While the broader peaks ~An experimental realization of the phenomena discussed
at#Q~Eg=10A match the 1:1 resonandee., the driving  in this paper is obviously not a simple problem. The require-
frequency equals the energy differehoene can identify the ment for asymmetric molecular structures is easily realized
sharp peaks fof (Q<7A as multiphoton transitions. Owing as discussed earlier, however difficulties associated with the
to the broken spatial symmetry of the wire, one expects amany possible effects of junction illumination have to be
asymmetric current—voltage characteristic. This is indeed theurmounted? First is the issue of bringing the light into the
case as depicted with the inset of Fig. 10. junction. This is a difficult problem in a break-junction setup
but possible in a STM configuration. Second, in addition to
the mechanism discussed in this paper, which is associated
IV. CONCLUSIONS with modulation of electronic states on the molecular bridge,

With this work we have detailed our recently presentedOther processes involving excitation of the metal surface may
approack? for the computation of the current through a time- &/SC affect electron transport. A complete theory of illumi-
dependent nanostructure. The Floquet solutions of the isd]ated molecular junction should consider this possible effect.

lated wire provide a well-adapted basis set that keeps th@!S0. Part of the junction response to an oscillating electro-
numerical effort for the solution of the master equation rela-N'2gnetic field may involve displacement currents associated
with the junction capacity. Finally, junction heating may con-

stitute a severe problem when strong electromagnetic fields
are applied. On the other hand, the light-induced rectification
phenomenon discussed in this paper is generic in the sense
that it does not require a particular molecular electronic
structure as long as an inherent molecular asymmetry is

= present. The prediction that with proper illumination one

°?O might induce a unidirectional current without applied voltage

E suggests a possibility to observe the effect without the back-
ground of a direct current component.

An alternative experimental realization of the presented
results is possible in semiconductor heterostructures, where,
instead of a molecule, coherently coupled quantum °dots
form the central system. A suitable radiation source that
Qa/n matches the frequency scales in this case must operate in the
microwave spectral range.

FIG. 10. Time-averaged current as a function of the angular driving fre-
quency() for Ng=1. All other parameters are as in Fig. 7. The inset displays
the dependence of the average current on an externally applied static voltageCKNOWLEDGMENTS
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time, a(t)=—a(—t). Then, time inversion transforms the
Floguet Hamiltoniar(A2) into its complex conjugate so that

APPENDIX: PARITY OF A SYSTEM UNDER DRIVING the corresponding symmetry is given by the antilinear trans-
BY A DIPOLE FIELD formation
Although we describe in this work the molecule within a Stpi (D, X,1)—=(D*,—x,—t). (AB)

tight-binding approximation, it is more convenient to studyTh_ ¢ ‘ i ts a furth lizati fh
its symmetries as a function of a continuous position and to IS transtormation represents a further generafization of the
grity P, we will refer to it astime-inversion paritysince in

regard the discrete sites as a special case. Let us first consio% iterature the t lized parity i " dinth
a Hamiltonian that is an even function af and, thus, is € literature the term generalized partly 1S mostly used in the

invariant under the parity transformatio®x— —x. Then, con'fxtt of the transform?ﬁoﬁﬁ).t the EI t Hamiltonian i
its eigenfunctionsp, can be divided into two classes: even et us now assume that that the Floguet Hamiltonian is

. : ) oy
and odd ones, according to the signdn(x) =+ @, (—x). invariant under the transformatid\6), H(x,t)=H* (—X,

Adding a periodically time-dependent dipole fosca(t) —t), and thatd(x,t) is a Floquet state, i.e., a solution of the
. . : . .
to such a Hamiltonian evidently breaks parity :symmetrye'g'envallue equationiAl) with quasienergye. Then, ©

sinceP changes the sign of the interaction with the radiation.(_x’_t) is also a Floquet state with the same quasienergy.
In a Floquet description, however, we deal with states th n the absence of any degeneracy, both Floquet states must

are functions of both position and time—we work in the °¢ identical and, thus, we find as a consequence of the time-

. ) ko C
extended spacgx,t}. Instead of the stationary Scldiager mversmn_pantySTp thgt@(x,t)—(l) (=x,=1). This IS not
equation, we address the eigenvalue problem necessarily the case in the presence of degeneracies, but then

we are able to choose linear combinations of(thegenerate

H(X, )P (X,1)=€eD(x,1) (A1)  Floquet states which fulfill the same symmetry relation.
with the so-called Floguet Hamiltonian given by Again we are interested in the Fourier decompositia8)
and obtain
J
H(t)= Ho(x)+xa(t)—iﬁﬁ, (A2) D (X) =Dy (—X). (A7)

The time-inversion discussed here can be generalized by
an additional time-shift to reat—ty,—t. Then, we find by
the same line of argumentation thhg(x) and®} (—x) dif-
fer at most by a phase factor. However, for convenience one
may choose already from the start the origin of the time axis
such thaty=0.

where we assume a symmetric static patty(x)=Hg

(—x). Our aim is now to generalize the notion of parity to

the extended spade,t} such that the overall transformation

leaves the Floquet equatiofAl) invariant. This can be

achieved if the shape of the driving(t) is such that an

additional time transformation “repairs” the acquired minus

sign. We consider two types of transformation: generalized
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